JP4136521B2 - Operating method of ferronickel smelting electric furnace - Google Patents

Operating method of ferronickel smelting electric furnace Download PDF

Info

Publication number
JP4136521B2
JP4136521B2 JP2002225308A JP2002225308A JP4136521B2 JP 4136521 B2 JP4136521 B2 JP 4136521B2 JP 2002225308 A JP2002225308 A JP 2002225308A JP 2002225308 A JP2002225308 A JP 2002225308A JP 4136521 B2 JP4136521 B2 JP 4136521B2
Authority
JP
Japan
Prior art keywords
slag
furnace
resistance
electric furnace
specific conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002225308A
Other languages
Japanese (ja)
Other versions
JP2004068048A (en
Inventor
直樹 久保
守 宮本
Original Assignee
株式会社日向製錬所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日向製錬所 filed Critical 株式会社日向製錬所
Priority to JP2002225308A priority Critical patent/JP4136521B2/en
Publication of JP2004068048A publication Critical patent/JP2004068048A/en
Application granted granted Critical
Publication of JP4136521B2 publication Critical patent/JP4136521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Discharge Heating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フェロニッケル製錬に用いる電気炉の操業方法に関する。
【0002】
【従来の技術】
図1に、フェロニッケル製錬用電気炉の断面図を示す。
【0003】
フェロニッケル製錬において、電気炉10の底部には溶融状態のメタル1(熔体)が存在し、その上にスラグ層2が存在する。交流電源12は、該スラグ層2から所定の間隔xだけ離れて配置された電極11と、メタル1との間に接続し、電極11とスラグ層2の間でアークにより流れた電流が、スラグ層2から溶融状態のメタル1を流れることにより、交流電源12からの電力が炉内を加熱する。
【0004】
従って、電極11およびメタル1の間の炉抵抗Rは、スラグ浴抵抗Rbと、アーク抵抗Raとにより、
【0005】
【式3】

