JPH06341773A - Operation stabilizing method for electric furnace - Google Patents

Operation stabilizing method for electric furnace

Info

Publication number
JPH06341773A
JPH06341773A JP5132040A JP13204093A JPH06341773A JP H06341773 A JPH06341773 A JP H06341773A JP 5132040 A JP5132040 A JP 5132040A JP 13204093 A JP13204093 A JP 13204093A JP H06341773 A JPH06341773 A JP H06341773A
Authority
JP
Japan
Prior art keywords
electrode
furnace
pattern
coke
electric furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5132040A
Other languages
Japanese (ja)
Inventor
Shigeki Terada
茂樹 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5132040A priority Critical patent/JPH06341773A/en
Publication of JPH06341773A publication Critical patent/JPH06341773A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To provide a method for stabilizing an operation of an electric furnace which can stabilize the operation of the furnace by establishing a coke regulating reference and an electrode length estimation reference. CONSTITUTION:A moving trace of an end of an electrode under control of a position of the end of the electrode is sorted to a first pattern for reducing a rising speed of the electrode when an electric resistance value in an electric furnace is deviated from an upper limit of an optimum range of a predetermined electric resistance indicator, a second pattern for raising the rising speed of the electrode when it is deviated from a lower limit, and a third pattern for inhibiting alteration of the rising speed of the electrode when it falls within the optimum range, and a coke adding amount in the furnace is regulated and a depth of the electrode is estimated in response to the sorted electrode depth pattern and a state of a slag content of a component to be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、合金鉄等の金属や合金
の製造を対象とする電気炉の操業安定化方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for stabilizing the operation of an electric furnace for the production of metals such as ferroalloys and alloys.

【0002】[0002]

【従来の技術】図3は電気炉を用いて精錬操業を行って
いる状況を示すものであり、一般に炉壁1の外面はシャ
モット質の耐火レンガで構築され、内面は炭素質の耐火
物で構築されている。原料装入口4より投入された原料
A(鉱石及びコークス)中の鉱石は、電極2(通常は3
本使用)への通電による抵抗熱を受けて溶融し、コーク
ス及び半溶融物の混合層Hで還元精錬が進み、比重差に
よってコークスベッドC,スラグ及びコークスの混合層
S,そして溶湯Mとに分かれる。なお、図中、3は炉
蓋,5は排ガスダクト,Dは付着物,10は定期的に開
口される出湯口を示している。
2. Description of the Related Art FIG. 3 shows a state of refining operation using an electric furnace. Generally, the outer surface of a furnace wall 1 is constructed of chamotte refractory bricks and the inner surface thereof is carbonaceous refractory material. Has been built. The ore in the raw material A (ore and coke) charged from the raw material charging port 4 is stored in the electrode 2 (usually 3
It is melted by receiving resistance heat due to energization to (main use), and reduction refining proceeds in the mixed layer H of coke and semi-molten material, and the coke bed C, the mixed layer S of slag and coke S, and the molten metal M due to the difference in specific gravity. Divide. In the figure, 3 is a furnace lid, 5 is an exhaust gas duct, D is an adhering substance, and 10 is a tap hole which is opened periodically.

【0003】このような構成において、電気炉操業にお
ける必要熱量は、原料を溶融させるための熱、Fe,M
n,Si等の酸化物を還元させるための熱、及び溶湯や
スラグに流動性を与えるための熱の総和で与えられる
が、これらの要求熱量は電極2先端付近で生じる抵抗熱
によって供給される。具体的には、塊鉱石,焼結鉱,ペ
レット等にコークスを加え、電極2からの熱によって鉱
石の溶解、そして還元を行わせる。そしてこの時の添加
鉱石に対するコークス添加量割合は、過去の経験値に従
い、適正と思われる添加鉱石に対する割合で電気炉に添
加していた。
In such a construction, the heat quantity required for the electric furnace operation is the heat for melting the raw materials, Fe, M
It is given by the sum of the heat for reducing oxides such as n and Si, and the heat for giving fluidity to the molten metal or slag, and the required heat amount is supplied by the resistance heat generated near the tip of the electrode 2. . Specifically, coke is added to lump ore, sintered ore, pellets, etc., and the heat from the electrode 2 melts and reduces the ore. Then, the coke addition amount ratio to the added ore at this time was added to the electric furnace at a ratio to the added ore which seems to be appropriate according to past experience values.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
電気炉制御方法では、過去の経験値に依存してコークス
添加量の割合を決めていたため、原料鉱石の銘柄の変
化、焼結鉱の焼成度の変動、電極深度(電極先端から炉
底までの距離L2 )の変化、電力負荷レベル等によって
合金鉄製造のための適正コークス量割合が異なるため
に、次のような問題が発生していた。
However, in the conventional electric furnace control method, since the ratio of the amount of coke added was determined depending on the past experience value, the change in the brand of the raw ore and the firing degree of the sintered ore. , The depth of the electrode (distance L2 from the tip of the electrode to the furnace bottom), the power load level, and the like, and the appropriate coke amount ratio for the production of ferroalloys, the following problems occurred.

