JPS591404B2 - Method for polymerizing ethylene or α-olefins - Google Patents

Method for polymerizing ethylene or α-olefins

Info

Publication number
JPS591404B2
JPS591404B2 JP6709376A JP6709376A JPS591404B2 JP S591404 B2 JPS591404 B2 JP S591404B2 JP 6709376 A JP6709376 A JP 6709376A JP 6709376 A JP6709376 A JP 6709376A JP S591404 B2 JPS591404 B2 JP S591404B2
Authority
JP
Japan
Prior art keywords
titanium
polymerization
heptane
ethylene
olefins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6709376A
Other languages
Japanese (ja)
Other versions
JPS52150491A (en
Inventor
徹也 岩尾
平三 佐々木
昭 伊藤
政弘 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP6709376A priority Critical patent/JPS591404B2/en
Priority to GR53342A priority patent/GR63148B/en
Priority to CA277,885A priority patent/CA1097316A/en
Priority to GB19013/77A priority patent/GB1544193A/en
Priority to PT66524A priority patent/PT66524B/en
Priority to MX169120A priority patent/MX145423A/en
Priority to AT350477A priority patent/AT360751B/en
Priority to DE19772722150 priority patent/DE2722150A1/en
Priority to NLAANVRAGE7705370,A priority patent/NL184005C/en
Priority to US05/797,227 priority patent/US4187385A/en
Priority to FR7714920A priority patent/FR2352000A1/en
Priority to BR7703149A priority patent/BR7703149A/en
Priority to YU1221/77A priority patent/YU40477B/en
Priority to IT23588/77A priority patent/IT1104772B/en
Publication of JPS52150491A publication Critical patent/JPS52150491A/en
Publication of JPS591404B2 publication Critical patent/JPS591404B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳細な説明】 本発明は改良された粒度分布を有しかつ立体規則性の高
い重合体を得る、エチレン又はα−オレフィン類の重合
方法にかんする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for the polymerization of ethylene or alpha-olefins which yields polymers with improved particle size distribution and high stereoregularity.

エチレン又はα−オレフィン類の重合に使用される最も
一般的なチーグラー型触媒はチタン化合物を含む触媒成
分と有機アルミニウム化合物とからなるものである。
The most common Ziegler type catalyst used for the polymerization of ethylene or α-olefins consists of a catalyst component containing a titanium compound and an organoaluminum compound.

三塩化チタン又はΞ塩化チタン組成物を粉砕することに
より(特公昭35−14125、特公昭39−2427
1など)、またこれらチタン化合物に種々の化合物を加
えて共粉砕することにより(特公昭39−24270、
同39−24272、同43−10065、同43−1
5620、同49−22315、特開昭48−6849
7、同48−29694、同48一38295、同49
−53196など)更にこれら粉砕処理物を有機溶媒又
はこれと変性剤との扉合物で改質処理することにより(
特公昭49−1947、同49−48638同50−1
7319、同49−48637、特開昭48−6417
0など)、触媒性能が向上することはよく知られている
。しかし乍ら、一般にこの様な粉砕処理及び改質処理を
行うと、得られるチタン触媒成分の粒度分布の幅が著し
く広くなり、5ミタロン以下の微粒子が10重量%以上
になる。
By crushing titanium trichloride or Ξ titanium chloride composition (Japanese Patent Publication No. 35-14125, Japanese Patent Publication No. 39-2427)
1 etc.), or by adding various compounds to these titanium compounds and co-pulverizing them (Japanese Patent Publication No. 39-24270,
39-24272, 43-10065, 43-1
5620, 49-22315, JP-A-48-6849
7, 48-29694, 48-38295, 49
-53196, etc.) By further modifying these pulverized products with an organic solvent or a compound of this and a modifier (
Special public service No. 49-1947, No. 49-48638 No. 50-1
7319, 49-48637, JP-A-48-6417
0, etc.), it is well known that catalyst performance is improved. However, when such pulverization and reforming treatments are carried out, the particle size distribution of the resulting titanium catalyst component generally becomes significantly wider, with fine particles of 5 mt or less accounting for 10% by weight or more.

チタン触媒成分と有機アルミニウム化合物とからなる重
合触媒を用いるエチレン又はα−オレフイン類の重合ま
たは共重合において、生成する重合物又は共重合物の粒
度は使用されるチタン触媒成分の粒度の影響を強くうけ
る。
In the polymerization or copolymerization of ethylene or α-olefins using a polymerization catalyst consisting of a titanium catalyst component and an organoaluminum compound, the particle size of the resulting polymer or copolymer is strongly influenced by the particle size of the titanium catalyst component used. box office.

即ち、微粒子を多量に含む粒度分布の広いチタン触媒成
分る用いて得られる重合物又は共重合物は同様に粒度分
布が広くなり、通常50μ以下の微粉末を10ないし3
0重量%含む。生成重合物の粒度分布が広くとくに微粉
末が多くなると、済過、遠心分離などによる生成重合物
と溶媒との分離が困難となり、また乾燥工程、ペレツト
工程において散逸によるロスが多くなる。
That is, the polymer or copolymer obtained by using a titanium catalyst component containing a large amount of fine particles and having a wide particle size distribution similarly has a wide particle size distribution.
Contains 0% by weight. When the particle size distribution of the produced polymer is wide, especially when the amount of fine powder increases, it becomes difficult to separate the produced polymer from the solvent by filtration, centrifugation, etc., and losses due to dissipation increase in the drying process and pelletizing process.

従つてこれらを防止するため余分な設備を設け、複雑な
製造操作で行わなければならないので、その改善が要望
されている。触媒の性能向上のため前述のとおり多数の
方法が提案されている。
Therefore, in order to prevent these problems, it is necessary to provide extra equipment and perform complicated manufacturing operations, and therefore, improvements are desired. As mentioned above, many methods have been proposed to improve the performance of catalysts.

これらの中で三塩化チタン原料を種々の変性剤で改質処
理する方法が、たとえば特公昭49−1947、同49
−48638、特開昭48−64170などにおいて開
示されている。これらの方法は後述の比較例で示すとお
り、活性向上の点ではある程度有効であるが、改質処理
中に三塩化チタン成分の微細化がおこつて、上記の如き
不利な結果を招くので、工業的に使用するには大きな欠
点となる。本発明の目的は微粉末含有率の極めて少ない
、粒度分布の狭い重合体を生成する、エチレン又はα−
オレフイン類の重合方法を提供することにある。
Among these methods, methods of modifying titanium trichloride raw materials with various modifiers are described, for example, in Japanese Patent Publications No. 49-1947 and No. 49-49.
-48638, JP-A-48-64170, etc. As shown in the comparative examples below, these methods are effective to some extent in terms of improving activity, but the titanium trichloride component becomes finer during the modification process, resulting in the disadvantageous results described above. This is a major drawback for industrial use. The object of the present invention is to produce polymers with extremely low fines content and narrow particle size distribution.
An object of the present invention is to provide a method for polymerizing olefins.

本発明の他の目的は高い立体規則性を有する工チレン又
はα−オレフインの重合体を得ることにある。
Another object of the present invention is to obtain polymers of engineered tylenes or α-olefins having high stereoregularity.

上記の目的は、三塩化チタンまたは三塩化チタン組成物
を、これに対し約10重量%以下の少量のエチレンまた
はα−オレフインを添加し一般式A/RnlX3−m(
こ\でRはアルキル基又はアリール基でありXは水素又
はハロゲンでありmは1〜3である)を有する有機アル
ミニウム化合物と共粉砕し、次に不活性有機溶媒あるい
は該有機溶媒と1)含酸素、硫黄リン、窒素又はケイ素
有機化合物、2)上記1)の有機化合物とハロゲン化ア
ルミニウムとの組合せ、3)有機アルミニウム化合物及
び4)ルイス酸からなる群から選ばれる変性剤との混合
物と接触せしめ、共粉砕物を上記有機溶媒より分離する
ことにより得られる改質チタン触媒成分と有機アルミニ
ウム化合物とからなるチーグラ一型重合触媒を用いて、
エチレン又はα一オレフイン類を重合することにより達
成される。
For the above purpose, titanium trichloride or a titanium trichloride composition with the general formula A/RnlX3-m (
where R is an alkyl group or aryl group, X is hydrogen or halogen, and m is 1 to 3), and then co-pulverized with an inert organic solvent or the organic solvent 1) an oxygen-containing, sulfur-phosphorus, nitrogen or silicon organic compound; 2) a combination of the organic compound of 1) above and aluminum halide; 3) an organoaluminum compound; and 4) a mixture with a modifier selected from the group consisting of Lewis acids. Using a Ziegler type polymerization catalyst consisting of a modified titanium catalyst component and an organoaluminum compound obtained by contacting and separating the co-pulverized product from the organic solvent,
This is achieved by polymerizing ethylene or α-olefins.

