JPS59140309A - Level measuring method of stored iron slag in blast furnace - Google Patents

Level measuring method of stored iron slag in blast furnace

Info

Publication number
JPS59140309A
JPS59140309A JP1295083A JP1295083A JPS59140309A JP S59140309 A JPS59140309 A JP S59140309A JP 1295083 A JP1295083 A JP 1295083A JP 1295083 A JP1295083 A JP 1295083A JP S59140309 A JPS59140309 A JP S59140309A
Authority
JP
Japan
Prior art keywords
electrodes
furnace
electrode
blast furnace
iron slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1295083A
Other languages
Japanese (ja)
Inventor
Takeo Yamada
健夫 山田
Hiroyuki Hojo
北條 博行
Akio Nagamune
長楝 章生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1295083A priority Critical patent/JPS59140309A/en
Publication of JPS59140309A publication Critical patent/JPS59140309A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PURPOSE:To measure simply a stored iron slag level on an on-line basis by installing at least one couple of electrodes at a specified interval in furnace wall brick in the vicinity of the furnace bottom part of a blast furnace, and measuring continually the electric resistance of the brick by the electrodes. CONSTITUTION:A couple of electrodes 8a and 8b are provided in carbon brick 6 in the vicinity of the furnace bottom part 4 of a blast furnace by leaving a specified interval (b), and electrodes 9a and 9b are provided above the electrode 8a and below the electrode 8b respectively by leaving a specified interval (a). A specified electric current is passed between the electrodes 8a and 8b from a power source 10. The combined resistance R of the carbon brick 6 and molten iron 7 is obtained by an equation from the above-mentioned current value I and the voltage value V between the electrodes 8a and 8b. The K in the equation is (rho2-rho1)/(rho2+rho1). The stored iron slag level can be measured by the change in the resistance value which is measured continually.

Description

【発明の詳細な説明】 この発明は、高炉内における貯銑滓のレベルを簡単にオ
ンラインで計測することができる高炉内の貯銑滓レベル
計測方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the level of pig iron slag in a blast furnace, which allows the level of pig iron slag in a blast furnace to be easily measured online.

第1図は高炉の概略縦断面図で、原料である鉄鉱石は、
コークスと共に炉頂の大ベル2から炉体1内に供給され
、羽口3から炉体1内に圧送される熱風により還元され
て溶銑となる。溶銑滓は、炉底部4に貯り、一定周期毎
に炉底部4に設けられた出銑口5から排出される。
Figure 1 is a schematic vertical cross-sectional view of a blast furnace, and the raw material iron ore is
It is supplied together with coke into the furnace body 1 from the large bell 2 at the top of the furnace, and is reduced by hot air forced into the furnace body 1 through the tuyere 3 to become molten pig iron. The hot metal slag is accumulated in the furnace bottom 4 and discharged from the tap hole 5 provided in the furnace bottom 4 at regular intervals.

高炉操業において、炉底部4内に貯る溶銑滓のレベルを
把握することは、出銑周期を決定し、安定した経済的な
操業を行なう上で重要である。即ち、貯銑滓レベルが高
くなり過ぎると、羽口3から圧送される熱風の炉体1内
における通風が悪化して炉況が不安定となる。不安定と
なった炉況を安定化させるためには、コークスの投入量
を増加させたり、熱風量を変化させる等の処置が必要と
なり、操業コストの悪化を招く。
In blast furnace operation, understanding the level of hot metal slag accumulated in the furnace bottom 4 is important in determining the tapping cycle and performing stable and economical operation. That is, if the level of the stored pig iron slag becomes too high, the ventilation of the hot air forced into the furnace body 1 from the tuyere 3 deteriorates, and the furnace condition becomes unstable. In order to stabilize the unstable furnace condition, it is necessary to take measures such as increasing the amount of coke input or changing the amount of hot air, which leads to deterioration of operating costs.