【0005】すなわち、コークスの添加量割合が不足す
るか、あるいは電極深度が深くなると、還元不足による
メタル歩留り悪化,製品の規格外れ,電極の異常消耗,
電気炉耐火物の侵食(カーボン系レンガで築炉した場
合)等の問題が発生していた。これとは反対に、コーク
スの添加量割合が過剰となるか、あるいは電極深度が浅
くなると、電力負荷の低下,電流オーバーによるトラン
ストリップ,電極先端位置の上昇による炉吹き(電気炉
炉内原料中からの異常なガス吹き)や棚落ちの発生,過
剰還元によるスラグの流動性悪化等の問題が発生してい
た。
That is, if the amount of coke added is insufficient or the electrode depth is deep, the metal yield is deteriorated due to insufficient reduction, the product is out of specification, and the electrode is consumed abnormally.
Problems such as erosion of electric furnace refractories (when the furnace was constructed with carbon bricks) were occurring. On the contrary, if the coke addition rate becomes excessive or the electrode depth becomes shallow, the power load decreases, the transformer trips due to the overcurrent, and the furnace blowing due to the rise of the electrode tip position. There were problems such as abnormal gas blowing from the tank), falling of shelves, and deterioration of slag fluidity due to excessive reduction.

【0006】現状では、このような問題が発生する前に
電気炉内のコークス量の過不足を的確に判断する方法が
実現されていないため、問題が発生した後に、コークス
の添加量割合の増減処置を行ったり、電極深度の測定を
行わざるを得ない。それにより、コークスの添加量割合
の過剰な増減を行ってしまったり、あるいはその他の誤
った処理を実施してしまいやすく、結果として電気炉内
コークス量の過不足状態が繰り返されることとなり、コ
ークスの適正量を維持することができないという課題が
あった。
At present, since a method for accurately determining whether the amount of coke in the electric furnace is excessive or insufficient before such a problem has occurred has not been realized, after the problem occurs, the proportion of coke added increases or decreases. There is no choice but to take measures and measure the electrode depth. As a result, the amount of coke added may be excessively increased or decreased, or other erroneous processing may be performed.As a result, the state of excess and deficiency in the amount of coke in the electric furnace may be repeated, and There was a problem that the proper amount could not be maintained.

【0007】例えば、スラグMn%が目標値15%に対
して10%になったため、コークス添加量をマイナス2
トン実施したところ、3日後にスラグMn%が18%に
跳ね上がってしまう結果を招くことがある。この原因
は、電極長さが目標値2450mmに対して2830mmと長くなり
すぎたためにスラグMn%が下がっていたにもかかわら
ず、コークス過剰と誤って判断しコークス減処理を実施
したところ電極長さが目標値近くの2430mmに戻ったた
め、スラグMn%が上昇してしまったものである。本発
明は以上のような従来の電気炉の制御方法における課題
を考慮し、コークス調整処置基準と電極長さ推定基準を
確立することにより、電気炉操業の安定化を図ることの
できる電気炉の操業安定化方法を提供することを目的と
する。
For example, since the slag Mn% is 10% with respect to the target value of 15%, the coke addition amount is minus 2.
When tons were carried out, the slag Mn% might jump up to 18% after 3 days. The cause of this is that the electrode length was too long, 2830 mm, compared to the target value of 2450 mm, so that the slag Mn% was lowered, but it was mistakenly judged to be excessive coke and the coke reduction treatment was performed. Is returned to 2430 mm, which is close to the target value, and the slag Mn% has increased. The present invention takes into consideration the problems in the conventional electric furnace control method as described above, and establishes the coke adjustment treatment standard and the electrode length estimation standard, whereby the electric furnace operation can be stabilized. The purpose is to provide a method for stabilizing operations.