Figure 0004136521
式3のように表され、炉抵抗Rを一定にするように通電(電流)制御を行うことが、比較的に容易で一般的に行われている。
【0006】
フェロニッケル製錬の電気炉操業において、スラグ浴抵抗Rbは、スラグ層2の組成に依存し、アーク抵抗Raは、電極11の先端とスラグ層2の表面との間隔xに依存する。
【0007】
装入量などが変化して、電極11の先端とスラグ層2の表面とが接する場合には、Ra=0となり、交流電源12の供給エネルギーは、ほとんどスラグ浴抵抗Rbによる発熱になり、アークによる発熱はほとんどなくなる。この状態を継続すると、スラグ層2の全体の温度が上がり、その結果としてスラグ層2の流動が激しくなり、炉体温度が過度に上昇するという問題を起こす。
【0008】
逆に、電極11の先端とスラグ層2の表面とが離れすぎると、交流電源12の供給エネルギーは、主にアークによる発熱となるため、スラグ層2の温度が低下したり、電気炉10の側壁のコーチング層が異常成長して、電気炉操業が困難となる問題があった。
【0009】
一方、実際の電気炉操業では、熔体1の温度や熔体1の流れ性といった因子が重要な操業因子となる。こうした操業因子は、スラグ層2の温度と大きく関連するので、前述のように、熱が発生する領域を決定する主要因となるアーク抵抗Raを所望の値に調整することができれば、スラグ層2の温度が一定になり、電気炉操業を安定して継続することができる。実際に、電極位置を上下する操作でアーク抵抗Raを変えることはできる。
【0010】
しかし、アーク抵抗Raを状況に応じて正しく制御することは、困難である。また、フェロニッケル製錬の電気炉操業では、炉内スラグの性状に起因する「適切なスラグ浴抵抗Rb」を知る方法が確立されておらず、スラグ浴抵抗Rbは、装入する鉱石の種類の変化や、電気炉の還元度などに起因するスラグ組成の変化によって、大きく変動する。そのため、アーク抵抗Raではなく、炉抵抗Rが変化しないようにほぼ一定とする従来の電気炉の操業方法を行うことは、式3に従ってアーク抵抗Raを大きく変化させることになり、以下に示す(1)および(2)などのようなトラブルに見舞われることが多くなる。
【0011】
(1)スラグ浴抵抗Rbが大きくなった場合は、電極先端が溶融スラグ浴に浸漬されすぎた前述の状態と同様に、スラグ層が過剰に加熱されて、電気炉の炉体温度が上昇する。
【0012】
(2)スラグ浴抵抗Rbが小さくなった場合は、電極先端が溶融スラグ浴から離れすぎた前述の状態と同様に、スラグ層の温度が低下して、電気炉側壁へのスラグコーチング層が異常成長したり、スラグの半凝固層が炉内に発生したりする。
【0013】
従って、これらのようなトラブルを防ぐために、装入する鉱石の種類や、該鉱石の配合比を、急激に変化しないように決定しなければならないという大きな制約を設けていた。
【0014】
従来の電気炉操業において、問題が発生した一例を図3に示す。
【0015】
図3におけるグラフ4は、従来の方法による電気炉操業を行った際のスラグの比電導度の推移を示すグラフであり、グラフ5は、電気炉の炉抵抗の推移を示すグラフであり、グラフ6は、電気炉の炉体(側壁)温度の推移を示すグラフである。
【0016】
グラフ4に示されるスラグの比電導度の推移から、この期間の途中でスラグ組成が変化し、比電導度が低下し、スラグ浴抵抗Rbが上昇したことが分かる。この期間中も、グラフ5に示したように、炉抵抗Rが変化しないようにほぼ一定とする制御をした結果、グラフ6に示したように、電気炉の炉体(側壁)温度の急上昇を招いた。
【0017】
【発明が解決しようとする課題】
本発明は、前述の問題に鑑みてなされたものであり、スラグ浴抵抗Rbの変動にかかわらず、所望のアーク抵抗Raに維持する電気炉の操業方法を提供することを目的とする。
【0018】
【課題を解決するための手段】
本発明のフェロニッケル製錬用電気炉の操業方法は、
(1)炉内スラグの組成および比電導度の相関関係を予め求め、
(2)任意時nにおいて、分析して得られる炉内スラグの組成から、前記相関関係により比電導度λn(Ω-1・cm-1)を求め、
(3)比電導度λn(Ω-1・cm-1)、スラグ層の厚さLn(cm)、および通電領域の直径D(cm)から、スラグ浴抵抗Rbn(mΩ)を、
【0019】
【式4】
Figure 0004136521
式4で求め、
(4)得られるスラグ浴抵抗Rbn(mΩ)、および任意の一定値に設定されたアーク抵抗Ra0(mΩ)から、炉抵抗Rn(mΩ)を、
【0020】
【式5】
Figure 0004136521
式5で求め、
(5)炉抵抗Rn(mΩ)となるように、通電(電流)を調整して制御する。
【0021】
【発明の実施の形態】
図1に示したフェロニッケル製錬用電気炉の断面図を基に、本発明の方法を説明する。
【0022】
(1)炉内スラグの組成および比電導度の相関関係を予め求めておく。
【0023】
さらに、操業開始時に、目標値のアーク抵抗Ra0(mΩ)を設定する。
【0024】
(2)任意時nにおいて、炉内スラグを採取して、組成を分析する。分析は一定時間毎に行えばよいが、炉況の変化が激しい時などは頻繁に行ってもよい。
【0025】
得られる炉内スラグの組成から、前記相関関係により比電導度λn(Ω-1・cm-1)を求める。
【0026】
(3)一方、電気炉内の電流は、電極11の先端から、炉底に存在するメタル1に向かって流れるものとして計算することが可能である。従って、得られた比電導度λn(Ω-1・cm-1)、スラグ層の厚さLn(cm)、および電極11を中心とした通電領域の直径D(cm)から、
【0027】
【式6】
Figure 0004136521
式6によりスラグ浴抵抗Rbn(mΩ)を求める。
【0028】
通電領域の直径D(cm)は、例えば電極の外径に対して一定の比で与えればよい。
【0029】
(4)次に、得られるスラグ浴抵抗Rbn(mΩ)、および前記アーク抵抗Ra0(mΩ)とから、炉抵抗Rn(mΩ)を、
【0030】
【式7】
Figure 0004136521
式7で求め、
(5)炉抵抗Rn(mΩ)となるように、通電(電流)を調整して制御する。
【0031】
以上により、アーク抵抗Ra(mΩ)が一定となるように制御可能となる。
【0032】
【実施例】
本発明の方法を、実施例によりさらに説明する。
【0033】
(実施例)
本実施例では、電気炉の外径が18.5m、内径が16.5mであり、電極は3本で外径がそれぞれ1.7mであり、交流電源のトランス容量を60MVAとした。
【0034】
装入した鉱石(焼鉱)は70ton/hで、スラグは61ton/hで、産出粗メタルは8.6ton/hであった。
【0035】
(1)炉内スラグの組成および比電導度の相関関係を予め求める。
【0036】
さらに、操業開始時に、目標値のアーク抵抗Ra0(mΩ)を設定した。
【0037】
(2)操業中の8時間毎に、分析計(島津製作所製、蛍光X線分析装置、型式VXQ−150A)で炉内スラグの組成を分析した。
【0038】
焼鉱の組成、スラグの組成および産出粗メタルの組成の一例を、表1に示す。
【0039】
【表1】
Figure 0004136521
【0040】
任意時nにて得られたスラグの組成と、前記相関関係とにより、実施例の操業条件固有の比電導度λn’(Ω-1・cm-1)を求める。
【0041】
(3)任意時nにおけるスラグ層の厚さLn’(cm)、前記比電導度λn’(Ω-1・cm-1)、および通電領域の直径D(cm)から、
【0042】
【式8】
Figure 0004136521
式8のように、実施例の操業固有のものであるスラグ浴抵抗Rbn’(mΩ)を求めることができる。
【0043】
(4)得られるスラグ浴抵抗Rbn’(mΩ)、および目標値のアーク抵抗Ra0(mΩ)から、
【0044】
【式9】
Figure 0004136521
式9のように、調整する炉抵抗Rn(mΩ)を求める。
【0045】
(5)抵抗計13により測定される炉抵抗が、Rn’(mΩ)となるように、トランスのタップ電圧およびRn(mΩ)から目標電流を設定し、二次電流が目標電流と等しくなるよう、電極高さを調整して制御した。
【0046】
以上のように、フェロニッケル製錬の電気炉操業を、約1年間、行った。電気炉操業の結果の一部を図2に示す。
【0047】
図2におけるグラフ1は、本実施例のスラグの比電導度の推移を示すグラフであり、グラフ2は、電気炉の炉抵抗の推移を示すグラフであり、グラフ3は、電気炉の炉体(側壁)温度の推移を示すグラフである。
【0048】
グラフ1に示されるスラグの比電導度の推移から、この期間の途中でスラグ組成が一時的に変化し、比電導度が低下し、スラグ浴抵抗が一時的に上昇したことが分かる。この期間中も、前述のように本発明の方法により、アーク抵抗Raを一定とするように制御した。グラフ2に、炉抵抗Rの推移を示す。
【0049】
このような本発明の電気炉の操業方法を行った結果の電気炉の炉体(側壁)温度の推移を、グラフ3に示す。
【0050】
グラフ3から、側壁温度の変化が少なく、電気炉内が安定していることが分かる。
【0051】
【発明の効果】
本発明の方法により、スラグ組成の変動などがあっても、アーク抵抗を一定に制御することが可能で、極めて安定した電気炉操業が可能となる。
【0052】
さらに、電気炉の寿命を大きく延長することができるので、得られる経済的効果は極めて大きい。
【図面の簡単な説明】
【図1】 フェロニッケル製錬用電気炉の断面図である。
【図2】 グラフ1は、本発明の方法による電気炉操業を行った際のスラグの比電導度の推移を示すグラフであり、グラフ2は、電気炉の炉抵抗の推移を示すグラフであり、グラフ3は、電気炉の炉体(側壁)温度の推移を示すグラフである。
【図3】 グラフ4は、従来の方法による電気炉操業を行った際のスラグの比電導度の推移を示すグラフであり、グラフ5は、電気炉の炉抵抗の推移を示すグラフであり、グラフ6は、電気炉の炉体(側壁)温度の推移を示すグラフである。
【符号の説明】
1 メタル
2 スラグ層
10 電気炉
11 電極
12 交流電源
13 抵抗計
D 通電領域の直径
L スラグ層の厚さ