しかるに、従来は貯銑滓レベルを計測する手段がなかっ
たため、炉体内への原料供給量と出銑量との収支を計算
して、炉底部における貯銑滓量を間接的に推定している
に過きす、極めて大まかな目安にしかなっていなかった
However, in the past, there was no way to measure the level of slag stored, so the amount of slag stored at the bottom of the furnace was indirectly estimated by calculating the balance between the amount of raw material supplied to the furnace body and the amount of pig iron tapped. However, it was only a very rough guideline.

この発明は、上述のような観点から、高炉の炉底部にお
ける貯銑滓レベルを簡単にオンラインで計測することが
できる高炉内の貯銑滓レベル計測方法を提供するもので
、高炉の炉底部付近の炉壁を構成する煉瓦内に少なくと
も1対の電極を所定間隔を設けて数個け、前記電極によ
り前記煉瓦の電気抵抗を連続的に測定し、その電気抵抗
値の変化により炉底部内の貯銑滓レベルを計測すること
に特徴を有するものである。
From the above-mentioned viewpoint, the present invention provides a method for measuring the level of pig iron slag in a blast furnace that can easily measure the level of pig iron slag in the bottom of a blast furnace online. At least one pair of electrodes are installed at predetermined intervals in the bricks that make up the furnace wall, and the electrical resistance of the bricks is continuously measured by the electrodes. The feature is that it measures the pig iron slag level.

次にこの発明の詳細な説明する。Next, this invention will be explained in detail.

高炉の炉底部付近は、炉体の冷却効率が良好なカーボン
煉瓦によって構成されている。カーボン煉瓦は、その抵
抗率ρ1が、ρ、 = 6.3 X 10−3Ωmであ
って導電性を有している。一方溶銑は、その抵抗率ρ2
が、ρ2=1.3XIO−’Ωmであって、カーボン煉
瓦の抵抗率に比べて小さい。
The area near the bottom of the blast furnace is made of carbon bricks that have good cooling efficiency for the furnace body. The carbon brick has a resistivity ρ1 of ρ, = 6.3×10 −3 Ωm and is electrically conductive. On the other hand, the resistivity of hot metal is ρ2
However, ρ2=1.3XIO-'Ωm, which is smaller than the resistivity of carbon bricks.

従って、炉底部付近の炉壁を構成するカーボン煉瓦に対
し、その2点間の電気抵抗を測定すれば、カーボン煉瓦
と溶銑との合成抵抗を、極低抵抗とならずに容易に測定
することができ、この測定を連続的に行なって得られた
電気抵抗値の変化から、貯銑滓のレベル変化を知ること
ができる。
Therefore, by measuring the electrical resistance between two points of the carbon bricks that make up the furnace wall near the bottom of the furnace, it is possible to easily measure the combined resistance of the carbon bricks and hot metal without getting extremely low resistance. The change in the level of the stored pig iron slag can be determined from the change in the electrical resistance value obtained by continuously performing this measurement.

第2図は、この発明の基本原理図で、6はカーボン煉瓦
(厚さ:d)、7は溶銑であり、カーボン煉瓦6には一
定間隔すを設けて1対の電極8a。
FIG. 2 is a diagram showing the basic principle of this invention, where 6 is a carbon brick (thickness: d), 7 is hot metal, and the carbon brick 6 is provided with a pair of electrodes 8a at a constant interval.

8bが取付けられ、更に電極8aの上方および電W8b
の下方には、一定間隔aを設けて夫々電極9a、9bが
数個けられている。このような4端子法により、電極9
a、9b間に電源1.0によって一定の電流を流し、そ
の電流値■と電極8a。
8b is attached, and further above the electrode 8a and the electrode W8b.
Several electrodes 9a and 9b are provided below at a constant interval a. By such a four-terminal method, the electrode 9
A constant current is caused to flow between a and 9b by a power source 1.0, and the current value (■) and electrode 8a.

8b間の電圧値Vとから、カーボン煉瓦6と溶銑7との
合成抵抗Rを、下記式によって求めることかできる。
From the voltage value V across 8b, the combined resistance R of the carbon brick 6 and the hot metal 7 can be determined by the following formula.