【0008】[0008]

【課題を解決するための手段及び作用】本発明は、電極
先端位置制御における電極先端の移動軌跡を表す電極深
度パターンと被還元成分の含有率の状態に応じて、電気
炉内のコークス添加量の調整及び電極深度の推定を行う
電気炉の操業安定化方法である。
According to the present invention, the amount of coke added in the electric furnace is adjusted according to the electrode depth pattern representing the movement trajectory of the electrode tip in controlling the electrode tip position and the state of the content of the reduced component. Is a method for stabilizing the operation of an electric furnace that adjusts the temperature and estimates the electrode depth.

【0009】電気炉操業における必要熱量は、原料を溶
融させるための熱、被還元性のMn,Si等の酸化物を
還元させるための熱、溶湯やスラグに流動性を与えるた
めの熱である。これらの要求熱量は、3本の電極先端付
近で電気抵抗熱によって供給される。そして電極先端が
そのときの炉内状況に対して最適位置にある時には、原
料の溶融、還元反応、生成物の流動性向上の各要求に寄
与する熱がバランス良く分配され、供給電力が最大限有
効に活用されるとともに、安定した操炉状態を得ること
ができる。
The required amount of heat in the electric furnace operation is heat for melting the raw materials, heat for reducing the reducible oxides of Mn, Si, etc., and heat for imparting fluidity to the molten metal or slag. . These required heat amounts are supplied by electric resistance heat near the tips of the three electrodes. When the tip of the electrode is at the optimum position for the situation inside the furnace at that time, the heat that contributes to the requirements for melting the raw material, the reduction reaction, and improving the fluidity of the product is distributed in a well-balanced manner, and the power supply is maximized. It can be effectively utilized and a stable furnace operation state can be obtained.

【0010】このようなことから、炉内状況に応じて電
極先端位置の制御をいかに的確に行うかということにつ
いては、電気炉の操業効率を高めていく上で最も重要で
あり、特開昭60-232477 号公報の「電気炉の電極位置制
御方法」によって実現されている。この電極先端位置制
御を実施した場合に現れる電極位置の軌跡(以下、電極
深度パターンと呼ぶ)と、炉内電気抵抗値、及び被還元
成分のスラグ含有率を用い、電気炉操業におけるもう一
つの重要な管理項目である電気炉炉内コークス量の過不
足を判断してコークスの添加量割合の増減、及び電極深
度の深浅の推定あるいは電極長さ(電極先端からホルダ
ー間の距離)の長短の推定を実施するものである。
Therefore, how to accurately control the position of the electrode tip according to the situation inside the furnace is the most important factor in improving the operating efficiency of the electric furnace. This is realized by the "electrode position control method for electric furnace" of JP 60-232477. Using the locus of the electrode position that appears when this electrode tip position control is performed (hereinafter referred to as the electrode depth pattern), the electric resistance value in the furnace, and the slag content rate of the components to be reduced, another Judging whether the amount of coke in the electric furnace is excessive or deficient, which is an important control item, the amount of coke added is increased / decreased, the depth of the electrode depth is estimated, or the electrode length (distance from the electrode tip to the holder) is adjusted. The estimation is performed.

