JPS59141454A - Manufacture of flame retardant heat insulating material - Google Patents

Manufacture of flame retardant heat insulating material

Info

Publication number
JPS59141454A
JPS59141454A JP1446583A JP1446583A JPS59141454A JP S59141454 A JPS59141454 A JP S59141454A JP 1446583 A JP1446583 A JP 1446583A JP 1446583 A JP1446583 A JP 1446583A JP S59141454 A JPS59141454 A JP S59141454A
Authority
JP
Japan
Prior art keywords
water
weight
binder
parts
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1446583A
Other languages
Japanese (ja)
Inventor
進 三橋
永田 伸夫
邦雄 大久保
浦田 秀信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP1446583A priority Critical patent/JPS59141454A/en
Publication of JPS59141454A publication Critical patent/JPS59141454A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は発泡プラスチック粒状物を、水溶性珪酸塩(水
ガラス)と無機質硬化剤及びポリウレタン原料からなる
混合バインダーを用いて注型硬化させることからなる発
泡プラスチックの持つ良好な断熱性を損なうことなく優
れた難燃性を有し耐火性にも優れた難燃性断熱材の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to improve the properties of foamed plastic by casting and curing foamed plastic granules using a mixed binder consisting of a water-soluble silicate (water glass), an inorganic curing agent, and a polyurethane raw material. The present invention relates to a method for producing a flame-retardant heat insulating material that has excellent flame retardancy and fire resistance without impairing heat insulation properties.

プラスチック発泡体は断熱性、耐水性、結露防止性等に
優れていることより建築材に多用の方向にあるが、難燃
性に乏しいために用途が限定され、防火上からも多くの
制約を受けている。一方、グラスウール等の無機質系の
断熱材は難燃性には優れているが結露による断熱性能の
低下を来し、ときには結露水によって木材等を腐蝕させ
てしまうという欠点がある。これらの欠点を改良する試
みが種々行なわれているが、難燃性や耐水性の不足ある
いは生産効率の悪さ等から実用化に至る商品が極めて少
ないという実情にある。
Plastic foams are increasingly being used as construction materials due to their excellent heat insulation, water resistance, and anti-condensation properties, but their lack of flame retardancy limits their uses and poses many restrictions from a fire safety standpoint. is recieving. On the other hand, inorganic heat insulating materials such as glass wool have excellent flame retardancy, but have the disadvantage that their heat insulating performance deteriorates due to condensation, and sometimes the condensed water corrodes wood and the like. Although various attempts have been made to improve these drawbacks, the reality is that very few products have been put into practical use due to lack of flame retardancy, water resistance, poor production efficiency, etc.

例えば、水ガラス系無機質バインダーをプラスチック粒
状物に混合し成型する方法が提案されているが、該方法
では硬化脱型できるまでに長時間を要するので生産効率
が悪く、また耐水性も悪く断熱材として実用に耐えない
等の欠点を有している。
For example, a method has been proposed in which a water glass-based inorganic binder is mixed with plastic granules and molded, but this method requires a long time to harden and release from the mold, resulting in poor production efficiency and poor water resistance. It has drawbacks such as being impractical for practical use.

本発明はこのような欠点を解消したものであり、その要
旨は、水溶性珪酸塩と酸化亜鉛、珪酸カルシウム、アル
ミニラ今一化合物1石綿等の硬化剤及ヒホリウレタン原
料からなる水ガラス系バインダーを調製し、該バインダ
ーを発泡プラスチック粒状物に混合し5得られた混合物
を注型硬化させ。
The present invention eliminates these drawbacks, and the gist thereof is to prepare a water glass binder comprising a water-soluble silicate, a hardening agent such as zinc oxide, calcium silicate, aluminira-imichi compound 1 asbestos, and a hyoriurethane raw material. The binder was then mixed into the foamed plastic granules and the resulting mixture was cast and cured.

脱型後加熱乾燥する難燃性断熱材の製造方法に係るもの
である。
The present invention relates to a method for producing a flame-retardant heat insulating material, which is heat-dried after demolding.