但し、K−△ニー作 ρ2+ρ1 例えば、a:o、1m、b : 2m、d : 0.5
mとすると、カーボン煉瓦6の部分に図示の如く溶銑7
が存在するときは、上式からR=17mQであり、寸だ
カーボン煉瓦6の部分に溶銑が存在しないときは、R=
22.5mΩとなる。このように、溶銑が存在するか否
かによって、カーボン煉瓦6の抵抗値は約25%変化す
るから、この抵抗値を連続的に測定すれば、カーボン煉
瓦6の位置に溶銑が存在するか否かを容易に知ることが
できる。
However, K-△knee production ρ2+ρ1 For example, a: o, 1m, b: 2m, d: 0.5
m, hot metal 7 is placed on the carbon brick 6 as shown in the figure.
exists, R=17mQ from the above equation, and when there is no hot metal in the part of the carbon brick 6, R=
It becomes 22.5 mΩ. In this way, the resistance value of the carbon brick 6 changes by about 25% depending on whether or not molten metal exists, so if this resistance value is continuously measured, it can be determined whether molten pig iron is present at the position of the carbon brick 6 or not. You can easily know what

第3図はこの発明方法の一例を示す説明図で、高炉炉底
部4を構成するカーボン煉瓦6に、]対の電極8a、8
bが一定間隔を設けて水平方向に取付けられ、前記電極
8aの左方には電極9aが、また前記電極8bの右方に
は電極9bが数個けられている。
FIG. 3 is an explanatory diagram showing an example of the method of the present invention, in which carbon bricks 6 constituting the bottom part 4 of the blast furnace are covered with paired electrodes 8a, 8.
b are attached horizontally at regular intervals, and an electrode 9a is provided to the left of the electrode 8a, and several electrodes 9b are provided to the right of the electrode 8b.

12は交流四端子式抵抗測定装置で、測定装置12には
電極9 a 、 91)間に交流電流を流す交流電源(
120I(Z) 10、および演算装置1]が設けられ
ており、電極9a、9b間の電流値■と電極8a、8b
間の電圧値Vとから、演算装置11によってカーボン煉
瓦6の電気抵抗が算出され、出力される。
Reference numeral 12 denotes an AC four-terminal resistance measuring device, and the measuring device 12 includes an AC power supply (
120I(Z) 10, and an arithmetic unit 1], and the current value between the electrodes 9a and 9b and the electrodes 8a and 8b are
The electrical resistance of the carbon brick 6 is calculated by the arithmetic unit 11 from the voltage value V between them, and is output.

上述した電気抵抗の測定に尚り、四端子測定法による抵
抗測定系(ダブルブリッヂ法)を採用した理由は、この
測定法によればカーボン煉瓦と電極との接触抵抗の影響
をなくすことができ、また交流電流を使用した理由は、
各電極の温度差により生ずる熱起電力の影響をなくすこ
とができるためである。
The reason why we adopted a resistance measurement system (double bridge method) based on the four-terminal measurement method in measuring the electrical resistance described above is that this measurement method can eliminate the influence of contact resistance between the carbon brick and the electrode. , and the reason for using alternating current is,
This is because it is possible to eliminate the influence of thermoelectromotive force caused by the temperature difference between each electrode.

第4図に示す如く、カーボン煉瓦6の外側が鉄皮13で
覆われ、しかもカーボン煉瓦6と鉄皮13との電気的絶
縁が不十分な場合には、電極14の先端をカーボン煉瓦
6内に深く埋めこみ、かつ電極】4の外周は絶縁材15
で覆うことにより、鉄皮13の影響を低減することがで
きる。
As shown in FIG. 4, when the outside of the carbon brick 6 is covered with the iron skin 13 and the electrical insulation between the carbon brick 6 and the iron skin 13 is insufficient, the tip of the electrode 14 is inserted into the carbon brick 6. The outer periphery of the electrode] 4 is covered with insulating material 15.
The influence of the iron skin 13 can be reduced by covering it with.