【0011】すなわち、本発明は、上記「電気炉の電極
位置制御方法」を実施した場合の電極深度パターン実績
のタイプを、3本の電極とも途中より電極深度が下がる
「第1のパターンとしての」Aタイプと、上昇のみの電
極を1本以上有する「第3のパターン」としてのEタイ
プ、及び電極深度が異常に上昇する「第2のパターン」
としてのXタイプとに分類すること。その分類した電極
深度パターンと被還元成分のスラグ含有率とを用い、電
極長さ(または電極深度)、あるいは還元材の過不足を
推定し、コークス添加率の調整を行うことを特徴とする
ものである。
That is, according to the present invention, the type of actual electrode depth pattern when the above-mentioned "electrode position control method for an electric furnace" is carried out is defined as "first pattern" in which the electrode depth of all three electrodes decreases from the middle. "A type, E type as a" third pattern "having one or more ascending-only electrodes, and" second pattern "in which the electrode depth increases abnormally
X type as. Using the classified electrode depth pattern and the slag content of the component to be reduced, the electrode length (or electrode depth) or excess or deficiency of the reducing agent is estimated, and the coke addition rate is adjusted. Is.

【0012】[0012]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。前述した「電気炉の電極位置制御方法」は、電気
炉の操業に際し、電極先端の高さ位置を制御する方法に
おいて、電気抵抗指標を測定しつつ予め定められた電気
抵抗指標の最適範囲の上限を逸脱した場合は、電極の上
昇速度を低下させ、これとは逆に、下限を逸脱した場合
は、電極の上昇速度を高めることにより、電気抵抗指標
が設定範囲内に保持されるように制御するものである。
Embodiments of the present invention will be described below with reference to the drawings. The above-mentioned "electrode position control method of electric furnace" is a method of controlling the height position of the electrode tip during operation of the electric furnace, and the upper limit of the optimum range of the predetermined electric resistance index while measuring the electric resistance index. If it deviates from the above condition, the ascending speed of the electrode is reduced, and conversely, if it deviates from the lower limit, the ascending speed of the electrode is increased so that the electric resistance index is controlled to be maintained within the set range. To do.

【0013】図1に、電極深度パターン実績のタイプを
示した。同図に示すように、電極深度L2 を、3本の電
極とも途中より電極深度が下がるAタイプと、上昇のみ
の電極が1本以上あるEタイプと、電極深度が異常に上
昇するXタイプとに分類した。
FIG. 1 shows types of actual electrode depth patterns. As shown in the figure, the electrode depth L2 is A type in which the electrode depth decreases from the middle of all three electrodes, E type in which there is at least one electrode that only rises, and X type in which the electrode depth increases abnormally. Classified into.

【0014】「実施例1」2万KVA の密閉型電気炉(図
3参照)を用いてシリコンマンガン(SiMn)を製造した
場合を以下に説明する。実炉データの溶解電力原単位を
移動平均した値と、電極深度パターンのタイプを図2に
示す。Aタイプのタップでは、溶解電力原単位が悪くな
りつつあるところか、または悪いところが多く、Eタイ
プは溶解電力原単位が良くなりつつあるところか、また
は良いところが多い。また、Xタイプでは、棚落ちが発
生している。表1は、各タイプの時間単位の炉内電気抵
抗値及び発生ガス中のCO含有率を示したものである。
[Example 1] A case where silicon manganese (SiMn) is manufactured using a closed electric furnace of 20,000 KVA (see FIG. 3) will be described below. Fig. 2 shows the moving average value of the basic unit of melting power of the actual furnace data and the type of electrode depth pattern. In the A type tap, the melting power intensity is becoming worse, or in many places, and in the E type tap, the melting power intensity is getting better or in many places. Further, in the X type, shelving has occurred. Table 1 shows the electric resistance value in the furnace and the CO content rate in the generated gas for each type of time unit.

【0015】[0015]

【表1】 [Table 1]

【0016】表1より明らかなように、Aタイプは炉内
電気抵抗値が途中より急に上昇して、その結果、電極深
度L2 が下げられている。実操業においても、遅れてコ
ークスの追加(+2トン)を実施している。また、Xタ
イプは、炉内電気抵抗値が低く、電極が急に上昇して途
中で電極操作を中止している。実操業においても、遅れ
てコークスの減量(−2トン)を実施している。さらに
また、Eタイプは炉内電気抵抗値が管理範囲に収まって
おり、発生ガス中のCO含有率も低く、間接還元率の高
い状態である。
As is clear from Table 1, in the A type, the electric resistance value in the furnace rises abruptly from the middle, and as a result, the electrode depth L2 is lowered. Even in actual operation, additional coke (+2 tons) is being implemented later. Further, in the X type, the electric resistance value in the furnace is low, the electrode suddenly rises, and the electrode operation is stopped midway. Even in actual operation, the amount of coke was reduced (-2 tons) after a delay. Furthermore, in the E type, the electric resistance value in the furnace is within the control range, the CO content rate in the generated gas is low, and the indirect reduction rate is high.