本発明において、前記の如く水ガラス系バインダーは安
価な水溶性珪酸塩と無機質硬化剤及びポリウレタン原料
からなるため常温で速やかに硬化し短時間での脱型が可
能となる。これは水溶性珪酸塩中のアルカリがポリウレ
タン原料の硬化の触媒の役割を果し、また水溶性珪酸塩
中の水がポリウレタン原料のイソシアネートと反応して
ポリウレタン原料の硬化を促進し、該反応で生じる炭酸
ガスは水ガラス系バインダーの硬化に寄与するためと考
えられるからである。
In the present invention, as described above, the water glass binder is composed of an inexpensive water-soluble silicate, an inorganic curing agent, and a polyurethane raw material, so that it hardens quickly at room temperature and can be demolded in a short time. This is because the alkali in the water-soluble silicate acts as a catalyst for the curing of the polyurethane raw material, and the water in the water-soluble silicate reacts with the isocyanate of the polyurethane raw material to promote the curing of the polyurethane raw material. This is because the carbon dioxide gas produced is thought to contribute to the curing of the water glass binder.

また、水ガラス系バインダーを発泡プラスチック粒状物
に混合するに際し、該バインダーを発泡プラスチック粒
子の個々の表面に均一に塗布するように混合を行なうと
、注型、硬化後の本発明に係る難燃性断熱材は、個々の
発泡プラスチック粒子が水ガンス系バインダーの硬化物
で被包された状態となって、断熱性を損わずに難燃性及
び耐水性に優れたものとすることができる。
Furthermore, when mixing a water glass-based binder with foamed plastic particles, if the binder is mixed so as to be uniformly applied to the individual surfaces of the foamed plastic particles, the flame retardant material of the present invention after casting and curing can be improved. The thermal insulation material has individual foamed plastic particles encapsulated in a cured product of a water gun binder, and can be made to have excellent flame retardancy and water resistance without sacrificing insulation properties. .

さらに本発明において、注型硬化後、脱泡したものを発
泡プラスチック粒子がへたる軟化温度を越えない範囲で
加熱乾燥することにより水ガラス系バインダーをほぼ完
全に硬化することが出来、その配合処決とあいまって本
発明に係る難燃性断熱材はさらに優れた耐水性を有する
こととなる。
Furthermore, in the present invention, the water glass binder can be almost completely cured by heating and drying the defoamed material after casting and curing within a range that does not exceed the softening temperature at which the foamed plastic particles collapse. In combination with this, the flame retardant heat insulating material according to the present invention has even better water resistance.

本発明で使用する発泡プラスチック粒状物としては、ポ
リスチレン、ポリエチレン、ポリプロピレン、ポリ塩化
ビニル、ポリウレタン等及びこれらのモノマーの共重合
体等の発泡粒状物であり、なかでもポリスチレン系及び
ポリ塩化ビニル系のものが好ましい。
The foamed plastic granules used in the present invention include foamed granules of polystyrene, polyethylene, polypropylene, polyvinyl chloride, polyurethane, etc., and copolymers of these monomers, among which polystyrene-based and polyvinyl chloride-based granules are used. Preferably.

発泡粒状物の大きさは特に限定されないが0・5〜10
龍径のものが好ましく用いられ、発泡倍率としては10
〜70倍のものが用いられるっ発泡倍率が前記以外の範
囲ではともに難燃性に劣ることとなり本発明の目的にそ
ぐわなくなる。
The size of the foamed granules is not particularly limited, but is between 0.5 and 10.
Those with a dragon diameter are preferably used, and the foaming ratio is 10.
If the foaming ratio used is between 70 and 70 times, the flame retardance will be poor and the object of the present invention will not be met.

また10倍以下では断熱性にも劣ることとなる。Moreover, if it is 10 times or less, the heat insulation properties will be poor.

また水溶性珪酸塩としては、ソーダ水ガラス。Also, as a water-soluble silicate, soda water glass is used.

カリ水ガラス等が使用できるが、コスト的にソーダ水ガ
ラスが好ましく、特にモル比(SiO,/Na20)が
2.1〜3.5で比重が30〜59ボーメ(20℃)の
ものが好ましい。
Although potash water glass etc. can be used, soda water glass is preferable in terms of cost, and one with a molar ratio (SiO,/Na20) of 2.1 to 3.5 and a specific gravity of 30 to 59 Baume (20°C) is particularly preferable. .

硬化剤としては、酸化亜鉛、珪酸カルシウム。Hardeners include zinc oxide and calcium silicate.

アルミニウム化合物および石綿から選ばれた少なくとも
酸化亜鉛又は珪酸カルシウムを必須成分とする混合硬化
剤が用いられる。
A mixed curing agent containing at least zinc oxide or calcium silicate selected from aluminum compounds and asbestos as an essential component is used.

酸化亜鉛は本発明に係る難燃性断熱材の耐水性、硬度を
高め、珪酸カルシウムは耐水性、耐候性を向上させる効
果を有する。
Zinc oxide has the effect of increasing the water resistance and hardness of the flame retardant heat insulating material according to the present invention, and calcium silicate has the effect of improving the water resistance and weather resistance.

アルミニウム化合物は水酸化アルミニウム、アルミナ、
水和アルミナ等が好ましく用いられ、硬化時の収縮率の
低下、クラック防止に効果を有する。
Aluminum compounds include aluminum hydroxide, alumina,
Hydrated alumina or the like is preferably used and is effective in reducing shrinkage during curing and preventing cracks.

石綿はバインダーの粘度調整作用を有し、かつバインダ
ー中でアンが一効果も有すること°より本発明に係る難
燃性断熱材の強度向上及び燃焼時の形状保持に効゛果を
有する。
Asbestos has the effect of adjusting the viscosity of the binder, and since asbestos also has the effect of anhydride in the binder, it is effective in improving the strength of the flame-retardant heat insulating material according to the present invention and retaining its shape during combustion.

これらの硬化剤は、水溶性珪酸塩100重量部あたり、
酸化亜鉛及び/又は珪酸カルシウームが5〜100重量
部、アルミニウム化合物がθ〜50重喰部、石綿が0〜
50重量部の割合で用いられるつ いずれも上記の範囲以上の量を用いても効果の向上がそ
れ程期待できず、コスト上不利となり、さらに断熱効果
を殺ぐことにもなるからである。
These curing agents contain, per 100 parts by weight of water-soluble silicate,
Zinc oxide and/or calcium silicate: 5 to 100 parts by weight, aluminum compound: θ to 50 parts by weight, asbestos: 0 to 100 parts by weight
This is because even if an amount exceeding the above-mentioned range is used in a ratio of 50 parts by weight, no significant improvement in the effect can be expected, resulting in a cost disadvantage, and furthermore, the heat insulating effect is destroyed.

また、酸化亜鉛及び/又は珪酸カルシウムが5重量部以
下では耐水性が劣るので本発明の目的にそぐわな(なる
。アルミニウム化合物、石綿は本発明の目的からは必須
の硬化剤でな(てもよいが、上記の諸性能を向上させる
ため添加することが好ましい。
Furthermore, if the zinc oxide and/or calcium silicate is less than 5 parts by weight, the water resistance will be poor and the object of the present invention will not be met.Aluminum compounds and asbestos are not essential curing agents for the purpose of the present invention. However, it is preferable to add it in order to improve the various performances mentioned above.

ポリオール及びインシアネートのポリウレタン原料は前
述した如く発泡プラスチック粒状物とバインダーの混合
物を注型後速やかに硬化させる効果を有し、水溶性珪酸
塩100重量部あたり15〜75重量部が用いられる。
As described above, the polyurethane raw materials of polyol and incyanate have the effect of rapidly curing the mixture of foamed plastic particles and binder after casting, and are used in an amount of 15 to 75 parts by weight per 100 parts by weight of water-soluble silicate.

15重量部以下では前記の硬化促進の効果に乏、シ<な
り、75重量部以上では本発明に係る難燃性断熱材の難
燃効果を低化させるのでともに本発明に不適となる。
If it is less than 15 parts by weight, the effect of accelerating curing will be insufficient, and if it is more than 75 parts by weight, the flame retardant effect of the flame-retardant heat insulating material according to the present invention will be lowered, making both of them unsuitable for the present invention.

本発明に用いられるポリウレタン原料のイソシアネート
としては、トリレンジイソシアネート、44’−ジフェ
ニルメタンジイソシアネート、1,6−へキサメチレン
ジイソシアネート、L5−ナフタレンジイソシアネート
、フェニレンジインシアネート、4.4r−ビフェニル
ジイソシアネート等の脂肪族系、環状基を有する脂肪族
系、芳香族系、ビフェニル系のいずれもが用いられる。
Isocyanates as raw materials for polyurethane used in the present invention include fatty acids such as tolylene diisocyanate, 44'-diphenylmethane diisocyanate, 1,6-hexamethylene diisocyanate, L5-naphthalene diisocyanate, phenylene diisocyanate, and 4.4r-biphenyl diisocyanate. Any of a group type, an aliphatic type having a cyclic group, an aromatic type, and a biphenyl type can be used.

またポリオールとしては、ポリエチレングリコール、ポ
リプロピレングリコール、ペンタメチレンf IJ =
y −ル、ジグライム等のポリエーテル系及び両末端O
Hのポリ(エチレンアジペート)、ポリ(プロピレンア
ジペート)、ポリ(エチレンサクシネート)等のポリエ
ステル系の(ごずれも用いられる。
In addition, as polyols, polyethylene glycol, polypropylene glycol, pentamethylene f IJ =
Polyether type such as y-ru, diglyme, etc. and O at both ends
Polyester-based materials such as H poly(ethylene adipate), poly(propylene adipate), and poly(ethylene succinate) are also used.

ポリオール及びイソシアネートの使用量はインシアネー
トによる硬化効果上、水溶性珪酸塩100重量部に対し
イソシアネートの使用量は少な(とも10重量部が必要
であり、50重量部以上とした場合ポリウレタンの混合
割合が増大し、難燃性を低化させるからである。ポリオ
ールの使用量はインシアネートとの反応し得る量で定め
られ、5〜25重量部の範囲で用いられる。
Due to the curing effect of incyanate, the amount of isocyanate used is small for 100 parts by weight of water-soluble silicate (10 parts by weight of both are required, and if it is 50 parts by weight or more, the mixing ratio of polyurethane This is because the amount of polyol used is determined by the amount that can react with incyanate, and is used in the range of 5 to 25 parts by weight.

本発明におけるバインダーの調整としては、まず水溶性
珪酸塩溶液に前記の硬化剤を加え、さらにポリオールを
添加して混合し、次いでインシアネートを加えてペース
ト状バインダーを得る。この水ガラス系バインダーを発
泡プラスチック粒状物に添加混合し、発泡プラスチック
粒子の表面をバインダーでコーティングする。
To prepare the binder in the present invention, first, the above curing agent is added to a water-soluble silicate solution, a polyol is further added and mixed, and then incyanate is added to obtain a paste-like binder. This water glass binder is added to and mixed with the foamed plastic particles, and the surfaces of the foamed plastic particles are coated with the binder.

また、発泡プラスチック粒状物の混合割合はプラスチッ
クの種類、発泡状態、粒径等によって異にするが、水ガ
ラス系バインダー100重量部あたり発泡プラスチック
粒状物が5〜150重量部さらには10〜100重量部
の範囲が好適である05重量部以下では断熱効果に劣り
、150重量部以上ではバインダーによる表面コーティ
ングが不充分となり、難燃性に劣ることとなるからであ
る。
The mixing ratio of foamed plastic granules varies depending on the type of plastic, foaming state, particle size, etc., but 5 to 150 parts by weight of foamed plastic granules per 100 parts by weight of water glass binder, and even 10 to 100 parts by weight. If the amount is less than 0.5 parts by weight, which is the preferable range, the insulation effect will be poor, and if it is more than 150 parts by weight, the surface coating with the binder will be insufficient, resulting in poor flame retardancy.

発泡ブ之スチツク粒状物とバインダーとを混合機で混合
した後、公知の成型法で成型される。例えば、板状5箱
状の成形体を作る際は金型に流下式で充填するか圧入す
るかして注型し、常温下で10〜20分間放置し硬化さ
せる。なお、脱型を急ぐ場合は加熱硬化を行なっても良
い。該硬化後脱型した成形体を、発泡プラスチック粒子
がへたりを起さない温度以下で加熱乾燥を行なう。加熱
  で乾燥条件としては例えば、発泡ポリスチレシ粒状
物の場合においては70℃〜120゛C5好ましくは8
0〜110℃で30分〜5時間が好適である。
After the foamed stick granules and the binder are mixed in a mixer, they are molded using a known molding method. For example, when making a plate-like 5-box molded product, the product is poured into a mold by pouring or press-fitting, and left at room temperature for 10 to 20 minutes to harden. In addition, if demolding is to be done in a hurry, heat curing may be performed. The molded product removed from the mold after curing is heated and dried at a temperature below which the foamed plastic particles do not sag. For example, in the case of foamed polystyrene granules, the heating drying conditions are 70°C to 120°C, preferably 8°C.
30 minutes to 5 hours at 0 to 110°C is suitable.

このような加熱乾燥を行なうことにより本発明に係る難
燃性断熱材を耐水性に優れたものとする。
By performing such heat drying, the flame retardant heat insulating material according to the present invention has excellent water resistance.

加熱乾燥後は室温等で冷却する。After heating and drying, cool to room temperature or the like.

本発明に係る水、ガ之ス系;くインダーは、アルミニウ
ム板、鋼板等ら金属板や珪酸カルシウム板、石こう板、
パーライト板、コンクリート板等の無機質系板、ガラス
織布、ガラス繊維不織布、ガラス紙等に対し接着性が極
めて良いため多層板等6製造に際し極めて好都合である
The water and gas-based binder according to the present invention includes metal plates such as aluminum plates and steel plates, calcium silicate plates, gypsum plates,
It has extremely good adhesion to inorganic boards such as perlite boards and concrete boards, glass woven fabrics, glass fiber nonwoven fabrics, glass paper, etc., so it is extremely convenient for manufacturing multilayer boards, etc.6.

本発明によって得られた難燃性断熱材は、難燃性と断熱
性がともに優れ、しかも耐水性にも優れ。
The flame-retardant heat insulating material obtained by the present invention has excellent flame retardancy and heat insulation properties, and also has excellent water resistance.

前記接着性の良さとあいまって建築材として多面的に利
用できるという画期的な特徴を有するものである。
Combined with the above-mentioned good adhesive properties, it has the revolutionary feature of being able to be used in many ways as a building material.

以下本発明を実施例に基づきさらに説明する。The present invention will be further explained below based on Examples.

実施例I JI83号珪酸ソーダ水溶′p?i、’(5i02/ 
Na、Oモル比3.0〜3.2、固形分40チ)100
gに酸化亜鉛(亜鉛華1号)10g、珪酸カルシウム(
試菜、fR)1(1、水酸化アルミニウム(〕・イジラ
イト■H−31)’10.9及び石綿(クリソタイル型
、6D−5)5gからなる硬化剤を加え、これにポリエ
ーテルトリオール(アデカ■G ’300 )5gを添
加して攪拌混合し、さらにインシアネートとしてトリレ
ンジイソシアネート(アデカ■UP382)10.9を
混合して水ガラス系ノくインダーを調製した。このバイ
ンダー150gと発泡倍率60倍の発泡ポリスチレン粒
状物20gを広口容器内で充分に攪拌混合し、該混合物
を25α×25cTnの金型内に充填し、後厚みが15
m1になるようプレスし常温下で硬化を行なったっ・1
5分間で脱型が可能となった。脱型後、乾燥機内で11
0℃、1時間の加熱乾燥を行ない、室温で冷却し、成形
体を得た。この成形体につき、密度、圧縮強度、耐水性
、熱伝導率等の物理特性の測定を行なった。結果を表1
に示す。
Example I JI83 Sodium silicate water soluble 'p? i,'(5i02/
Na, O molar ratio 3.0 to 3.2, solid content 40%) 100
g, 10 g of zinc oxide (zinc oxide No. 1), calcium silicate (
A hardening agent consisting of sample, fR) 1 (1, aluminum hydroxide (] Igilite ■H-31) '10.9 and asbestos (chrysotile type, 6D-5) 5 g was added, and to this was added polyether triol (ADEKA). ■G'300) 5g was added and mixed with stirring, and 10.9 g of tolylene diisocyanate (ADEKA ■UP382) was added as an incyanate to prepare a water glass-based binder.150g of this binder and a foaming ratio of 60 20g of foamed polystyrene granules were sufficiently stirred and mixed in a wide-mouthed container, and the mixture was filled into a mold of 25α x 25cTn.
I pressed it to m1 and cured it at room temperature.・1
It became possible to demold the mold in 5 minutes. After demolding, dry in the dryer for 11
The mixture was heated and dried at 0° C. for 1 hour, and then cooled to room temperature to obtain a molded article. Physical properties such as density, compressive strength, water resistance, and thermal conductivity were measured for this molded body. Table 1 shows the results.
Shown below.

実施例2 硬化剤として珪酸カルシウムを除き、他は実施例1と同
様にして成形体を得た。本例にお−・ても硬化脱型まで
15分間で可能となった。。
Example 2 A molded article was obtained in the same manner as in Example 1 except that calcium silicate was used as a hardening agent. In this example, it was possible to cure and demold in 15 minutes. .

本成形体につ(・でも実施例1と同じ物理・特性の測定
を行なった。結果を表1に示す。
Regarding this molded article, the same physical and characteristic measurements as in Example 1 were conducted. The results are shown in Table 1.