第5図は上述した方法により測定の結果得られた溶銑レ
ベルを示す図、第6図は実操業時のレベル変動を示す図
である。第5図に示す如く、カーボン煉瓦の電気抵抗値
は溶銑レベルに対応して約17%変化することが確認さ
れ、また実操業時のレベルが第6図に示す如く変動する
ことが計測された。
FIG. 5 is a diagram showing the hot metal level obtained as a result of measurement by the method described above, and FIG. 6 is a diagram showing level fluctuations during actual operation. As shown in Figure 5, it was confirmed that the electrical resistance value of the carbon brick changed by approximately 17% in response to the hot metal level, and it was also measured that the level during actual operation varied as shown in Figure 6. .

第7図〜第9図はこの発明方法におりる電極の配置を示
す他の実施例で、第7図は炉底部側壁の相対向する位置
に電極8a、9aと電極8a’、 9a’とを夫々一定
間隔で上下方向に設け、炉底部底壁に前記電極8aと8
a′とに接続する電極8bと、前記電極9aと9 a’
とに連続する電極9bとを一定間隔で設け、かつ電極8
a、9aと電極8b。
FIGS. 7 to 9 show other embodiments of the arrangement of electrodes according to the method of the present invention. FIG. 7 shows electrodes 8a and 9a and electrodes 8a' and 9a' at opposite positions on the side wall of the bottom of the furnace. The electrodes 8a and 8 are provided vertically at regular intervals, respectively, and the electrodes 8a and 8 are provided on the bottom wall of the furnace bottom.
an electrode 8b connected to the electrode 9a and the electrode 9a';
and continuous electrodes 9b are provided at regular intervals, and
a, 9a and electrode 8b.

9b間には抵抗測定装置12を、また、電極8a′。A resistance measuring device 12 is installed between the electrodes 9b and an electrode 8a'.

9 a’と電極8b 、9b間には同じく抵抗測定装置
12′を設けたものである。
Similarly, a resistance measuring device 12' is provided between 9a' and electrodes 8b and 9b.

また第8図は、炉底部側壁の一方側に一定間隔で上下方
向に電極8a、8bと電極9a、9bとを、また側壁他
方側の相対向する位置に上下方向に電極8 a’ 、 
8 b’と電極9 a’ 、 9 b’とを設け、かつ
前記電極8a + 9 aと電極8b 、9b間には抵
抗測定装置12を、また、電極13 a’ 、 9 a
’と電極8 b’ 、 9 b’間には同じく抵抗測定
装置12′を設けたものである。
Further, FIG. 8 shows electrodes 8a, 8b and electrodes 9a, 9b arranged vertically at regular intervals on one side of the side wall of the furnace bottom, and electrodes 8a', 8a', 9a' and 9b arranged vertically at opposite positions on the other side of the side wall.
8b' and electrodes 9a', 9b' are provided, and a resistance measuring device 12 is provided between the electrodes 8a+9a and electrodes 8b, 9b, and electrodes 13a', 9a are provided.
Similarly, a resistance measuring device 12' is provided between the electrodes 8b' and 9b'.

第9図は、炉底部側壁の一方側に一定間隔で水平方向に
電極8aと9aを、また側壁他方側の相対向する位置に
水平方向に電極8bと9bとを設け、かつ前記電極8a
、9aと電極8 b 、 91.)間に抵抗測定装置1
2を設けたものである。
FIG. 9 shows that electrodes 8a and 9a are provided horizontally at regular intervals on one side of the side wall of the furnace bottom, and electrodes 8b and 9b are provided horizontally at opposite positions on the other side of the side wall, and the electrode 8a
, 9a and electrode 8b, 91. ) resistance measuring device 1 between
2.