【0017】これらの結果から、操業中の電極深度パタ
ーンを上記Eタイプに管理することができれば、早めの
コークス添加量調整を行うことにより、安定した操炉が
可能となり、棚落ちの減少及び溶解電力原単位のよりい
っそうの低減が可能となった。
From these results, if the electrode depth pattern during operation can be controlled to the above-mentioned E type, stable coke operation becomes possible by adjusting the coke addition amount earlier, and reduction of shelves and melting can be achieved. It has become possible to further reduce the power consumption rate.

【0018】「実施例2」2万KVA の密閉型電気炉を用
いてシリコンマンガン(SiMn)を製造した場合を示す。
特開昭60-232477 号公報の「電気炉の電極位置制御方
法」に従って、電極先端位置制御を実施した場合の各操
業値の目標値は、スラグMn:12.5%,電極深度パタ
ーンのタイプ:Eタイプ,電気炉炉内電気抵抗値:0.
33mΩ,コークス添加率18%,電極長さL1 :2350
mm,電極深度L2 :2200mmとした。実操業値として、ス
ラグMn%が10%で、3本の電極の内の2極のみが、電
気抵抗値0.30mΩでXタイプの電極深度パターンを
示したので、表2により電極長さL1 を2450mmと推定
し、かつコークス添加率を17.8%に減らす処置を取
った。その後、スラグMn%が目標値の12.5%に近づ
き、電極深度パターンのタイプもEタイプに近づいた。
[Example 2] A case where silicon manganese (SiMn) was manufactured using a closed electric furnace of 20,000 KVA is shown.
According to the "electrode position control method for an electric furnace" disclosed in Japanese Patent Laid-Open No. 60-232477, the target value of each operation value when the electrode tip position control is performed is slag Mn: 12.5%, electrode depth pattern type : E type, electric resistance in electric furnace: 0.
33mΩ, coke addition rate 18%, electrode length L1: 2350
mm, electrode depth L2: 2200 mm. As the actual operation value, the slag Mn% was 10%, and only two of the three electrodes showed an X-type electrode depth pattern with an electric resistance value of 0.30 mΩ. Was estimated to be 2450 mm and the coke addition rate was reduced to 17.8%. After that, the slag Mn% approached the target value of 12.5%, and the electrode depth pattern type approached the E type.

【0019】[0019]

【表2】 [Table 2]

【0020】図1に示したXタイプは、電極長さL1 が
目標値に対してより長くなっている時に発生していた。
すなわち、電極長さL1 が長すぎると、電極先端が炉内
溶湯によく埋没して炉内電気抵抗値が低くなるために制
御の結果、Xタイプが起こっていた。一方、Aタイプは
上記Xタイプとは逆に、電極長さL1 が目標値に対して
より短くなっている時に発生していた。すなわち、電極
長さL1 が短すぎると、電極先端が炉内溶湯にあまり埋
没できないため炉内電気抵抗値が高くなり、制御の結果
Aタイプが起こっていた。また、EタイプはXタイプと
Aタイプの中間に位置し、したがってXタイプとAタイ
プは一方に偏りすぎた場合に起こっていることになる。
The X type shown in FIG. 1 occurred when the electrode length L1 was longer than the target value.
That is, if the electrode length L1 is too long, the electrode tip is often buried in the molten metal in the furnace and the electric resistance value in the furnace becomes low. As a result of the control, the X type occurred. On the other hand, the A type, contrary to the X type, occurred when the electrode length L1 was shorter than the target value. That is, if the electrode length L1 is too short, the electrode tip cannot be embedded in the molten metal in the furnace so much that the electric resistance value in the furnace becomes high, and as a result of control, the A type occurs. Further, the E type is located between the X type and the A type, and therefore, the X type and the A type occur when they are biased too much to one side.

【0021】また、マンガン系合金鉄の場合、炉内コー
クス量の過不足を判断する指標として、メタルMnに還
元されずに残ったMn値を表すスラグMn(被還元成
分)%がある。すなわち、炉内コークス量が不足すれ
ば、還元性が悪化して、スラグMn%が上昇する。炉内
コークス量が不足すれば、炉内電気抵抗値が高くなり、
制御の結果Aタイプが起こることになる。これとは逆
に、炉内コークス量が過剰になれば、炉内電気抵抗値が
低くなり、制御の結果Xタイプが起こることになる。こ
のようなスラグMn%値と電極深度パターンを利用して
炉内コークス量調整と電極長さの推定を実施すれば、ス
ラグMn%を適正値にコントロールしつつ、電気炉操業
における必要熱量をバランス良く与えることができるE
タイプを維持することができる。
In the case of manganese ferroalloy, slag Mn (reduced component)% that represents the Mn value remaining without being reduced to metal Mn is an index for determining whether the amount of coke in the furnace is excessive or insufficient. That is, if the amount of coke in the furnace is insufficient, the reducibility deteriorates and the slag Mn% increases. If the amount of coke in the furnace is insufficient, the electric resistance value in the furnace will increase,
As a result of the control, the A type will occur. On the contrary, when the amount of coke in the furnace becomes excessive, the electric resistance value in the furnace becomes low, and as a result of the control, the X type occurs. By adjusting the amount of coke in the furnace and estimating the electrode length by using the slag Mn% value and the electrode depth pattern, the slag Mn% is controlled to an appropriate value and the required heat amount in the electric furnace operation is balanced. E that can be given well
The type can be maintained.

【0022】これらの状況と操業アクションを整理した
ものが表2である。例えば、全極ともに、Xタイプ(全
電極ともに電気抵抗値が目標値より低め)であり、かつ
スラブMn%下降傾向を示せば、炉内コークス過剰傾向
と判断することができ、電気炉の容量及び合金鉄の種類
によって決められたコークス添加量を減らす操作を行
う。
Table 2 shows a summary of these situations and operation actions. For example, if all electrodes are of X type (electrical resistance values are lower than the target value for all electrodes) and show a slab Mn% decrease tendency, it can be determined that there is an excessive tendency of coke in the furnace, and the capacity of the electric furnace And the operation of reducing the amount of coke added, which is determined by the type of ferroalloy.

【0023】また、ある極のみXタイプ(ある電極の電
気抵抗値のみが目標値より低め)を示しており、かつス
ラグMn%が下降傾向を示せば、ある極のみ電極長さL
1 を決められた値をプラスして、長く(電極深度L2 を
浅く)推定するように操作を行う。
If only a certain pole shows the X type (only the electric resistance value of a certain electrode is lower than the target value) and the slag Mn% shows a downward tendency, only the certain pole has an electrode length L.
1 is added to the determined value, and the operation is performed so as to estimate long (the electrode depth L2 is shallow).

【0024】全極ともに、電極深度パターンのタイプA
が現れ(全電極ともに電気抵抗値が目標値より高め)か
つスラブMn%が下降傾向を示した場合は、コークス過
剰と判断することができ、電気炉の容量及び合金鉄の種
類によって決められたコークス添加量を減量するととも
に、全極とも電極長さL1 を決められた値をマイナスし
て、短く(全極とも電極深度を深く)推定する。
Type A of electrode depth pattern for all electrodes
Appears (the electrical resistance value is higher than the target value for all electrodes) and the slab Mn% shows a downward trend, it can be determined that the coke is excessive, and it is determined by the capacity of the electric furnace and the type of ferroalloy. The amount of coke added is reduced and the electrode length L1 of all electrodes is estimated to be short (the electrode depth of all electrodes is deep) by subtracting the determined value.

【0025】全電極ともではなく、ある電極の電気抵抗
値が目標値より高い場合は、その電極の電極長さL1 が
目標値より短い(電極深度が深い)と判断することがで
き、電極長さL1 を決められた値をマイナスして、短く
推定するとともに、電気炉の容量及び合金鉄の種類によ
って決められたコークス添加量を減らす操作を行う。上
記実施例の安定化方法に従えば、炉内の安定が図れ、そ
れにより、炉吹き,棚落ち,過電流によるトリップを解
消でき,電極折損を減少させることができる。また、電
極消耗及び原料消費量の均一化が得られる。操業の標準
化が図れ、それにより、電極深度管理(自動化),コー
クス調整が的確に行える。異常発見の迅速化が図れ、そ
れにより、電極長さ,コークス添加量の調整が効果的に
行える。原単位の改善が図れ、それにより、溶解電力
量,電極が有効に活用できる。また、Mnのスラグロス
を減少させることができる。
When the electric resistance value of a certain electrode is higher than the target value, not all electrodes, it can be judged that the electrode length L1 of the electrode is shorter than the target value (the electrode depth is deep), and the electrode length The length L1 is subtracted from the determined value to estimate it to be short, and the coke addition amount determined by the capacity of the electric furnace and the type of ferroalloy is reduced. According to the stabilization method of the above-mentioned embodiment, the inside of the furnace can be stabilized, thereby eliminating the trip due to the furnace blowing, falling of the shelf, and overcurrent, and the electrode breakage can be reduced. Further, the consumption of electrodes and the consumption of raw materials can be made uniform. Standardization of operation can be achieved, which enables accurate electrode depth control (automation) and coke adjustment. It is possible to detect anomalies more quickly, which effectively adjusts the electrode length and the amount of coke added. The unit consumption can be improved, and the melting electric energy and electrodes can be effectively used. In addition, Mn slag loss can be reduced.

【0026】[0026]

【発明の効果】以上説明したことから明かなように、本
発明の電気炉の操業安定化方法によれば、長年の課題で
あったコークス調整処置基準と電極長さ推定基準を標準
化することができ、それにより各種原単位が大幅に改善
できるとともに、安定した電気炉操業を実現することが
できる。
As is apparent from the above description, according to the method for stabilizing the operation of the electric furnace of the present invention, it is possible to standardize the coke adjustment treatment standard and the electrode length estimation standard, which have been problems for many years. By doing so, various basic units can be greatly improved and stable electric furnace operation can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る電極深度パターン実績を
示す説明図である。
FIG. 1 is an explanatory diagram showing a result of an electrode depth pattern according to an embodiment of the present invention.

【図2】実施例に係る溶解電力原単位と深度パターン・
タイプを示すグラフである。
FIG. 2 is a basic unit of melting electric power and a depth pattern according to the embodiment.
It is a graph which shows a type.

【図3】従来例の電気炉の構成を示す縦断面である。FIG. 3 is a vertical cross section showing a configuration of an electric furnace of a conventional example.

【符号の説明】[Explanation of symbols]

1 電気炉炉壁 2 電極 3 炉蓋 4 原料装入口 5 排ガスダクト A 原料 C コークスベッド H 半溶融層 S スラグ M メタル L1 電極長さ L2 電極深度 1 Electric furnace wall 2 Electrode 3 Furnace lid 4 Raw material inlet 5 Exhaust gas duct A Raw material C Coke bed H Semi-molten layer S Slag M Metal L1 Electrode length L2 Electrode depth

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F27B 3/28 7516−4K // H05B 3/00 340 7913−3K 350 7913−3K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location F27B 3/28 7516-4K // H05B 3/00 340 7913-3K 350 7913-3K

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電極先端位置制御における電極先端の移
動軌跡を表す電極深度パターンと被還元成分の含有率の
状態に応じて、電気炉内のコークス添加量の調整及び電
極深度の推定を行うことを特徴とする電気炉の操業安定
化方法。
1. The coke addition amount in an electric furnace is adjusted and the electrode depth is estimated according to the electrode depth pattern representing the movement trajectory of the electrode tip in the control of the electrode tip position and the state of the content of the reduced component. A method for stabilizing the operation of an electric furnace.
【請求項2】 前記電極深度パターンとは、炉内電気抵
抗値が所定の電気抵抗指標の最適範囲の上限を逸脱した
場合に前記電極の上昇速度を低下させる第1のパターン
と、下限を逸脱した場合に前記電極の上昇速度を高める
第2のパターンと、前記最適範囲内に収まっている場合
に前記電極の上昇速度を変更しない第3のパターンを含
むことを特徴とする請求項1記載の操業安定化方法。
2. The electrode depth pattern is a first pattern that lowers the ascending speed of the electrode when the in-furnace electric resistance value deviates from the upper limit of the optimum range of a predetermined electric resistance index, and deviates from the lower limit. The second pattern for increasing the ascending speed of the electrode in the case of the above, and the third pattern for not changing the ascending speed of the electrode when it is within the optimum range. Operation stabilization method.
【請求項3】 前記被還元成分がスラグであり、前記含
有率の状態とは、下降傾向,目標値,上昇傾向のいずれ
かである請求項1記載の操業安定化方法。
3. The method of stabilizing operation according to claim 1, wherein the component to be reduced is slag, and the state of the content rate is any of a downward trend, a target value, and an upward trend.
JP5132040A 1993-06-02 1993-06-02 Operation stabilizing method for electric furnace Withdrawn JPH06341773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5132040A JPH06341773A (en) 1993-06-02 1993-06-02 Operation stabilizing method for electric furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5132040A JPH06341773A (en) 1993-06-02 1993-06-02 Operation stabilizing method for electric furnace

Publications (1)

Publication Number Publication Date
JPH06341773A true JPH06341773A (en) 1994-12-13

Family

ID=15072110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5132040A Withdrawn JPH06341773A (en) 1993-06-02 1993-06-02 Operation stabilizing method for electric furnace

Country Status (1)

Country Link
JP (1) JPH06341773A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014002895A (en) * 2012-06-18 2014-01-09 Nippon Electric Glass Co Ltd Control system of electric melting furnace, and production method of glass using control system of electric melting furnace
CN103697714A (en) * 2013-12-31 2014-04-02 浙江中控软件技术有限公司 Method and device for controlling electrodes of yellow phosphorus furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014002895A (en) * 2012-06-18 2014-01-09 Nippon Electric Glass Co Ltd Control system of electric melting furnace, and production method of glass using control system of electric melting furnace
CN103697714A (en) * 2013-12-31 2014-04-02 浙江中控软件技术有限公司 Method and device for controlling electrodes of yellow phosphorus furnace

Similar Documents

Publication Publication Date Title
EP2210959B1 (en) Process for producing molten iron
JP5408417B2 (en) Operation method of electric furnace for ferronickel smelting
CN111440916B (en) Method for producing ultra-low manganese steel by using high-manganese molten iron converter
JP5555921B2 (en) Electric furnace operation method
JPH06341773A (en) Operation stabilizing method for electric furnace
CA1105972A (en) Electric arc furnace operation
CN104178596B (en) The technique of electric arc furnace Returning blowing keto technique smelting stainless steel
KR100241854B1 (en) How to operate vertically
JP4765723B2 (en) Method of charging ore into blast furnace
JPH08273826A (en) Computing method for optimum target total quantity of electricity supply for electric furnace and electric furnace installation
US4412857A (en) Method of smelting ferronickel in ore-smelting electrical furnace under a layer of charge
JP2926449B2 (en) Kiln operation and refractory lining
JP2000226608A (en) Operation of blast furnace
Lee et al. Electric parameters for an efficient smelting performance of HCFeMn alloy
JP3510367B2 (en) Operating method of electric smelting furnace with improved desulfurization ability
JP3512514B2 (en) Method for reducing deposits in electric smelting furnace
JP3560677B2 (en) Operating method of electric smelting furnace with reduced electrode consumption
JP3017009B2 (en) Blast furnace operation method
JP2968183B2 (en) Electric arc melting furnace
JPS60232477A (en) Method of controlling position of electrode for electric furnace
JPH08269506A (en) Blast furnace operation method
SU1357433A1 (en) Method of conducting heat in arc electric furnace
JPH06256818A (en) Operation of blast furnace
SU1680791A1 (en) Method of control of silicomanganese melting in rectangular electric furnace
JPH0978110A (en) Operation of blast furnace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905