本発明において使用される改質チタン触媒成分の出発原
料は、四塩化チタンを水素で還元して得られる三塩化チ
タン、四塩化チタンを金属で還元して得られる三塩化チ
タンと塩化金属との共晶体、四塩化チタンをS1−H結
合を有する化合物または有機アルミニウム化合物で還元
して得られる三塩化チタン組成物など、三塩化チタン又
は三塩化チタンを主成分とするすべての三塩化チタン組
成物である。これらの出発チタン成分は微粉砕した形で
用いてもよい。またこれらは三塩化チタン又は三塩化チ
タン組成物に前述の変性剤の群から選ばれる物質を添加
剤として加えて共粉砕してえられる粉砕処理物を含む。
こ\で加えられる添加剤の使用量は三塩化チタンまた三
塩化チタン組成物に対し0.5〜100モル?、好まし
くは2〜70モル%の範囲である。その添加は通常粉砕
操作前に行われるが、粉砕の途中または何回かに分けて
加えてもよい。エチレン又はα−オレフインの存在下で
出発チタン成分との共粉砕において使用される一般式A
訂Hx3−mの有機アルミニウム化合物は、たとえばト
リエチルアルミニウム、トリイソブチルアルミニウム、
ジエチルアルミニウムモノクロライド、ジイソブチルア
ルミニウムモノクロライド、ジエチルアルミニウムモノ
ブロマイド、エチルアルミニウムセスキタロライドなど
が例示される。
The starting materials for the modified titanium catalyst component used in the present invention are titanium trichloride obtained by reducing titanium tetrachloride with hydrogen, and combinations of titanium trichloride and metal chloride obtained by reducing titanium tetrachloride with metal. All titanium trichloride compositions containing titanium trichloride or titanium trichloride as a main component, such as eutectics, titanium trichloride compositions obtained by reducing titanium tetrachloride with a compound having an S1-H bond or an organoaluminum compound. It is. These starting titanium components may be used in finely divided form. These also include a pulverized product obtained by co-pulverizing titanium trichloride or a titanium trichloride composition with the addition of a substance selected from the group of modifiers described above as an additive.
The amount of additive added here is 0.5 to 100 mol based on titanium trichloride or titanium trichloride composition. , preferably in the range of 2 to 70 mol%. The addition is usually carried out before the grinding operation, but it may also be added during the grinding process or in several batches. General formula A used in co-milling with the starting titanium component in the presence of ethylene or α-olefin
The organic aluminum compound of Hx3-m is, for example, triethylaluminum, triisobutylaluminum,
Examples include diethylaluminum monochloride, diisobutylaluminum monochloride, diethylaluminium monobromide, and ethylaluminum sesquitalolide.

共粉砕時に添加するエチレン又はα−オレフインの量は
出発チタン成分に対し約10重量?以下でありその下限
は通常約0.01重量%である。αーオレフインとして
はプロピレン、ブテン−1などの低級α−オレフインが
使用される。これらは触媒による重合のさいに使用する
モノマーと同種である必要はない。粉砕操作は粉体を粉
砕する通常の粉砕機、たとえばボールミル、振動ミル、
塔式ミル、ジニットミルなどを用い、酸素、水分などが
実質的にない状態で行なう。
Is the amount of ethylene or α-olefin added during co-grinding approximately 10% by weight based on the starting titanium component? The lower limit is usually about 0.01% by weight. As the α-olefin, lower α-olefins such as propylene and butene-1 are used. These need not be of the same type as the monomers used in the catalytic polymerization. The grinding operation is carried out using conventional grinders that grind powder, such as ball mills, vibrating mills,
The process is carried out using a column mill, a dinit mill, etc. in the absence of oxygen, moisture, etc.

また粉砕は少量の水素の存在下で行なつてもよい。粉砕
温度は一般に−30℃ないし150℃の範囲で、時間は
1ないし100時間程度が適当である。かくして得られ
た共粉砕物は不活性有機溶媒又は該有機溶媒と変性剤と
の混合物に接触させ、ついで該有機溶媒より分離させる
ことよりなる改質処理をうける。
The grinding may also be carried out in the presence of a small amount of hydrogen. The grinding temperature is generally in the range of -30°C to 150°C, and the appropriate grinding time is about 1 to 100 hours. The co-pulverized product thus obtained is subjected to a modification treatment comprising contacting it with an inert organic solvent or a mixture of the organic solvent and a modifier, and then separating it from the organic solvent.

本文中で有機溶媒による「洗浄処理」という用語は有機
溶媒との接触による改質操作の意味で使用される。この
改質処理において、共粉砕物を有機溶媒で洗浄し分離す
る方法、有機溶媒で洗浄後、有機溶媒と変性剤との混合
物と接触、分離する方法、共粉砕物を有機溶媒と変性剤
の混合物と接触、分離する方法、あるいは異なる種類の
有機溶媒又は有機溶媒と変性剤との混合物とくり返し接
触させ、分離する方法など、出発原料及び目的に応じて
種々の実施態様をとることができる。この改質処理にお
いて使用される不活性有機溶媒としては、たとえばヘキ
サン、ヘプタン、シクロヘキサン、ベンゼン、トルエン
、キシレン、モノクロルベンゼンなどが好ましい。
In this text, the term "washing treatment" with an organic solvent is used to mean a modification operation by contact with an organic solvent. In this modification treatment, the co-pulverized material is washed with an organic solvent and separated, the co-pulverized material is washed with an organic solvent and then brought into contact with a mixture of an organic solvent and a modifier, and separated. Various embodiments can be taken depending on the starting materials and purpose, such as a method of contacting and separating a mixture, or a method of repeatedly contacting and separating with different types of organic solvents or mixtures of organic solvents and modifiers. Preferred examples of the inert organic solvent used in this modification treatment include hexane, heptane, cyclohexane, benzene, toluene, xylene, and monochlorobenzene.

有機溶媒は共粉砕物に対し1〜500重量部を用い、O
〜200℃で処理する。処理後デカンテーシヨンまたは
F過により溶媒と共粉砕物とを分離する。また場合によ
りさらに常圧又は減圧下で加熱して溶媒を除去して乾燥
してもよい。またこれら洗浄及び分離操作を数回くり返
して行なうこともある。改質処理において使用される変
性剤は次の(1)〜(4)の群から選ばれる。
The organic solvent is used in an amount of 1 to 500 parts by weight based on the co-pulverized material, and O
Process at ~200°C. After the treatment, the solvent and the co-pulverized product are separated by decantation or F-filtration. Further, depending on the case, it may be further heated under normal pressure or reduced pressure to remove the solvent and dry. Further, these washing and separation operations may be repeated several times. The modifier used in the modification treatment is selected from the following groups (1) to (4).

また出発チタン成分に加えて共粉砕される添加剤も変性
剤と同様に下肚已の群から選ばれる。変性剤の詳細につ
いては昭和51年6月10日付で同時出願の[重合触媒
成分の製造方法」と題する特許出願(特願昭51−67
092号)に記述されている。(1)有機含酸素、硫黄
、リン、窒素又はケイ素化合物:有機含酸素化合物とし
て、たとえばジエチルエーテル、ジフエニルエーテル、
ジトリルエーテル、2−クロロフエニルエーテル、ジエ
チルケトン、ジフエニルケトン、酢酸エチル、安息香酸
エチルなどが好ましい。
In addition to the starting titanium component, the additives to be co-milled are also selected from the group of additives as well as the modifier. For details of the modifier, please refer to the patent application entitled "Method for producing polymerization catalyst component" filed simultaneously on June 10, 1970 (Japanese Patent Application No. 51-67).
No. 092). (1) Organic oxygen-containing, sulfur, phosphorus, nitrogen or silicon compounds: Examples of organic oxygen-containing compounds include diethyl ether, diphenyl ether,
Preferred are ditolyl ether, 2-chlorophenyl ether, diethyl ketone, diphenyl ketone, ethyl acetate, ethyl benzoate, and the like.

有機含硫黄化合物として、たとえばジエチルチオエーテ
ル、ジ一n−プロピルチオエーテル、ジベンジルチオエ
ーテル、ジフエニルチオエーテル、n−ドデシルチオア
ルコール、チオフエノールなどが例示される。有機含リ
ン化合物として、トリフエニルホスフイン、トリフエニ
ルホスフアイト、トリフエニルホスフインオキシド、ト
リフエニルホスフエートなどが好ましい。有機含窒素化
合物として、トリエチルアミン、トリフエニルアミン、
フエニルイソシアネート、アゾベンゼン、アセトニトリ
ルなどが例示される。また有機合ケイ素化合物として、
テトラ炭化水素シラン、そのハロゲン誘導体、鎖状又は
環状オルガノポリシラン、シロキサン重合体などが用い
られる。(2)上記(1)の化合物とハロゲン化アルミ
ニウムとの組合せ:ハロゲン化アルミニウムとして三塩
化アルミニウム、三臭化アルミニウムなどが好ましい。
Examples of the organic sulfur-containing compound include diethylthioether, di-n-propylthioether, dibenzylthioether, diphenylthioether, n-dodecylthioalcohol, and thiophenol. Preferred examples of the organic phosphorus-containing compound include triphenylphosphine, triphenylphosphine, triphenylphosphine oxide, triphenylphosphate, and the like. As organic nitrogen-containing compounds, triethylamine, triphenylamine,
Examples include phenyl isocyanate, azobenzene, and acetonitrile. Also, as an organosilicon compound,
Tetrahydrocarbon silanes, halogen derivatives thereof, linear or cyclic organopolysilanes, siloxane polymers, etc. are used. (2) Combination of the compound of (1) above and aluminum halide: As the aluminum halide, aluminum trichloride, aluminum tribromide, etc. are preferable.