x 間隔[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for operating an electric furnace used for ferronickel smelting.
[0002]
[Prior art]
FIG. 1 shows a cross-sectional view of an electric furnace for ferronickel smelting.
[0003]
In ferronickel smelting, the molten metal 1 (melt) is present at the bottom of the electric furnace 10, and the slag layer 2 is present thereon. The AC power source 12 is connected between the electrode 11 disposed at a predetermined distance x from the slag layer 2 and the metal 1, and a current flowing by an arc between the electrode 11 and the slag layer 2 is slag. By flowing the molten metal 1 from the layer 2, the electric power from the AC power source 12 heats the inside of the furnace.
[0004]
Therefore, the furnace resistance R between the electrode 11 and the metal 1 is determined by the slag bath resistance Rb and the arc resistance Ra,
[0005]
[Formula 3]
Figure 0004136521
It is expressed as Expression 3 and it is relatively easy and generally performed to perform energization (current) control so that the furnace resistance R is constant.
[0006]
In the electric furnace operation of ferronickel smelting, the slag bath resistance Rb depends on the composition of the slag layer 2, and the arc resistance Ra depends on the distance x between the tip of the electrode 11 and the surface of the slag layer 2.
[0007]
When the amount of charge changes and the tip of the electrode 11 and the surface of the slag layer 2 are in contact with each other, Ra = 0, and the supply energy of the AC power source 12 is almost exothermic due to the slag bath resistance Rb. The heat generated by is almost gone. If this state is continued, the temperature of the whole slag layer 2 will rise, As a result, the flow of the slag layer 2 will become intense, and the problem that a furnace body temperature will raise excessively will be caused.
[0008]
On the other hand, if the tip of the electrode 11 and the surface of the slag layer 2 are too far apart, the supply energy of the AC power source 12 is mainly generated by an arc, so that the temperature of the slag layer 2 decreases or the electric furnace 10 There was a problem that the operation of the electric furnace became difficult due to abnormal growth of the coating layer on the side wall.
[0009]
On the other hand, in an actual electric furnace operation, factors such as the temperature of the melt 1 and the flowability of the melt 1 are important operation factors. Since these operating factors are largely related to the temperature of the slag layer 2, as described above, if the arc resistance Ra, which is the main factor for determining the heat generation region, can be adjusted to a desired value, the slag layer 2 The temperature of the furnace becomes constant, and the electric furnace operation can be continued stably. Actually, the arc resistance Ra can be changed by moving the electrode position up and down.
[0010]
However, it is difficult to control the arc resistance Ra correctly according to the situation. Moreover, in the electric furnace operation of ferronickel smelting, the method of knowing "appropriate slag bath resistance Rb" resulting from the property of slag in a furnace has not been established, and slag bath resistance Rb is the kind of ore to be charged. Fluctuates greatly due to changes in the slag composition due to changes in the electric furnace and the reduction degree of the electric furnace. Therefore, performing the conventional electric furnace operation method in which not the arc resistance Ra but the furnace resistance R is substantially constant so that the furnace resistance R does not change greatly changes the arc resistance Ra according to Equation 3, and is shown below ( More frequent problems such as 1) and (2) occur.
[0011]
(1) When the slag bath resistance Rb is increased, the slag layer is excessively heated and the furnace temperature of the electric furnace rises in the same manner as described above in which the electrode tip is excessively immersed in the molten slag bath. .
[0012]
(2) When the slag bath resistance Rb is reduced, the temperature of the slag layer is lowered and the slag coating layer on the electric furnace side wall is abnormal as in the above-described state where the electrode tip is too far from the molten slag bath. It grows or a semi-solid layer of slag is generated in the furnace.
[0013]
Therefore, in order to prevent such troubles, there has been a great restriction that the type of ore to be charged and the blending ratio of the ore must be determined so as not to change rapidly.