前記第7図および第8図に示した電極配置にすれば、出
銑中および出銑直後の炉底部内における溶銑の片寄り状
態を計測するのに有効であシ、また第9図に示した電極
配置にすれば、炉底部内における溶銑の片寄りに影響さ
れない平均レベルを計測するのに有効である。
The electrode arrangement shown in FIGS. 7 and 8 is effective for measuring the uneven state of hot metal in the bottom of the furnace during and immediately after tapping. This electrode arrangement is effective in measuring the average level, which is not affected by the deviation of the hot metal in the bottom of the furnace.

以上述べたように、この発明方法によれば、高炉内にお
ける貯銑滓レベルを簡単にオンラインで計測することが
でき、高炉操業を安定して経済的に行なうことができる
等、工業上優れた効果がもたらされる。
As described above, according to the method of this invention, the level of stored pig iron slag in the blast furnace can be easily measured online, and the blast furnace operation can be performed stably and economically. effect is brought about.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は高炉の概略縦断面図、第2図はこの発明の基本
原理図、第3図はこの発明方法の一例を示す説明図、第
4図は電極の取付は状態の一例を示す説明図、第5図は
この発明方法により測定の結果得られた溶銑レベルを示
す図、第6図は実操業時のレベル変動を示す図、第7図
〜第9図はこの発明方法における電極配置の例を示す図
である。 図面において、 ■・・・炉体、     2・・大ベル、3・・羽口、
     4・・・炉底部、5・・・出銑口、    
 6・・カーボン煉瓦、7・・・溶銑、 れ、8b、9a、9b、8a’+ sb’、 9a’、
 9b′・・電極、10・・・電源、     ]1・
・演算装置、12.12’・・・抵抗測定装置 】3・
・鉄皮、14・・・電極、     15・・・絶縁材
。 出願人 日本鋼管株式会社 代理人 潮 谷 奈津夫(他2名) 第4図 第5図 第6図 第7図 第8図 第9図
Fig. 1 is a schematic vertical cross-sectional view of a blast furnace, Fig. 2 is a diagram of the basic principle of this invention, Fig. 3 is an explanatory diagram showing an example of the method of this invention, and Fig. 4 is an explanation showing an example of the state of attachment of the electrode. Figure 5 is a diagram showing the hot metal level obtained as a result of measurement by the method of this invention, Figure 6 is a diagram showing level fluctuations during actual operation, and Figures 7 to 9 are electrode arrangements in the method of this invention. It is a figure showing an example. In the drawing, ■... Furnace body, 2... Large bell, 3... Tuyere,
4... Furnace bottom, 5... Tapping port,
6...Carbon brick, 7...Hot metal, 8b, 9a, 9b, 8a'+ sb', 9a',
9b'...electrode, 10...power supply, ]1.
・Arithmetic device, 12.12'...Resistance measuring device] 3.
- Iron skin, 14... Electrode, 15... Insulating material. Applicant Nippon Kokan Co., Ltd. Agent Natsuo Shioya (and 2 others) Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】[Claims] 高炉の炉底部付近の炉壁を構成する煉瓦に、少なくとも
1対の電極を所定間隔を設けて数個け、前記電極により
前記煉瓦の電気抵抗を連続的に測定し、その電気抵抗値
の変化により炉底部内の貯銑滓レベルを計測することを
特徴とする高炉内の貯銑滓レベル計測方法。
Several at least one pair of electrodes are placed at predetermined intervals on the bricks constituting the furnace wall near the bottom of the blast furnace, and the electrical resistance of the bricks is continuously measured by the electrodes, and the change in electrical resistance value is measured. A method for measuring the level of pig iron slag in a blast furnace, characterized by measuring the level of pig iron slag in the bottom of the furnace.
JP1295083A 1983-01-31 1983-01-31 Level measuring method of stored iron slag in blast furnace Pending JPS59140309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1295083A JPS59140309A (en) 1983-01-31 1983-01-31 Level measuring method of stored iron slag in blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1295083A JPS59140309A (en) 1983-01-31 1983-01-31 Level measuring method of stored iron slag in blast furnace

Publications (1)

Publication Number Publication Date
JPS59140309A true JPS59140309A (en) 1984-08-11

Family

ID=11819554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1295083A Pending JPS59140309A (en) 1983-01-31 1983-01-31 Level measuring method of stored iron slag in blast furnace

Country Status (1)

Country Link
JP (1) JPS59140309A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587500U (en) * 1992-02-10 1993-11-26 動力炉・核燃料開発事業団 Melting furnace
KR19980043361A (en) * 1996-12-03 1998-09-05 김종진 Outgoing control method by measuring melt height of blast furnace furnace
KR20010019977A (en) * 1999-08-31 2001-03-15 이구택 Apparatus for measuring liquid level of blast furnace
JP2006176849A (en) * 2004-12-24 2006-07-06 Jfe Steel Kk Method and unit for measuring molten material surface level in blast furnace
JP2006176805A (en) * 2004-12-21 2006-07-06 Jfe Steel Kk Method and unit for measuring molten material surface level in blast furnace
JP2010138437A (en) * 2008-12-10 2010-06-24 Jfe Steel Corp Method for measuring level of melt in vertical furnace and device therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587500U (en) * 1992-02-10 1993-11-26 動力炉・核燃料開発事業団 Melting furnace
KR19980043361A (en) * 1996-12-03 1998-09-05 김종진 Outgoing control method by measuring melt height of blast furnace furnace
KR20010019977A (en) * 1999-08-31 2001-03-15 이구택 Apparatus for measuring liquid level of blast furnace
JP2006176805A (en) * 2004-12-21 2006-07-06 Jfe Steel Kk Method and unit for measuring molten material surface level in blast furnace
JP2006176849A (en) * 2004-12-24 2006-07-06 Jfe Steel Kk Method and unit for measuring molten material surface level in blast furnace
JP2010138437A (en) * 2008-12-10 2010-06-24 Jfe Steel Corp Method for measuring level of melt in vertical furnace and device therefor

Similar Documents

Publication Publication Date Title
RU2008115486A (en) ARC CONTROL SYSTEM
JPS59140309A (en) Level measuring method of stored iron slag in blast furnace
CN110736343A (en) submerged arc furnace with self baking electrode baking degree measuring device
JP5353740B2 (en) Melt level measuring device and melt level measuring method
JP2000192124A (en) Method for measuring molten material level in furnace hearth part of blast furnace and its instrument
JP4760013B2 (en) Method and apparatus for measuring melt level in blast furnace
JP6673055B2 (en) Operation method of electric arc furnace
JP4050893B2 (en) Method and apparatus for evaluating soot level in blast furnace
JP2000192123A (en) Method for measuring molten material level in furnace hearth part of blast furnace and instrument therefor
JP2021524586A (en) Detection system for detecting metal levels in the melting furnace
JPH11293326A (en) Operation of electric arc furnace
JP4136521B2 (en) Operating method of ferronickel smelting electric furnace
CN108221001A (en) A kind of pole heart for two-phase direct current electric melting magnesium furnace away from furnace shell Exterior Surface Design
SU818032A1 (en) Ore-smelting furnace
US1686207A (en) Direct reduction process for producing carbon binding metals or metal alloys
JPH04151489A (en) Method of sensing melted state in dc arc furnace
US2808324A (en) Method of smelting ilmenite
US1111050A (en) Apparatus for reducing ores.
JPS6039755Y2 (en) Smelting furnace loading height measuring device
CN102519245B (en) Measuring and controlling device for roasting quality of self-baking electrode of calcium carbide furnace and method
JP2530059Y2 (en) Wall electrode of DC arc furnace
JPH06331278A (en) Monitoring method of insulation of dc arc furnace
JPH0636469Y2 (en) Detector for consumption of bottom electrode of DC arc furnace
JPS5833082A (en) Method of deciding behavior of charge in furnace in metal smelting furnace, etc.
JPH02145716A (en) Method for checking melting progress in arc plasma melting furnace