この両成分は別々に添加してもよいし、両者の混合物の
形で用いてもよいし、また両者の反応生成物あるいは錯
体の形で用いてもよい。反応生成物又は錯体としてはジ
フエニルエーテル・三塩化アルミニウム錯体、ジエチル
エーテル・三塩化アルミニウム錯体、チオフエノール・
三塩化アルミニウム反応生成物、ジエチルチオエーテル
・三塩化アルミニウム反応生成物などがある。(3)有
機アルミニウム化合物: たとえばジエチルアルミニウムモノクロライド、ジイソ
プロピルアルミニウムモノクロライド、エチルアルミニ
ウムセスキクロライド、エチルアルミニウムジクロライ
ドなどがある。
These two components may be added separately, may be used in the form of a mixture of both, or may be used in the form of a reaction product or a complex of both. Reaction products or complexes include diphenyl ether/aluminum trichloride complex, diethyl ether/aluminum trichloride complex, thiophenol/
Examples include aluminum trichloride reaction products and diethylthioether/aluminum trichloride reaction products. (3) Organoaluminum compounds: Examples include diethylaluminum monochloride, diisopropylaluminum monochloride, ethylaluminum sesquichloride, and ethylaluminum dichloride.

(4)ルイス酸:四塩化チタン、フツ化ホウ素、塩化ホ
ウ素四塩化ケイ素などが例示される。
(4) Lewis acid: titanium tetrachloride, boron fluoride, boron chloride, silicon tetrachloride, etc. are exemplified.

有機溶媒と変性剤との混合物による共粉砕チタン成分の
改質処理及び接触条件については前記の同時出願の特願
昭51−67092号に詳述されている。
The modification treatment of the co-pulverized titanium component with a mixture of an organic solvent and a modifier and the contact conditions are detailed in the above-mentioned co-filed Japanese Patent Application No. 51-67092.

本発明の方法で用いるもう一つの触媒成分である有機ア
ルミニウム化合物としては、上記のチタン触媒成分の調
製で用いるのと同様な、一般式AlRmX3−m(ただ
し、R,X,mは前記と同じである)で示される化合物
が使用され、前記と同様な化合物が例示される。
The organoaluminum compound which is another catalyst component used in the method of the present invention has the same general formula AlRmX3-m (where R, X, and m are the same as above) as used in the preparation of the titanium catalyst component. ) is used, and the same compounds as above are exemplified.

本発明の方法における、チタン触媒成分と有機アルミニ
ウム化合物成分の使用割合は広範囲に変えることができ
るが、一般にはチタン触媒成分に対する有機アルミニウ
ム化合物成分の使用モル比は1〜500程度が好ましい
Although the ratio of the titanium catalyst component to the organoaluminum compound component used in the method of the present invention can be varied over a wide range, it is generally preferred that the molar ratio of the organoaluminum compound component to the titanium catalyst component is about 1 to 500.

本発明の方法にはエチレン、α−オレフイン類の単独重
合のみならず、これらのモノマーの共重合、たとえばエ
チレンとプロピレンブテン−1、ベンゼン−1、ヘキセ
ン一1、4−メチルベンゼン−1、プロピレンとブテン
−1、ヘキセン一1などの共重合もふくまれる。
The method of the present invention involves not only homopolymerization of ethylene and α-olefins, but also copolymerization of these monomers, such as ethylene and propylene-butene-1, benzene-1, hexene-1, 4-methylbenzene-1, propylene It also includes copolymerization of butene-1, hexene-1, etc.

・本発明の方法による重合反応
は従来の当該技術において通常行なわれている方法およ
び条件が採用できる。その際の重合温度は20〜300
℃、好ましくは50〜200℃の範囲であり、重合圧力
は常圧〜200気圧、好ましく常圧〜150気圧の範囲
である。
- For the polymerization reaction according to the method of the present invention, conventional methods and conditions commonly used in the art can be employed. The polymerization temperature at that time is 20 to 300
°C, preferably in the range of 50 to 200 °C, and the polymerization pressure is in the range of normal pressure to 200 atm, preferably in the range of normal pressure to 150 atm.

重合反応では一般に脂肪族、脂環族、芳香族の炭化水素
類、またはそれらの混合物を溶媒として使用することが
でき、たとえばプロパン、ブタン、Zペンタン、ヘキサ
ン、ヘプタン、シクロヘキサン、ベンゼン、トルエンな
ど、およびそれらの混合物が好ましく用いられる。
In the polymerization reaction, aliphatic, alicyclic, aromatic hydrocarbons or mixtures thereof can generally be used as a solvent, such as propane, butane, Z-pentane, hexane, heptane, cyclohexane, benzene, toluene, etc. and mixtures thereof are preferably used.

また液状のモノマー自身を溶媒として用いる塊状重合法
で行なうこともできる。さらにまた溶媒が実質的に存在
しない条件、すなわちガス状モノマーと触媒とを接触さ
せるいわゆる気相重合法で行なうこともできる。本発明
の方法において生成するポリマーの分子量は反応様式、
触媒系、重合条件によつて変化するが、必要に応じて、
たとえば、水素、ハロゲン化アルキル、ジアルキル亜鉛
などの添加によつて制御することができる。
It is also possible to perform bulk polymerization using the liquid monomer itself as a solvent. Furthermore, it can also be carried out under conditions substantially free of solvent, that is, by a so-called gas phase polymerization method in which a gaseous monomer and a catalyst are brought into contact. The molecular weight of the polymer produced in the method of the present invention depends on the reaction mode,
It varies depending on the catalyst system and polymerization conditions, but if necessary,
For example, it can be controlled by adding hydrogen, alkyl halides, dialkylzinc, etc.

本発明に従つて改質チタン触媒成分と有機アルミニウム
化合物とからなる重合触媒を用いてオレフイン類を(共
)重合することにより、微粉末含有率の極めて少ない、
粒度分布の狭い(共)重合体をうることができる。
According to the present invention, by (co)polymerizing olefins using a polymerization catalyst consisting of a modified titanium catalyst component and an organoaluminum compound, the fine powder content is extremely low.
A (co)polymer with a narrow particle size distribution can be obtained.

さらに、おどろくべきことに本発明の重合において、従
来の改質チタン触媒成分を用いる場合に比べて重合速度
が著しく速くなり、また生成重合体の立体規則性が極め
て高くなるという予期し得なかつた効果をもたらすこと
が判明した。
Furthermore, surprisingly, in the polymerization of the present invention, the polymerization rate is significantly faster than when using a conventional modified titanium catalyst component, and the stereoregularity of the resulting polymer is extremely high. It turned out to be effective.

次に実施例により本発明を説明する。Next, the present invention will be explained with reference to examples.

実施例 1 )チタン触媒成分の製造例: 直径12m7!Lの鋼球約80個の入つた内容積約60
0m1の粉砕用ポツトを装備した振動ミルを用意する。
Example 1) Production example of titanium catalyst component: Diameter 12m7! Internal volume approximately 60cm containing approximately 80 L steel balls
Prepare a vibrating mill equipped with a 0m1 grinding pot.

そのポツト中に、窒素雰囲気中で、四塩化チタンを金属
アルミニウムで還元して得られた三塩化チタン・塩化ア
ルミニウム共晶体(以下A型三塩化チタンと略記する、
組成ほゾTiCl3、XAlCl3)309を加え、4
0時間粉砕した。(この粉砕物を以下の実施例でAA型
三塩化チタンと略記する。)次にジエチルアルミニウム
モノクロライド1.0111を加えて15分間粉砕した
のち、プロピレンガス200m1を装入して3時間粉砕
した。
In the pot, a titanium trichloride/aluminum chloride eutectic (hereinafter abbreviated as A-type titanium trichloride) obtained by reducing titanium tetrachloride with metal aluminum in a nitrogen atmosphere.
Add composition tenon TiCl3, XAlCl3) 309,
Milled for 0 hours. (This pulverized product is abbreviated as AA type titanium trichloride in the following examples.) Next, 1.0111 diethyl aluminum monochloride was added and pulverized for 15 minutes, and then 200 ml of propylene gas was charged and pulverized for 3 hours. .