比較例1 実施例1で用いた3−号珪酸ソーダ水溶液30’OIK
、実施例1で用いたポリオール、イソシアネート及び発
泡ポリスチレン粒状物を実施例1と同量用い、実施例1
と同様にして常温硬化し脱型まで行ない成形体を得たつ なお、硬化剤は全く使用せず、脱型後の加熱乾燥も行な
わなかった。本例においては硬化脱型までに30分間を
要した。
Comparative Example 1 No. 3 sodium silicate aqueous solution 30'OIK used in Example 1
, using the same amounts of the polyol, isocyanate, and expanded polystyrene granules used in Example 1, Example 1
A molded product was obtained by curing at room temperature and demolding in the same manner as above, but no curing agent was used and no heating drying was performed after demolding. In this example, it took 30 minutes to harden and demold.

本例の成形体についても実施例1と同じ物理特性の測定
を行なった。結果を表1に示す。
The same physical properties as in Example 1 were also measured for the molded article of this example. The results are shown in Table 1.

比較例2 実施例1で用いた3号珪酸ソーダ水溶液300gに硬化
剤として、酸化亜鉛20,9、珪酸カルシ’)ム209
、水酸化アルミニウム20.!7を用いて混合し、この
水ガラス系バインダーに発泡ポリスチレン粒状物20.
j7を混合し、実施例1と同様にして常温硬化、脱型ま
で行ない成形体を得たつ本例においてはポリウレタン原
料を用いず、脱型後の加熱乾燥も行なわなかった。本例
では硬化脱型までに3時間を必要とした。
Comparative Example 2 Zinc oxide 20.9 and calcium silicate 209 were added to 300 g of the No. 3 sodium silicate aqueous solution used in Example 1 as a curing agent.
, aluminum hydroxide20. ! 7 and then add expanded polystyrene granules to this water glass binder using 20.
j7 was mixed, cured at room temperature, and demolded in the same manner as in Example 1 to obtain a molded product. In this example, no polyurethane raw material was used, and heating drying after demolding was not performed. In this example, it took 3 hours to harden and demold.

なお1本例の成形体についても実施例1と同様の物理特
性の測定を行なった。結果を表1に示す。
The physical properties of the molded article of this example were also measured in the same manner as in Example 1. The results are shown in Table 1.

比較例3 実施例1で用いた発泡ポリスチレン粒状物20gを用い
て、実施例1と同様にして常温硬化脱型まで行ない成形
体を得た。
Comparative Example 3 Using 20 g of the expanded polystyrene granules used in Example 1, a molded article was obtained in the same manner as in Example 1, including curing and demolding at room temperature.

本例においては水ガラス系バインダーを用いず、脱型後
の加熱乾燥も行なわなかった。本例では硬化5冷却、脱
型までに2時間を要した。
In this example, no water glass binder was used, and no heat drying was performed after demolding. In this example, 2 hours were required for curing, cooling, and demolding.

なお、本例の成形体についても実施例1と同様の物理特
性の測定を行なった。結果を表1に示す。
The physical properties of the molded article of this example were also measured in the same manner as in Example 1. The results are shown in Table 1.

また前記実施例及び比較例で得た成形体について、難燃
性の試験を、電気炉を用いた簡易燃焼試験炉で行なった
Furthermore, the molded bodies obtained in the Examples and Comparative Examples were tested for flame retardancy in a simple combustion test furnace using an electric furnace.

試験片を19cmX19σX1−5(厚み)儂として、
600℃の温度とした炉内に、試験片が水平になるよう
に支持体上に載せ、10分間の燃焼実験を行なった。
Assuming that the test piece is 19cm x 19σ x 1-5 (thickness),
The test piece was placed on a support horizontally in a furnace at a temperature of 600° C., and a combustion experiment was conducted for 10 minutes.

この結果、比較例3で得た試験片は炉内に投入直後に黒
煙を発して爆発的に燃焼しはじめ、2分間で形体を残す
ところなく焼燃してしまった。
As a result, the test piece obtained in Comparative Example 3 began to emit black smoke and burn explosively immediately after being put into the furnace, and was burnt out in 2 minutes without leaving any shape.

一方、実施例L2及び比較例L2で得た試験片は炉内に
投入1分後に白煙を発しはじめたが約8分径白煙の発生
がやんだ。実験終了後の試験片の表面は蜂の巣状となっ
ていたが、はぼ原形の形状のままであった。
On the other hand, the test pieces obtained in Example L2 and Comparative Example L2 started emitting white smoke one minute after being put into the furnace, but the generation of white smoke stopped about 8 minutes in diameter. After the experiment, the surface of the test piece had a honeycomb shape, but it remained in its original shape.

建材の難燃性能としては、火災時に例え燃焼したとして
も、崩落したり有害な変形を発生することなく原形に近
い形を保持することが求められている(例えば、JIS
A1321の難燃性試験に示されている如く)。前記の
実験にみもれるように、本発明に係る難燃性断熱材は高
度の難燃性を有することを示した。
Regarding the flame retardant performance of building materials, even if they burn in the event of a fire, they are required to maintain a shape close to the original without collapsing or causing harmful deformation (for example, JIS
As shown in the flame retardant test of A1321). As seen in the above experiment, the flame retardant heat insulating material according to the present invention was shown to have a high degree of flame retardancy.

表  1 上表中、圧縮強度はJISA9511(フオームポリス
チレン保温材)の耐圧試験に準じた。熱伝導率はJIS
A1412(平板比較法)によって測定した。
Table 1 In the above table, the compressive strength was based on the pressure test of JISA9511 (foam polystyrene insulation material). Thermal conductivity is JIS
Measured by A1412 (flat plate comparison method).

耐水性は、試験前の試料重量なW。、同試料を常温23
°Cの水に24時間浸漬後105℃で2時間乾燥後の重
量なWとしたとき、次式で求めた水溶難燃性は、前記実
験の結果、異常変形を示さないものを○、原形を残さな
いものを×であられした。
Water resistance is the sample weight before testing. , the same sample at room temperature 23
The water-soluble flame retardancy determined by the following formula is ○, the original shape, as a result of the above experiment, where W is the weight after immersing in water at 105 °C for 24 hours and drying for 2 hours at 105 °C. Those who do not leave behind are blessed with x.

表1に示す如く、実施例1,2とも熱伝導率が発泡ポリ
スチレン、グラスウールと同程度に断熱性に優れ、かつ
前記した如り600 ”Cという高温時における簡易燃
焼試験における難燃性も良好であり、しかも耐水性にも
優れ、さらに硬化脱型まで短時間で出来る等、生産性に
も優れている。
As shown in Table 1, both Examples 1 and 2 have excellent thermal conductivity comparable to that of expanded polystyrene and glass wool, and also have good flame retardancy in a simple combustion test at a high temperature of 600"C as described above. Furthermore, it has excellent water resistance, and is also excellent in productivity, as it can be cured and demolded in a short time.

比較例1においては、珪酸ソーダ量がポリスチレン量に
対し多いため、熱伝導率が高く、一般的断熱材(熱伝導
率が0.05 Kcal / m−h−C以下)として
不適な上、耐水性も非常に悪く、さらに硬化脱型までも
実施例L2に比し時間を要して生産効率が悪い。
In Comparative Example 1, the amount of sodium silicate is larger than the amount of polystyrene, so the thermal conductivity is high, making it unsuitable as a general heat insulating material (thermal conductivity of 0.05 Kcal/m-h-C or less) and not being water resistant. The properties were also very poor, and furthermore, the curing and demolding required more time than in Example L2, resulting in poor production efficiency.

比較例2は、ボリウレタ/原料を用いなかったため、硬
化脱型まで時間がかかりすぎて生産効率が極めて悪い上
に、脱型後加熱乾燥しなかったために耐水性も悪い。ま
た比較例1と同様に珪酸ソーダの量がポリスチレンの量
に比し多いため断熱性も極めて悪い。
In Comparative Example 2, since polyurethane/raw material was not used, it took too much time to harden and demold, resulting in extremely low production efficiency, and the product also had poor water resistance because it was not heated and dried after demolding. Further, as in Comparative Example 1, the amount of sodium silicate is larger than the amount of polystyrene, so the heat insulation properties are also extremely poor.

比較例3は、さらに硬化脱型までに時間がかかりすぎて
生産効率が悪い上に、自己消火性グレードの発泡ポリス
チレン粒状物から成形しているにもかかわらず前記簡易
燃焼試験においては燃えつきてしまい、難燃性が非常に
悪く、また圧縮強度も悪く、り・13材として用いるK
は用途が限定されろ。
In Comparative Example 3, it took too long to harden and demold, resulting in poor production efficiency, and even though it was molded from self-extinguishing grade expanded polystyrene granules, it burned out in the simple combustion test. K, which has very poor flame retardancy and poor compressive strength, is used as a lumber 13 material.
has limited use.

特許出願人  日本ゼオン株式会社Patent applicant: Zeon Corporation

Claims (1)

【特許請求の範囲】 1 発泡プラスチック粒状物に、 (a)水溶性珪酸塩と該珪酸塩100重量部に対し、 (1))下記の硬化剤 酸化亜鉛及び/又は珪酸カルシウム 5〜100重量部 アルミニウム化合物 0〜507 石 綿      0〜50 〃  及び(C)ポリオ
ール、イソシアネートのポリウレタン原料      
15〜75重量部 からなるバインダーを加えて混合し、得られた混合物を
注型硬化させ、脱型後加熱乾燥することを特徴とする難
燃性断熱材の製造方法。
[Claims] 1. In the foamed plastic granules, (a) a water-soluble silicate and 100 parts by weight of the silicate, (1) 5 to 100 parts by weight of the following hardening agent zinc oxide and/or calcium silicate. Aluminum compound 0-507 Asbestos 0-50 and (C) polyurethane raw material for polyol and isocyanate
1. A method for producing a flame-retardant heat insulating material, which comprises adding and mixing 15 to 75 parts by weight of a binder, casting and curing the resulting mixture, removing the mold, and then heating and drying.
JP1446583A 1983-01-31 1983-01-31 Manufacture of flame retardant heat insulating material Pending JPS59141454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1446583A JPS59141454A (en) 1983-01-31 1983-01-31 Manufacture of flame retardant heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1446583A JPS59141454A (en) 1983-01-31 1983-01-31 Manufacture of flame retardant heat insulating material

Publications (1)

Publication Number Publication Date
JPS59141454A true JPS59141454A (en) 1984-08-14

Family

ID=11861800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1446583A Pending JPS59141454A (en) 1983-01-31 1983-01-31 Manufacture of flame retardant heat insulating material

Country Status (1)

Country Link
JP (1) JPS59141454A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627244U (en) * 1985-06-27 1987-01-17
JPH01264979A (en) * 1988-04-14 1989-10-23 Fujimori Kogyo Kk Fire retardant expanded resin plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026823A (en) * 1973-07-10 1975-03-19
JPS5753547A (en) * 1980-08-08 1982-03-30 Charbonnages Ste Chimique Manufacture of polynorbornene-base elastomer material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5026823A (en) * 1973-07-10 1975-03-19
JPS5753547A (en) * 1980-08-08 1982-03-30 Charbonnages Ste Chimique Manufacture of polynorbornene-base elastomer material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627244U (en) * 1985-06-27 1987-01-17
JPH01264979A (en) * 1988-04-14 1989-10-23 Fujimori Kogyo Kk Fire retardant expanded resin plate

Similar Documents

Publication Publication Date Title
US3842020A (en) Method of expanding a resole resin containing expandable thermoplastic microspheres and product obtained therefrom
US4311541A (en) Panel and method for the preparation thereof
US4233361A (en) Panel and method for the preparation thereof
JPH0360474A (en) Inorganic foam and preparation thereof
US3634562A (en) Method of making acoustic tiles having voids containing shrunken beads
JPH0445471B2 (en)
ES2702107T3 (en) Procedures for the preparation of foam composite materials
EP0047675A1 (en) A process of making a coherent rigid solid material
KR20120075821A (en) Anti-flammable composite
JPS59141454A (en) Manufacture of flame retardant heat insulating material
JP5576133B2 (en) Laminated body
JPH08175861A (en) Formed plate of inorganic material and its production
JPS609055B2 (en) Manufacturing method of plastic flame-resistant foam
JP3036819U (en) Non-combustible phenolic resin foam
KR200282026Y1 (en) Inorganic Insulation And Inorganic Foam Material Including Thereof
JPH10120815A (en) Noncombustible phenol resin foam and its production
JP3038087U (en) Non-combustible phenolic resin foam
JPS6046982A (en) Manufacture of flame retardant heat insulator
JPH10324762A (en) High-strength noncombustible phenol resin foam
JPH10121664A (en) Light roof material and manufacture thereof
JP2000034180A (en) Production of inorganic foam
JPH1095063A (en) Incombustible phenol resin foamed body
JP3038085U (en) Lightweight roofing material
JPS59146988A (en) Flame retardant heat insulative material
JPS6033272A (en) Manufacture of silicon nitride porous body