[0014]
An example in which a problem has occurred in conventional electric furnace operation is shown in FIG.
[0015]
Graph 4 in FIG. 3 is a graph showing the transition of the specific conductivity of the slag when the electric furnace operation is performed by the conventional method, and graph 5 is a graph showing the transition of the furnace resistance of the electric furnace. 6 is a graph showing the transition of the furnace body (side wall) temperature of the electric furnace.
[0016]
From the transition of the specific conductivity of the slag shown in the graph 4, it can be seen that the slag composition changed during this period, the specific conductivity decreased, and the slag bath resistance Rb increased. During this period, as shown in the graph 5, as a result of the control to make the furnace resistance R almost constant so as not to change, as shown in the graph 6, the furnace body (side wall) temperature of the electric furnace rapidly increased. invited.
[0017]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a method for operating an electric furnace that maintains a desired arc resistance Ra regardless of fluctuations in the slag bath resistance Rb.
[0018]
[Means for Solving the Problems]
The operation method of the electric furnace for ferronickel smelting of the present invention is as follows:
(1) The correlation between the composition of the in-furnace slag and the specific conductivity is obtained in advance,
(2) The specific conductivity λn (Ω −1 · cm −1 ) is obtained from the composition of the in-furnace slag obtained by analysis at an arbitrary time n by the above correlation,
(3) From the specific conductivity λn (Ω -1 · cm -1 ), the thickness Ln (cm) of the slag layer, and the diameter D (cm) of the energized region, the slag bath resistance Rbn (mΩ)
[0019]
[Formula 4]
Figure 0004136521
Obtained by Equation 4,
(4) From the obtained slag bath resistance Rbn (mΩ) and the arc resistance Ra0 (mΩ) set to an arbitrary constant value, the furnace resistance Rn (mΩ),
[0020]
[Formula 5]
Figure 0004136521
Obtained by Equation 5,
(5) The energization (current) is adjusted and controlled so that the furnace resistance Rn (mΩ) is obtained.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
The method of the present invention will be described based on the sectional view of the ferronickel smelting electric furnace shown in FIG.
[0022]
(1) The correlation between the composition of the in-furnace slag and the specific conductivity is obtained in advance.
[0023]
Further, a target arc resistance Ra0 (mΩ) is set at the start of operation.
[0024]
(2) At arbitrary time n, in-furnace slag is sampled and the composition is analyzed. The analysis may be performed at regular intervals, but may be performed frequently when the furnace condition changes drastically.
[0025]
From the composition of the in-furnace slag, the specific conductivity λn (Ω −1 · cm −1 ) is determined by the above correlation.
[0026]
(3) On the other hand, the current in the electric furnace can be calculated as flowing from the tip of the electrode 11 toward the metal 1 existing at the furnace bottom. Therefore, from the obtained specific conductivity λn (Ω −1 · cm −1 ), the thickness Ln (cm) of the slag layer, and the diameter D (cm) of the current-carrying region centered on the electrode 11,
[0027]
[Formula 6]
Figure 0004136521
The slag bath resistance Rbn (mΩ) is obtained from Equation 6.
[0028]
What is necessary is just to give the diameter D (cm) of an electricity supply area | region with a fixed ratio with respect to the outer diameter of an electrode, for example.
[0029]
(4) Next, from the obtained slag bath resistance Rbn (mΩ) and the arc resistance Ra0 (mΩ), the furnace resistance Rn (mΩ),
[0030]
[Formula 7]
Figure 0004136521
Obtained by Equation 7,
(5) The energization (current) is adjusted and controlled so that the furnace resistance Rn (mΩ) is obtained.
[0031]
As described above, the arc resistance Ra (mΩ) can be controlled to be constant.
[0032]
【Example】
The method of the present invention is further illustrated by examples.
[0033]
(Example)
In this example, the outer diameter of the electric furnace was 18.5 m, the inner diameter was 16.5 m, the number of the electrodes was 3, the outer diameter was 1.7 m, and the transformer capacity of the AC power supply was 60 MVA.
[0034]