粉砕処理した内容物を窒素雰囲気下で鋼球と分離し、得
られたチタン成分309にn−ヘプタン150m1を加
えてヘプタンの沸点で20分間かくはん後、デカンテー
シヨンによつてn−ヘプタンを除いた。この操作を5回
行なつたのち、6回目にヘプタン150m1を加え、活
性化チタン成分懸濁液として使用する。2)重合例: 内容量210SUS−32オートクレーブ中に、窒素雰
囲気下n−ヘプタン11と上記活性化チタン成分0.4
59とジエチルアルミニウムモノクロライド1.0m1
を装入した。
The pulverized contents were separated from the steel balls under a nitrogen atmosphere, 150 ml of n-heptane was added to the titanium component 309 obtained, and after stirring at the boiling point of heptane for 20 minutes, the n-heptane was removed by decantation. Ta. After performing this operation five times, 150 ml of heptane was added at the sixth time and used as an activated titanium component suspension. 2) Polymerization example: In a SUS-32 autoclave with an internal capacity of 210, 11 n-heptane and 0.4 of the above activated titanium component were added under a nitrogen atmosphere.
59 and diethylaluminum monochloride 1.0ml
was loaded.

オートクレーブ内の窒素と真空ポンプで排気したのち、
水素を気相分圧で1.0k9/CTil装入し、ついで
プロピレンを装入して気相部の圧力を2kg/C7lゲ
ージとした。
After evacuating the autoclave with nitrogen and a vacuum pump,
Hydrogen was charged at a partial pressure of 1.0k9/CTil in the gas phase, and then propylene was charged to make the pressure in the gas phase 2kg/C7l gauge.

オートクレーブの内容物を加熱し、5分後に内部温度を
70℃まで昇温し、70℃で重合を継続した。重合中プ
ロピレンを連続的に圧入し、内部圧力を5k9/dゲー
ジに保つた03.5時間後にプロピレンの重合量が約5
009になつたのでプロピレンの導入を止め、未反応ガ
スを放出し、メタノール300m1を加えて30分間か
きまぜて触媒を分解した。
The contents of the autoclave were heated, and after 5 minutes, the internal temperature was raised to 70°C, and the polymerization was continued at 70°C. During polymerization, propylene was continuously pressurized and the internal pressure was maintained at 5k9/d gauge. After 3.5 hours, the amount of polymerized propylene was approximately 5.
009, the introduction of propylene was stopped, unreacted gas was discharged, 300 ml of methanol was added, and the mixture was stirred for 30 minutes to decompose the catalyst.

オートクレーブを冷却後内容物を取り出し水200m1
を加えて60℃で3回洗浄を行なつたのち、ろ過し、6
0℃で減圧乾燥して白色のポリプロピレン4989を得
た。
After cooling the autoclave, remove the contents and add 200ml of water.
After washing 3 times at 60℃ with
White polypropylene 4989 was obtained by drying under reduced pressure at 0°C.

得られたポリプロピレンの極限粘度数(135℃、テト
ラリンで測定、以下同様)は1.63、かさ比重0.4
29/ml、沸とうn−ヘプタン抽出残(以下パウダー
11と略記する)96.0%であつた。
The intrinsic viscosity of the obtained polypropylene (measured at 135°C with tetralin, hereinafter the same) was 1.63, and the bulk specific gravity was 0.4.
29/ml, and the boiling n-heptane extraction residue (hereinafter abbreviated as Powder 11) was 96.0%.

一方淵液の蒸発により229の非晶性ポリプロピレンが
得られた。
On the other hand, 229 amorphous polypropylene was obtained by evaporation of the bottom liquid.

本重合反応での触媒の重合活性は3309/9・Hr(
活性化チタンg当り、時間当りのポリプロピレン生成速
度、以下同様)であり全ポリマーに対する沸とみn−ヘ
プタン抽出残ポリマーの割合(以下全11と略記する)
は91.9?であつた。
The polymerization activity of the catalyst in this polymerization reaction is 3309/9・Hr (
The polypropylene production rate per g of activated titanium per hour (the same applies hereinafter) and the ratio of boiling n-heptane extraction residual polymer to the total polymer (hereinafter abbreviated as total 11)
Is it 91.9? It was hot.

また乾燥パウダーで、200meshより細かい粒径の
微粒(以下微粒と略記する)は全体の8.3wt%であ
り、20meshより細かくかつ100meshより粗
い粒子は全体の71,0wt%であつた。
Furthermore, in the dry powder, fine particles with a particle size smaller than 200 mesh (hereinafter abbreviated as fine particles) accounted for 8.3 wt% of the total, and particles finer than 20 mesh and coarser than 100 mesh accounted for 71.0 wt% of the total.

比較例 1〜3 実施例1(1)の方法で調製したAA型三塩化チタン(
比較例1)、実施例1(1)の方法で粉砕時にプロピレ
ンガスの装入を行なわなかつた触媒成分(比較例2)、
及び実施例1の方法でヘプタンの洗浄操作を行なわなか
つた触媒成分(比較例3)を用いて実施例1(2)と同
様な方法で重合を行なつた結果を実施例1と比較して表
1に示す。
Comparative Examples 1 to 3 AA type titanium trichloride (
Comparative Example 1), a catalyst component in which propylene gas was not charged during pulverization by the method of Example 1 (1) (Comparative Example 2),
The results of polymerization conducted in the same manner as in Example 1 (2) using the catalyst component (Comparative Example 3) in which the heptane washing operation was not performed in the method of Example 1 are compared with Example 1. It is shown in Table 1.

実施例 2 A型三塩化チタン309、塩化アルミニウム・ジフエニ
ルエーテル錯体6.99の混合物を実施例1(1)と同
様に40時間粉砕し、次にプロピレン3300m1sジ
エチルアルミニウムモノクロライド10m1を加えて2
時間粉砕を続行した。
Example 2 A mixture of 309 ml of A-type titanium trichloride and 6.99 ml of aluminum chloride diphenyl ether complex was ground for 40 hours in the same manner as in Example 1 (1), and then 3300 ml of propylene and 10 ml of diethylaluminium monochloride were added.
Time grinding continued.

粉砕処理した内容物を実施例1(1)と同様にヘプタン
で洗浄処理して活性化チタン成分を得、これを用いて実
施例1(2)と同じ方法で重合を行なつた。
The pulverized contents were washed with heptane in the same manner as in Example 1 (1) to obtain an activated titanium component, which was used for polymerization in the same manner as in Example 1 (2).

重合時間2。10hrでポリプロピレンパウダー505
9、非晶性ポリプロピレン159が得られた。
Polypropylene powder 505 with polymerization time 2.10hr
9. Amorphous polypropylene 159 was obtained.

重合活性は5509/9・Hrであり、得られたポリプ
ロピレンパウダーの極限粘度数1.67かさ比重0.4
39/Mllパウダー1197.0%であり、全11は
94.3%であつた。
The polymerization activity was 5509/9·Hr, and the resulting polypropylene powder had an intrinsic viscosity of 1.67 and a bulk specific gravity of 0.4.
39/Mll powder was 1197.0%, and total 11 was 94.3%.

乾燥パウダーの微粒は全体の7.3%であつた。The fine particles of the dry powder accounted for 7.3% of the total.

比較例 4実施例2に於いてプロピレン及びジエチルア
ルミニウムモノクロライド共存下での2段目の粉砕を省
略し、その他は実施例2と同様に触媒の調製、及び重合
を行なつた。
Comparative Example 4 In Example 2, the second stage of pulverization in the coexistence of propylene and diethylaluminum monochloride was omitted, and the catalyst preparation and polymerization were otherwise carried out in the same manner as in Example 2.

重合時間2.32hrで極限粒度数1,58、パウダー
1196,3%、かさ比重0.409/mlのポリプロ
ピレン4849、及び非晶性ポリプロピレン169を得
た。
Polypropylene 4849 and amorphous polypropylene 169 having an ultimate particle size of 1.58, a powder of 1196.3%, and a bulk specific gravity of 0.409/ml were obtained in a polymerization time of 2.32 hours.

この重合実験での重合活性4789/9hr、全119
3.2%であつた。また乾燥パウダーの微粒は28.7
wt%であつた。
Polymerization activity in this polymerization experiment was 4789/9hr, total 119
It was 3.2%. Also, the fine particles of dry powder are 28.7
It was wt%.

この結果を実施例2と比較すると本願発明の方法のほう
が微粒が格段と減少し、重合活性、及び全11が向上し
ていることが明らかである。
Comparing these results with Example 2, it is clear that the method of the present invention significantly reduces the number of fine particles and improves the polymerization activity and total 11.

実施例 3〜74実施例2の方法において粉砕第1工程
での添加剤であるジフエニルエーテル・塩化アルミニウ
ム錯体に代えて種々の成分を添加して触媒を調整し、重
合を行なつた結果を表2に示す。
Examples 3 to 74 In the method of Example 2, various components were added in place of diphenyl ether/aluminum chloride complex, which was an additive in the first grinding step, to adjust the catalyst, and the results were polymerized. It is shown in Table 2.