The charged ore (calcined ore) was 70 ton / h, the slag was 61 ton / h, and the output crude metal was 8.6 ton / h.
[0035]
(1) A correlation between the composition of the in-furnace slag and the specific conductivity is obtained in advance.
[0036]
Further, a target arc resistance Ra0 (mΩ) was set at the start of operation.
[0037]
(2) The composition of the furnace slag was analyzed with an analyzer (manufactured by Shimadzu Corporation, fluorescent X-ray analyzer, model VXQ-150A) every 8 hours during operation.
[0038]
Table 1 shows an example of the composition of the sinter, the composition of the slag, and the composition of the output crude metal.
[0039]
[Table 1]
Figure 0004136521
[0040]
The specific conductivity λn ′ (Ω −1 · cm −1 ) specific to the operating conditions of the examples is obtained from the composition of the slag obtained at any time n and the correlation.
[0041]
(3) From the thickness Ln ′ (cm) of the slag layer at any time n, the specific conductivity λn ′ (Ω −1 · cm −1 ), and the diameter D (cm) of the energized region,
[0042]
[Formula 8]
Figure 0004136521
As shown in Equation 8, the slag bath resistance Rbn ′ (mΩ) that is specific to the operation of the embodiment can be obtained.
[0043]
(4) From the obtained slag bath resistance Rbn ′ (mΩ) and the arc resistance Ra0 (mΩ) of the target value,
[0044]
[Formula 9]
Figure 0004136521
As shown in Equation 9, the furnace resistance Rn (mΩ) to be adjusted is obtained.
[0045]
(5) The target current is set from the tap voltage of the transformer and Rn (mΩ) so that the furnace resistance measured by the resistance meter 13 becomes Rn ′ (mΩ), and the secondary current becomes equal to the target current. The electrode height was adjusted and controlled.
[0046]
As mentioned above, the electric furnace operation of the ferronickel smelting was performed for about one year. A part of the result of the electric furnace operation is shown in FIG.
[0047]
The graph 1 in FIG. 2 is a graph showing the transition of the specific conductivity of the slag of the present embodiment, the graph 2 is a graph showing the transition of the furnace resistance of the electric furnace, and the graph 3 is the furnace body of the electric furnace. (Side wall) It is a graph which shows transition of temperature.
[0048]
From the transition of the specific conductivity of the slag shown in the graph 1, it can be seen that the slag composition temporarily changed during this period, the specific conductivity decreased, and the slag bath resistance temporarily increased. Also during this period, the arc resistance Ra was controlled to be constant by the method of the present invention as described above. Graph 2 shows the transition of the furnace resistance R.
[0049]
A transition of the furnace body (side wall) temperature of the electric furnace as a result of performing the operation method of the electric furnace of the present invention is shown in graph 3.
[0050]
From graph 3, it can be seen that there is little change in the side wall temperature and the inside of the electric furnace is stable.
[0051]
【The invention's effect】
According to the method of the present invention, even if there is a variation in the slag composition, the arc resistance can be controlled to be constant, and an extremely stable electric furnace operation is possible.
[0052]
Furthermore, since the life of the electric furnace can be greatly extended, the obtained economic effect is extremely large.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an electric furnace for ferronickel smelting.
FIG. 2 is a graph showing the transition of the specific conductivity of the slag when the electric furnace is operated by the method of the present invention, and the graph 2 is a graph showing the transition of the furnace resistance of the electric furnace. Graph 3 is a graph showing the transition of the furnace body (side wall) temperature of the electric furnace.
FIG. 3 is a graph showing the transition of the specific conductivity of the slag when the electric furnace is operated by the conventional method, and FIG. 5 is a graph showing the transition of the furnace resistance of the electric furnace. Graph 6 is a graph showing the transition of the furnace body (side wall) temperature of the electric furnace.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Metal 2 Slag layer 10 Electric furnace 11 Electrode 12 AC power supply 13 Resistance meter D Diameter of current supply area L Thickness of slag layer x Interval

Claims (1)

メタルおよびスラグに電極を介して通電するフェロニッケル製錬用電気炉の操業方法において、
(1)炉内スラグの組成および比電導度の相関関係を予め求め、
(2)任意時nにおいて、分析して得られる炉内スラグの組成から、前記相関関係により比電導度λn(Ω-1・cm-1)を求め、
(3)比電導度λn(Ω-1・cm-1)、スラグ層の厚さLn(cm)、および通電領域の直径D(cm)から、スラグ浴抵抗Rbn(mΩ)を、
【式1】
Figure 0004136521
式1で求め、
(4)得られるスラグ浴抵抗Rbn(mΩ)、および任意の一定値に設定されたアーク抵抗Ra0(mΩ)から、炉抵抗Rn(mΩ)を、
【式2】
Figure 0004136521
式2で求め、
(5)炉抵抗Rn(mΩ)となるように、通電(電流)を調整して制御することを特徴とするフェロニッケル製錬用電気炉の操業方法。
In the method of operating an electric furnace for ferronickel smelting that energizes metal and slag through electrodes,
(1) The correlation between the composition of the in-furnace slag and the specific conductivity is obtained in advance,
(2) The specific conductivity λn (Ω −1 · cm −1 ) is obtained from the composition of the in-furnace slag obtained by analysis at an arbitrary time n by the above correlation,
(3) From the specific conductivity λn (Ω -1 · cm -1 ), the thickness Ln (cm) of the slag layer, and the diameter D (cm) of the energized region, the slag bath resistance Rbn (mΩ)
[Formula 1]
Figure 0004136521
Obtained by Equation 1,
(4) From the obtained slag bath resistance Rbn (mΩ) and the arc resistance Ra0 (mΩ) set to an arbitrary constant value, the furnace resistance Rn (mΩ),
[Formula 2]
Figure 0004136521
Obtained by Equation 2,
(5) A method of operating an electric furnace for ferronickel smelting, characterized in that energization (current) is adjusted and controlled so as to have a furnace resistance Rn (mΩ).
JP2002225308A 2002-08-01 2002-08-01 Operating method of ferronickel smelting electric furnace Expired - Fee Related JP4136521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002225308A JP4136521B2 (en) 2002-08-01 2002-08-01 Operating method of ferronickel smelting electric furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002225308A JP4136521B2 (en) 2002-08-01 2002-08-01 Operating method of ferronickel smelting electric furnace