また実施例2の方法において粉砕の第2工程でのプロピ
レンに代えて種々のα−オレフインを用いた例及び洗浄
工程でn−ヘプタンに代えて種々の有機溶媒を用いた実
験も実施した。なお洗浄温度は溶媒がn−ヘキサン、n
−ヘプタン、シクロヘキサン、ベンゼン、トルエンを用
いた場合は沸点で、モノクロルベンゼン、キシレンの場
合は100℃で実施した(以下の実施例でも同様である
)。
Further, in the method of Example 2, experiments were also conducted in which various α-olefins were used in place of propylene in the second step of pulverization, and in which various organic solvents were used in place of n-heptane in the washing step. Note that the cleaning temperature is determined when the solvent is n-hexane and n-hexane.
- When heptane, cyclohexane, benzene, and toluene were used, the test was carried out at the boiling point, and in the case of monochlorobenzene and xylene, the test was carried out at 100°C (the same applies to the following examples).

また対照として、上記粉砕第2工程を省略して得られる
チタン成分を用いた重合を行なつた場合の生成ポリマー
の微粒子含有量を表2に示す。
As a control, Table 2 shows the fine particle content of the resulting polymer when polymerization was carried out using a titanium component obtained by omitting the second pulverization step.

実施例 75(1)チタン成分の製造例: 実施例1(1)のチタン成分製造例においてAA型Ti
Cl3をジエチルアルミニウムモノクロライド、プロピ
レン共存下での粉砕までを同様にした粉砕処理物を用い
て変性剤としてジブチルニーテルを用いて改質処理を行
なつた。
Example 75 (1) Production example of titanium component: In the production example of titanium component in Example 1 (1), AA type Ti
A pulverized product obtained by pulverizing Cl3 in the coexistence of diethylaluminum monochloride and propylene was subjected to a modification treatment using dibutylniter as a modifier.

即ち、粉砕処理物259、n−ヘプタン150m11ジ
一n−ブチルエーテル109を加え、ヘプタンの沸点で
20分間かくはん後、デカンテーシヨンによつて上澄液
を除いた。つぎにn−ヘプタン150m1を加えて20
分間かくはんし、デカンテーシヨンによつてn−ヘプタ
ンを分離することにより洗浄処理した。この洗浄処理を
5回行なつたのち6回目にn−ヘプタン150m1を加
えて活性化チタン成分懸濁液を得た。(2)重合例: この活性化チタン成分0.359を用いて実施例(2)
と同様にプロピレンの重合を行なつた。
That is, 259 ml of the pulverized product, 150 ml of n-heptane, 109 ml of di-n-butyl ether were added, and after stirring at the boiling point of heptane for 20 minutes, the supernatant liquid was removed by decantation. Next, add 150ml of n-heptane and
Washing was carried out by stirring for a minute and separating the n-heptane by decantation. After performing this washing treatment five times, 150 ml of n-heptane was added at the sixth time to obtain an activated titanium component suspension. (2) Polymerization example: Example (2) using this activated titanium component of 0.359
Polymerization of propylene was carried out in the same manner.

重合時間2.33hrでポリプロピレンパウダー480
9、非晶性ポリプロピレン259が得られた。ポリプロ
ピレンパウダーの極限粘度数1.65かさ比重0.43
9/Mllパウダー1196.0%、微粒9,3%であ
つた。
Polypropylene powder 480 with polymerization time 2.33hr
9. Amorphous polypropylene 259 was obtained. Polypropylene powder intrinsic viscosity number 1.65 bulk specific gravity 0.43
9/Mll powder was 1196.0% and fine particles 9.3%.

本重合反応での重合活性619f!/g・Hr、全11
91.2%であつた。比較例 5実施例75のチタン成
分の製造に於て、ジエチルアルミニウムモノクロライド
及びプロピレン共存下での粉砕を省略して、AA型Ti
Cl3を原料としてジ一n−ブチルエーテルによる変性
を行なつた。
Polymerization activity in this polymerization reaction is 619f! /g・Hr, total 11
It was 91.2%. Comparative Example 5 In the production of the titanium component of Example 75, pulverization in the coexistence of diethylaluminum monochloride and propylene was omitted, and AA type Ti
Modification with di-n-butyl ether was carried out using Cl3 as a raw material.

重合反応での活性4609/9hr1全1190.0%
であり、微粒45.0%、パウダーのかさ比重0.30
9/mlであつた。
Activity in polymerization reaction 4609/9hr1 total 1190.0%
The fine particles are 45.0%, and the bulk specific gravity of the powder is 0.30.
It was 9/ml.

本実験で生成したポリプロピレンパウダーは微粒が極端
に増加し、かさ比重が低いためポリマー濃度が約350
g/l−ヘプタン附近になると重合速度が著しく低下し
てしまい本願発明の方法の効果が明らかであつた。
The polypropylene powder produced in this experiment has an extremely increased number of fine particles and a low bulk specific gravity, so the polymer concentration is approximately 350.
When the polymerization rate approached g/l-heptane, the polymerization rate decreased significantly, demonstrating the effectiveness of the method of the present invention.

実施例 76〜99 実施例75のチタン成分の製造において粉砕工程で使用
するプロピレン、ジエチルアルミニウムモノクロライド
に代えてそれぞれ表3に示す如き種々のオレフイン、有
機アルミニウム化合物を、また改質処理における変性剤
ジ一n−ブチルエーテルに代えて種々の変性剤を用いて
実施例75と同様にして行なつた実験結果を表3に示す
Examples 76 to 99 In place of the propylene and diethylaluminum monochloride used in the pulverization step in the production of the titanium component in Example 75, various olefins and organoaluminum compounds as shown in Table 3 were used, and as a modifier in the modification treatment. Table 3 shows the results of an experiment conducted in the same manner as in Example 75 using various modifiers in place of di-n-butyl ether.

実施例 100実施例75(1)で得らμた活性化チタ
ン懸濁液に四塩化チタン50m1を加えて70℃にて2
0分間かくはん後、デカンテーシヨンによつて上澄液を
除去し、次にn−ヘプタン150m1を用いて5回洗浄
して新規な活性化チタン懸濁液を得、これを(活性化チ
タン成分として0.359使用)実施例1(2)と同じ
方法で重合実1験に用いた。
Example 100 50 ml of titanium tetrachloride was added to the activated titanium suspension obtained in Example 75 (1) and heated at 70°C for 2 hours.
After stirring for 0 minutes, the supernatant was removed by decantation, and then washed 5 times with 150 ml of n-heptane to obtain a new activated titanium suspension, which (activated titanium component) (used as 0.359) was used in one polymerization experiment in the same manner as in Example 1 (2).

重合時間1.98hrでポリプロピレンパウダー508
9、非晶性ポリプロピレン129が得られた。ポリプロ
ピレンパウダーの極限粘度数1.60、かさ比重0.4
39/ml、パウダー1198.0%、微粒9。8%で
あつた。
Polypropylene powder 508 with polymerization time of 1.98 hr.
9. Amorphous polypropylene 129 was obtained. Polypropylene powder has an intrinsic viscosity of 1.60 and a bulk specific gravity of 0.4.
39/ml, powder 1198.0%, fine particles 9.8%.

本重合反応での重合活性7559/9−Cathrl全
1195.8%であつた。
The total polymerization activity in this polymerization reaction was 7559/9-Cathrl, 1195.8%.

比較例 6 比較例5で得られたチタン触媒成分を実施例100と同
様に四塩化チタンで処理し実施例100と比較した。
Comparative Example 6 The titanium catalyst component obtained in Comparative Example 5 was treated with titanium tetrachloride in the same manner as in Example 100, and compared with Example 100.

重合時間2.33hrでポリプロピレンパウダー408
9、非晶性ポリプロピレン171が得られた。
Polypropylene powder 408 with polymerization time of 2.33 hours
9. Amorphous polypropylene 171 was obtained.

ポリプロピレンパウダーの極限粘度数1,60、かさ比
重0.309/Mll微粒50,8%であり、本重合反
応での重合活性5219/9・Hr、全193.0%で
あつた。
The polypropylene powder had an intrinsic viscosity of 1.60, a bulk specific gravity of 0.309/Mll fine particles of 50.8%, and a polymerization activity in the main polymerization reaction of 5219/9·Hr, a total of 193.0%.

この結果を実施例100の結果と比べると本発明の触媒
成分の調製における有機アルミニウム化合物及びオレフ
イン共存下での粉砕工程を省略すると生成ポリマーの微
粒が大巾に増加し、かさ比重も低下して重合触媒として
は大きな欠点を持つことが明らかである。
Comparing this result with the result of Example 100, it is found that when the pulverization step in the coexistence of the organoaluminum compound and olefin in the preparation of the catalyst component of the present invention is omitted, the number of fine particles of the produced polymer increases greatly, and the bulk specific gravity also decreases. It is clear that it has major drawbacks as a polymerization catalyst.

実施例 101〜107 実施例76,82,83,86,92,95,97で調
製した触媒成分をさらに実施例100と同様に四塩化チ
タンで処理して活性化チタン懸濁液を得た。
Examples 101 to 107 The catalyst components prepared in Examples 76, 82, 83, 86, 92, 95, and 97 were further treated with titanium tetrachloride in the same manner as in Example 100 to obtain an activated titanium suspension.

この活性化チタン成分0.359を実施例1と同様に重
合を行なつた結果を表4に示す。なお対比としてジエチ
ルアルミニウムモノクロライド及びプロピレン共存下で
の粉砕を省略した触媒成分を用いて重合したポリプロピ
レンパウダーの微粒の量、及びかさ比重の値を併記した
。実施例 108.(1)チタン成分の製造例: AA型三塩化チタン409、n−ヘプタン150m11
ジ一n−ブチルエーテル10m1をヘプタンの沸点で2
0分間かくはんののち、デカンテーシヨンによつてn−
ヘプタンを除いた。
Table 4 shows the results of polymerization of 0.359% of this activated titanium component in the same manner as in Example 1. For comparison, the amount of fine particles and the value of bulk specific gravity of polypropylene powder polymerized using a catalyst component in which pulverization in the coexistence of diethylaluminium monochloride and propylene was omitted are also shown. Example 108. (1) Production example of titanium component: AA type titanium trichloride 409, n-heptane 150ml11
10ml of di-n-butyl ether at the boiling point of heptane
After stirring for 0 minutes, n-
Heptane was excluded.

n−ヘプタン150m1を加えて同様なかくはん、デカ
ンテーシヨンの洗浄処理を5回くり返したのち、50℃
、5m1LHgの減圧下で20分間加熱して乾燥した。
得られた乾燥物309を振動ミル中に入れ実施例1(1
)と同様にしてジエチルアルミニウムモノクロライド1
.0m1と共に15分間粉砕し、つぎにエチレン200
m1を加えて3hr粉砕した。
After adding 150 ml of n-heptane and repeating the same washing process of stirring and decantation 5 times, the temperature was increased to 50°C.
, and was dried by heating for 20 minutes under a reduced pressure of 5 ml of Hg.
The obtained dried product 309 was put into a vibration mill and Example 1 (1
) in the same manner as diethylaluminum monochloride 1
.. Grind for 15 minutes with 0ml, then add 200ml of ethylene.
ml was added and pulverized for 3 hours.

粉砕処理物とn−ヘプタン150m11ジn−ブチルエ
ーテル20m1を加えてn−ヘプタンの沸点で20分間
かくはんし、土澄液を除き、n−ヘプタン150m1で
の洗浄処理を3回くり返した。次にn−ヘプタン150
m11四塩化チタン50m1を加えて70℃で20分間
かくはんしたのち、n−ヘプタンでの洗浄処理を3回く
り返し、n−ヘプタン150m1を加えて活性化チタン
成分懸濁液を得た。(2)重合例: 上記活性化チタン成分0.259を用いて実施例1(1
)と同様の方法で重合を行ない、重合時間2.0hrで
ポリプロピレンパウダー5139、非晶性ポリプロピレ
ン59が得られた。
The pulverized product was added with 150 ml of n-heptane and 20 ml of di-n-butyl ether, stirred for 20 minutes at the boiling point of n-heptane, the clear soil was removed, and the washing treatment with 150 ml of n-heptane was repeated three times. Next, 150 n-heptane
After adding 50 ml of m11 titanium tetrachloride and stirring at 70° C. for 20 minutes, the washing treatment with n-heptane was repeated three times, and 150 ml of n-heptane was added to obtain an activated titanium component suspension. (2) Polymerization example: Example 1 (1) using the above activated titanium component 0.259
) Polypropylene powder 5139 and amorphous polypropylene 59 were obtained in a polymerization time of 2.0 hr.

得られたポリプロピレンパウダーの極限粘度数1.58
、かさ比重0.43f/M4パウダー1198.0%、
微粒8.9%であつた。
The intrinsic viscosity of the obtained polypropylene powder was 1.58.
, bulk specific gravity 0.43f/M4 powder 1198.0%,
The fine particles were 8.9%.

本重合反応での活性10369/9・Hrl全1197
.0%であつた。
Activity in main polymerization reaction 10369/9・Hrl total 1197
.. It was 0%.

比較例 7 実施例108(1)の方法のうち、有機アルミニウム化
合物とエチレンの共存下での粉砕処理を省略してジ一n
−ブチルエーテル処理2回、四塩化チタン処理を行ない
、実施例108(2)の方法と同様に重合した。
Comparative Example 7 Among the methods of Example 108 (1), the pulverization treatment in the coexistence of an organoaluminum compound and ethylene was omitted, and the
-Butyl ether treatment was performed twice and titanium tetrachloride treatment was performed, and polymerization was carried out in the same manner as in Example 108 (2).

重合時間2。Polymerization time 2.

5hrでポリプロピレン3579、非晶性ポリプロピレ
ン109が得られた。
Polypropylene 3579 and amorphous polypropylene 109 were obtained in 5 hours.

ポリプロピレンパウダーの極限粘度数1.55かさ比重
0.29、パウダー1197.0%、微粒52.3%で
あり、重合活性5879/9・Hr、全1194.4%
であつた。
The intrinsic viscosity of the polypropylene powder is 1.55, the bulk specific gravity is 0.29, the powder is 1197.0%, the fine particles are 52.3%, the polymerization activity is 5879/9・Hr, and the total is 1194.4%.
It was hot.

このように改質処理を単にくり返したのでは高性能の触
媒は得られない。
A high-performance catalyst cannot be obtained by simply repeating the reforming process in this manner.

比較例 8 実施例108(1)の触媒調製工程のうち、ジエチルア
ルミニウムモノクロライド、及びエチレンを添加しない
で粉砕したこと以外は同様に触媒成分の調製及び重合を
行なつた。
Comparative Example 8 The catalyst components were prepared and polymerized in the same manner as in Example 108 (1) except that the catalyst was ground without adding diethylaluminum monochloride and ethylene.

重合時間2.5hrでポリプロピレンパウダー4079
、非晶性ポリプロピレン109が得られた。
Polypropylene powder 4079 with polymerization time of 2.5 hours
, amorphous polypropylene 109 was obtained.

ポリプロピレンパウダーの極限粘度数1.61かさ比重
0.301パウダー1197.3%、微粒48.7%で
あり、重合活性6679/9・Hr全1195.0%で
あつた。
The polypropylene powder had an intrinsic viscosity of 1.61, a bulk specific gravity of 0.301, 1197.3% powder, 48.7% fine particles, and a total polymerization activity of 6679/9·Hr 1195.0%.

これを実施例108と比べると比較例では生成ポリマー
の微粒が多く、かさ比重も低い上に活性、全11も低く
、本願発明に使用されるチタン触媒成分の特殊な粉砕操
作が有効であることがわかる。
Comparing this with Example 108, in the comparative example, there are many fine particles of the produced polymer, the bulk specific gravity is low, and the activity and total 11 are also low, indicating that the special crushing operation of the titanium catalyst component used in the present invention is effective. I understand.

実施例 109(1)チタン成分の製造例 AA型三塩化チタン409、ジフエニルエーテル3.7
9、塩化アルミニウム3.29を振動ミルポツトに入れ
、40hr粉砕し、実施例2と同様にn−ヘプタンで洗
浄処理し、次にn−ヘプタン150m11ジイソアミル
エーテル20m1を加えて70℃で20分間かくはんし
n−ヘプタン150m1で3回洗浄処理ののち、50℃
、1mmHqで減圧乾燥した。
Example 109 (1) Production example of titanium component AA type titanium trichloride 409, diphenyl ether 3.7
9. Place 3.29 g of aluminum chloride in a vibrating mill pot, grind for 40 hours, wash with n-heptane in the same manner as in Example 2, then add 150 ml of n-heptane, 20 ml of diisoamyl ether, and stir at 70°C for 20 minutes. After washing 3 times with 150ml of n-heptane, 50℃
, and dried under reduced pressure at 1 mmHq.

乾燥物309、ジエチルアルミニウムモノクロライド1
.0m1を加えて15分間粉砕ののち、プロピレン30
0m1を粉砕しながら1時間かけて装入し2時間粉砕を
続けた。
Dry product 309, diethylaluminium monochloride 1
.. After adding 0ml of propylene and grinding for 15 minutes, add 30ml of propylene.
0ml was charged over 1 hour while being pulverized, and pulverization was continued for 2 hours.

得られた粉砕処理物25θにn−ヘプタン150m11
ジイソアミルエーテル2077L1を加えて70℃で2
0分間かくはん後、デカンテーシヨンにより上澄液を除
いたのち、n−ヘプタン150m1でn−ヘプタンの沸
点で3回洗浄した。
150ml of n-heptane was added to the resulting pulverized product 25θ.
Add diisoamyl ether 2077L1 and heat at 70°C.
After stirring for 0 minutes, the supernatant was removed by decantation, and then washed three times with 150 ml of n-heptane at the boiling point of n-heptane.

次にn−ヘプタン150m11四塩化チタン50m1を
加えて70℃で20分間かくはんののち、n−ヘプタン
でn−ヘプタンの沸点で5回洗浄し、活性化チタン成分
懸濁液を得た。(2)重合例: 得られた活性化チタン0.20gを用いて実施例1(2
)の方法と同様に重合を行なつた。
Next, 150 ml of n-heptane and 50 ml of titanium tetrachloride were added and stirred at 70°C for 20 minutes, followed by washing with n-heptane five times at the boiling point of n-heptane to obtain an activated titanium component suspension. (2) Polymerization example: Example 1 (2) using 0.20 g of the obtained activated titanium
Polymerization was carried out in the same manner as in ).

重合時間2.0hrでポリプロピレンパウダー5239
、非晶性ポリプロピレン49が得られた。得られたポリ
プロピレンパウダーは極限粘度数1.57、パウダー1
198,1%、かさ比重0,439/Mls微粒7,3
%であつた。
Polypropylene powder 5239 with polymerization time of 2.0 hr.
, amorphous polypropylene 49 was obtained. The obtained polypropylene powder has an intrinsic viscosity of 1.57 and a powder of 1.
198.1%, bulk specific gravity 0.439/Mls fine particles 7.3
It was %.

本重合反応での重合活性13209/9・Hr全119
7.4%であつた。比較例 9 実施例109(1)の触媒成分製造工程の2回目の粉砕
がジエチルアルミニウムモノクロライド及びプロピレン
の添加なしで行われたこと以外は実施例109と同様に
触媒成分の調製及び重合を行なつた。
Polymerization activity in main polymerization reaction 13209/9・Hr total 119
It was 7.4%. Comparative Example 9 The catalyst component was prepared and polymerized in the same manner as in Example 109, except that the second pulverization in the catalyst component production step of Example 109 (1) was performed without adding diethylaluminum monochloride and propylene. Summer.

重合時間2.3hrでポリプロピレンパウダー3589
、非晶性ポリプロピレン7gが得られ、ポリプロピレン
パウダーの極限粘度数1.57、かさ比重0.309/
Mllパウダー1197.3%、微粒48.7%であつ
た。
Polypropylene powder 3589 with polymerization time of 2.3 hours
, 7 g of amorphous polypropylene was obtained, the intrinsic viscosity of the polypropylene powder was 1.57, and the bulk specific gravity was 0.309/
The Mll powder was 1197.3% and the fine particles 48.7%.

本重合反応での重合活性7939/9・Hrl全119
5.4%であつた。
Polymerization activity in main polymerization reaction 7939/9・Hrl total 119
It was 5.4%.

実施例 110〜116 実施例2,7,73,83,100,108及び109
で合成した触媒成分を用いて以下に示す方法でプロピレ
ンの塊状重合を行なつた。
Examples 110-116 Examples 2, 7, 73, 83, 100, 108 and 109
Bulk polymerization of propylene was carried out using the catalyst component synthesized in the following method.

すなわち、内容積61(7)SUS−32オートクレー
ブ中に窒素雰囲気下でヘプタン30m1に懸濁した所定
量の活性化チタン成分、およびジエチルアルミニウムモ
ノクロライド0.8m1を装入した。オートクレーブ内
の窒素を真空ポンプで排気したのち、水素を2N11プ
ロピレン2.5kgをオートクレーブに装入した。
That is, a predetermined amount of activated titanium component suspended in 30 ml of heptane and 0.8 ml of diethylaluminium monochloride were charged into a SUS-32 autoclave having an internal volume of 61 (7) under a nitrogen atmosphere. After the nitrogen in the autoclave was evacuated using a vacuum pump, hydrogen and 2.5 kg of 2N11 propylene were charged into the autoclave.

オートクレーブの内容物を加熱し、15分後に内部温度
を60℃に昇温し、60℃で重合した。5時間後にオー
トクレーブを冷却し、内容物を取出し、60℃で減圧乾
燥してポリプロピレンを得た。
The contents of the autoclave were heated, and after 15 minutes, the internal temperature was raised to 60°C, and polymerization was carried out at 60°C. After 5 hours, the autoclave was cooled, the contents were taken out and dried under reduced pressure at 60°C to obtain polypropylene.

実験結果を表5に示す。The experimental results are shown in Table 5.

また対比として触媒成分粉砕時に有機アルミニウム化合
物及びオレフインを共存させないで調製した触媒成分を
用いた重合でのポリプロピレンパウダーの微粒及びかさ
比重を表4に併記した。
For comparison, Table 4 also shows the fine particles and bulk specific gravity of polypropylene powder obtained by polymerization using a catalyst component prepared without coexistence of an organoaluminum compound and olefin during catalyst component crushing.

四塩化チタン200mM.n−ヘキサン100m1をか
くはん器付きの11丸底フラスコに入れ、0℃に冷却し
て、ジエチルアルミニウムモノクロライド220mM1
n−ヘキサン200m1の溶液を2時間かかつて滴下し
たのち、室温で3時間かくはんしたのち上澄液をデカン
テーシヨンで除きn−ヘキサン300m1で3回室温で
洗浄したのち、50サC1mmHgで減圧乾燥した。か
くして還元反応で得られた三塩化チタン組成物309を
振動ミルポツト中に装入して20時間粉砕したのち、ト
リエチルアルミニウム1.0m1を加えて15分間粉砕
し、さらにエチレン200m1を加えて3時間粉砕を続
行した。得られた粉砕物259、n−ヘキサン150m
11ジ一1S0−ブチルエーテル20m1を加えて20
分間かくはんしたのち、デカンテーシヨンにより上澄液
を除き、n−ヘキサン150m1を用いて、n−ヘキサ
ンの沸点の温度で5回洗浄し、活性化チタン成分懸濁液
を得、これを用いてエチレンの重合を行なつた。(2)
重合例: 内容積21のオートクレーブ中に、窒素雰囲気下でヘプ
タン111上記活性化チタン0,109、ジエチルアル
ミニウムモノクロライド0.5m1を装入した。
Titanium tetrachloride 200mM. Pour 100 ml of n-hexane into a No. 11 round bottom flask equipped with a stirrer, cool to 0°C, and add 220 ml of diethylaluminum monochloride.
A solution of 200 ml of n-hexane was added dropwise over 2 hours, stirred at room temperature for 3 hours, the supernatant liquid was removed by decantation, washed three times with 300 ml of n-hexane at room temperature, and then dried under reduced pressure at 50 °C and 1 mmHg. did. The titanium trichloride composition 309 thus obtained by the reduction reaction was charged into a vibrating mill pot and pulverized for 20 hours, then 1.0 ml of triethylaluminum was added and pulverized for 15 minutes, and further 200 ml of ethylene was added and pulverized for 3 hours. continued. Obtained pulverized product 259, n-hexane 150m
11 Add 20ml of di-1S0-butyl ether and
After stirring for a minute, the supernatant liquid was removed by decantation and washed five times with 150 ml of n-hexane at a temperature of the boiling point of n-hexane to obtain an activated titanium component suspension. Polymerization of ethylene was carried out. (2)
Polymerization Example: Into an autoclave having an internal volume of 21 ml, 111 ml of heptane, 0.109 ml of the above activated titanium, and 0.5 ml of diethylaluminum monochloride were charged under a nitrogen atmosphere.

オートクレーブ内の窒素を真空ポンプで排気したのち、
水素を分圧で2.0k9/d装入し、ついでエチレンを
装入して気相部の圧力を4kg/DGとした。オートク
レーブの内容物を加熱して20分後に内部温度を90℃
として重合を継続した。
After exhausting the nitrogen in the autoclave with a vacuum pump,
Hydrogen was charged at a partial pressure of 2.0 k9/d, and then ethylene was charged to make the pressure in the gas phase 4 kg/DG. After 20 minutes of heating the contents of the autoclave, the internal temperature reaches 90°C.
Polymerization continued as follows.

重合中エチレンを連続的に圧入し、内部圧力を9.5k
9/Cf!1Gに保つた。2.5hr重合後エチレンの
導入を止め、未反応ガスを放出し、メタノール300m
1を加え30分間かきまぜて触媒を分解した。
During polymerization, ethylene is continuously pressurized to maintain an internal pressure of 9.5k.
9/Cf! I kept it at 1G. After 2.5 hours of polymerization, stop introducing ethylene, release unreacted gas, and add 300 m of methanol.
1 was added and stirred for 30 minutes to decompose the catalyst.

オートクレーブの内容物を取出し、水200m1を加え
て3回洗浄を行なつたのち済過し、60℃で減圧乾燥し
、白色のポリエチレンパウダー5209を得た。
The contents of the autoclave were taken out, washed three times by adding 200 ml of water, and then dried under reduced pressure at 60° C. to obtain white polyethylene powder 5209.

得られたポリエチレンの極限粘度数2.23かさ比重0
.439/ml、微粒5.3%であり、本重合での活性
は20809/9・Hrであつた。
The resulting polyethylene had an intrinsic viscosity of 2.23 and a bulk specific gravity of 0.
.. 439/ml, fine particles 5.3%, and the activity in the main polymerization was 20809/9·Hr.

実施例 118実施例109(1)で調製した触媒を用
いてプロピレンの代りにエチレン1m01%を含むプロ
ピレンとの混合ガスを吹込んで実施例109(2)の方
法と同様にしてエチレンとプロピレンの共重合を行なつ
た。
Example 118 Using the catalyst prepared in Example 109 (1), a mixture of ethylene and propylene containing 1 m01% of ethylene was blown in instead of propylene, and a mixture of ethylene and propylene was produced in the same manner as in Example 109 (2). Polymerization was carried out.

得られたポリプロピレンパウダーのかさ比重は0,42
、微粒は6.0%であり共重合反応でも本発明が有効で
あることがわかる。
The bulk specific gravity of the obtained polypropylene powder is 0.42
The amount of fine particles was 6.0%, indicating that the present invention is also effective in copolymerization reactions.

Claims (1)

【特許請求の範囲】 1 エチレン又はα−オレフィン類の重合において、三
塩化チタンまたは三塩化チタン組成物を、これに対して
約10重量%以下の少量のエチレンまたはα−オレフィ
ンを添加し一般式AlR_mX_3_−_m(こゝでR
はアルキル基あるいはアリール基でありXは水素あるい
はハロゲンでありmは1〜3である)を有する有機アル
ミニウム化合物と共粉砕し、次に不活性有機溶媒又は該
不活性有機溶媒と1)含酸素、硫黄、リン、窒素又はケ
イ素有機化合物、2)上記1)の有機化合物とハロゲン
化アルミニウムとの組合せ、3)有機アルミニウム化合
物及び4)ルイス酸からなる群から選ばれる変性剤との
混合物との接触による改質処理を行なうことにより得ら
れる改質チタン触媒成分と有機アルミニウム化合物とか
らなるチーグラー型重合触媒を用いることを特徴とする
、エチレン又はα−オレフィン類の重合方法。 2 上記三塩化チタン又は三塩化チタン組成物が、1)
含酸素、硫黄、リン、窒素又はケイ素有機化合物、2)
上記1)の有機化合物とハロゲン化アルミニウムとの組
合せ、3)有機アルミニウム化合物及び4)ルイス酸か
らなる群から選ばれる添加剤を加えて粉砕して得られる
粉砕処理物である特許請求の範囲第1項記載のエチレン
又はα−オレフィン類の重合方法。 3 上記改質チタン成分が上記三塩化チタンまたは三塩
化チタン組成物を上記共粉砕工程の前に上記改質処理に
付し、共粉砕後のチタン成分を更に上記の改質処理に付
することにより得られる特許請求の範囲第1項記載のエ
チレン又はα−オレフィン類の重合方法。
[Claims] 1. In the polymerization of ethylene or α-olefins, titanium trichloride or a titanium trichloride composition is added with a small amount of ethylene or α-olefin of about 10% by weight or less to the general formula AlR_mX_3_-_m (here R
is an alkyl group or an aryl group, X is hydrogen or halogen, and m is 1 to 3), and then co-pulverized with an inert organic solvent or the inert organic solvent and 1) oxygen-containing , sulfur, phosphorus, nitrogen or silicon organic compounds, 2) a combination of the organic compound of 1) above and aluminum halide, 3) an organoaluminum compound, and 4) a mixture with a modifier selected from the group consisting of Lewis acids. A method for polymerizing ethylene or α-olefins, characterized by using a Ziegler type polymerization catalyst consisting of a modified titanium catalyst component obtained by a catalytic reforming treatment and an organoaluminum compound. 2 The titanium trichloride or titanium trichloride composition is 1)
Oxygen-containing, sulfur, phosphorus, nitrogen or silicon organic compounds, 2)
The claim 1 is a pulverized product obtained by adding an additive selected from the group consisting of 1) a combination of the organic compound and aluminum halide, 3) an organoaluminum compound, and 4) a Lewis acid. The method for polymerizing ethylene or α-olefins according to item 1. 3. The above-mentioned modified titanium component is subjected to the above-mentioned modification treatment before the above-mentioned co-pulverization step, and the titanium component after co-pulverization is further subjected to the above-mentioned modification treatment. A method for polymerizing ethylene or α-olefins according to claim 1, which is obtained by:
JP6709376A 1976-05-17 1976-06-10 Method for polymerizing ethylene or α-olefins Expired JPS591404B2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP6709376A JPS591404B2 (en) 1976-06-10 1976-06-10 Method for polymerizing ethylene or α-olefins
GR53342A GR63148B (en) 1976-05-17 1977-04-30 Process for the polymerization of ethylene of a-olefins and catalyst therefor
CA277,885A CA1097316A (en) 1976-05-17 1977-05-06 PROCESS FOR THE POLYMERIZATION OF ETHYLENE OR .alpha.- OLEFINS AND CATALYST THEREFOR
GB19013/77A GB1544193A (en) 1976-05-17 1977-05-06 Polymerisation of olefins and catalyst component therefor
PT66524A PT66524B (en) 1976-05-17 1977-05-06 Process for the polymerization of ethylene or alpha-olefins and a catalyst for the same
MX169120A MX145423A (en) 1976-05-17 1977-05-13 IMPROVED PROCEDURE FOR THE PREPARATION OF A CATALYST FOR THE POLYMERIZATION OF STYLENE AND / OL-OLEPHINS
AT350477A AT360751B (en) 1976-05-17 1977-05-16 METHOD FOR POLYMERIZING AETHYLENE AND / OR ALPHA OLEFINES
DE19772722150 DE2722150A1 (en) 1976-05-17 1977-05-16 PROCESS AND CATALYST FOR THE MANUFACTURING OF POLYOLEFINS
NLAANVRAGE7705370,A NL184005C (en) 1976-05-17 1977-05-16 PROCESS FOR PREPARING A CATALYST FOR POLYMERIZING ETHENE AND / OR ALFA OLEFINS AND POLYMERIZATION TO BE CARRIED OUT.
US05/797,227 US4187385A (en) 1976-05-17 1977-05-16 Process for the polymerization of ethylene or alpha-olefins and catalyst therefor
FR7714920A FR2352000A1 (en) 1976-05-17 1977-05-16 PROCESS FOR POLYMERIZATION OF ETHYLENE OR A-OLEFINS USING TITANIUM AND ALUMINUM-BASED CATALYZERS AND NEW PRODUCTS THUS OBTAINED AT HIGH STEREOREGULARITY
BR7703149A BR7703149A (en) 1976-05-17 1977-05-16 PROCESS FOR POLYMERIZATION OF ETHYLENE OR ALPHA-OLEFINS AND CATALYST FOR THE SAME
YU1221/77A YU40477B (en) 1976-05-17 1977-05-16 Process for obtaining catalysts used in the polymerisation of alpha-olefines
IT23588/77A IT1104772B (en) 1976-05-17 1977-05-16 PROCEDURE FOR THE POLYMERIZATION OF ETHYLENE AND / OR ALFA-OLEFINE, AND RELATED CATALYST

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6709376A JPS591404B2 (en) 1976-06-10 1976-06-10 Method for polymerizing ethylene or α-olefins

Publications (2)

Publication Number Publication Date
JPS52150491A JPS52150491A (en) 1977-12-14
JPS591404B2 true JPS591404B2 (en) 1984-01-12

Family

ID=13334915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6709376A Expired JPS591404B2 (en) 1976-05-17 1976-06-10 Method for polymerizing ethylene or α-olefins

Country Status (1)

Country Link
JP (1) JPS591404B2 (en)

Also Published As

Publication number Publication date
JPS52150491A (en) 1977-12-14

Similar Documents

Publication Publication Date Title
EP0012397B1 (en) Polymerization catalyst and process for polymerizing alpha-olefins
JPS6155104A (en) Olefin polymerization catalyst component and catalyst
JPS5850242B2 (en) Polymerization method of α-olefin
JPS64404B2 (en)
US4456695A (en) Component of catalyst for olefin polymerization
JPS591404B2 (en) Method for polymerizing ethylene or α-olefins
JPH06206931A (en) Catalyst for stereospecifically polymerizing alpha olefin, its production and polymerization of alpha olefin
JPS5840568B2 (en) Method for polymerizing ethylene or α-olefins
US4158088A (en) Process for the polymerization of ethylene or α-olefins and catalyst therefor
JPS5835522B2 (en) Stereoregular polymerization method of α↓-olefin
JPS591286B2 (en) Polymerization method of α-olefin
JPS6363561B2 (en)
JPS6339603B2 (en)
JPS6042243B2 (en) Polymerization method of α-olefins
JPS58225105A (en) Preparation of improved ethylenic polymer
JPS591285B2 (en) Alpha − Olefuinnojiyugohouhou
JPH0128049B2 (en)
JPS5840967B2 (en) Ethylene polymerization method
JPH0548241B2 (en)
JPS6160085B2 (en)
JPS6215562B2 (en)
JPH0118930B2 (en)
JPS648004B2 (en)
JPS6338365B2 (en)
JPH0617403B2 (en) Method for producing polyolefin