Publications (2)

Publication Number Publication Date
JP2004068048A JP2004068048A (en) 2004-03-04
JP4136521B2 true JP4136521B2 (en) 2008-08-20

Family

ID=32013019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002225308A Expired - Fee Related JP4136521B2 (en) 2002-08-01 2002-08-01 Operating method of ferronickel smelting electric furnace

Country Status (1)

Country Link
JP (1) JP4136521B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5408417B2 (en) * 2009-07-07 2014-02-05 株式会社日向製錬所 Operation method of electric furnace for ferronickel smelting
JP5555921B2 (en) * 2011-06-15 2014-07-23 株式会社日向製錬所 Electric furnace operation method
JP2014105348A (en) * 2012-11-26 2014-06-09 Hyuga Seirensho:Kk Operation method of electric furnace for ferronickel smelting
JP7321776B2 (en) * 2019-05-28 2023-08-07 株式会社日向製錬所 Method for Suppressing Blackening of Ferronickel Cast Piece, and Method for Producing Ferronickel Cast Piece

Also Published As

Publication number Publication date
JP2004068048A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
US9599401B2 (en) Method and a control system for controlling a melting and refining process
CN109757003B (en) Automatic control method for submerged arc furnace
JP5408417B2 (en) Operation method of electric furnace for ferronickel smelting
CN109238122A (en) A method of for measuring plasma melting furnace slag layer thickness
JP4136521B2 (en) Operating method of ferronickel smelting electric furnace
JP5555921B2 (en) Electric furnace operation method
CN101825400B (en) Automatic control method of electrode deep insertion of submerged electric furnace
Sivtsov et al. Steel semiproduct melting intensification in electric arc furnaces using coordinated control of electric and gas conditions: II. On-line control of the state of the charge and melt zones in electric arc furnaces
US4696014A (en) Self-baking electrodes
CN101833288B (en) Material melting model-based power supply control method for arc furnace
JP6634949B2 (en) Method of estimating and operating temperature of arc furnace
JP2014105348A (en) Operation method of electric furnace for ferronickel smelting
Oyawale et al. Design and prototype development of a mini-electric arc furnace
JP4912758B2 (en) Three-phase AC electrode type circular electric furnace and its cooling method
EP0205439A1 (en) A method for controlling an electrothermal process.
DE541333C (en) Process and electric furnace for melting metals and metal alloys
JP5007094B2 (en) Control method of plasma melting furnace
WO2013181675A1 (en) Arc furnace electrode operation
JP3986519B2 (en) Electric ash melting furnace and operation method thereof
CN204478794U (en) A kind of direct current electric arc furnace
CN108221001A (en) A kind of pole heart for two-phase direct current electric melting magnesium furnace away from furnace shell Exterior Surface Design
JP3560677B2 (en) Operating method of electric smelting furnace with reduced electrode consumption
RU2456519C2 (en) Control method of ore-heating furnace operating mode for producing zirconia alumina
JPH06341773A (en) Operation stabilizing method for electric furnace
Udy Electric Smelting Furnaces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees