JPS60232477A - Method of controlling position of electrode for electric furnace - Google Patents

Method of controlling position of electrode for electric furnace

Info

Publication number
JPS60232477A
JPS60232477A JP8747984A JP8747984A JPS60232477A JP S60232477 A JPS60232477 A JP S60232477A JP 8747984 A JP8747984 A JP 8747984A JP 8747984 A JP8747984 A JP 8747984A JP S60232477 A JPS60232477 A JP S60232477A
Authority
JP
Japan
Prior art keywords
electrode
electrical resistance
furnace
range
resistance value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8747984A
Other languages
Japanese (ja)
Other versions
JPS635671B2 (en
Inventor
利行 副島
栗田 幸善
宮地 正孝
森本 政夫
茂樹 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP8747984A priority Critical patent/JPS60232477A/en
Publication of JPS60232477A publication Critical patent/JPS60232477A/en
Publication of JPS635671B2 publication Critical patent/JPS635671B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は合金鉄等の金属や合金の製造を対象とする電気
炉の電極位置制御方法に関し、殊に供給電力を最大限有
効に活用しつつ電気炉操業を効率良く円滑に遂行するこ
とのできる電極位置制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the electrode position of an electric furnace for manufacturing metals and alloys such as ferroalloys. The present invention relates to an electrode position control method that can be carried out smoothly.

第1図は電気炉を用いて精錬操業を行なっている状況を
例示する概略縦断面説明図で、一般に炉壁1の上方内面
はシャモツト質の耐火レンガで構築され、下方内面は炭
素質の耐火物で構築されている。原料装入口4よシ投入
された原料A(鉱石及びコークス)中の鉱石は、電極2
(通常は3本使用)への通電による抵抗熱を受けて溶融
し、コークス及び半溶融物の混合層Hで還元精錬が進み
、比重差によって■コークスペッドC1■スラグおよび
コークスの混合層S及び■溶湯量に分かれる。
FIG. 1 is a schematic vertical cross-sectional view illustrating a refining operation using an electric furnace. Generally, the upper inner surface of the furnace wall 1 is constructed of chamots refractory bricks, and the lower inner surface is constructed of carbonaceous refractory bricks. It's built with things. The ore in the raw material A (ore and coke) charged through the raw material charging port 4 is transferred to the electrode 2.
(usually three are used) receives resistance heat from electricity and melts, and reduction and refining progresses in the mixed layer H of coke and semi-molten material. Due to the difference in specific gravity, ■Divided into molten metal amount.

図中3は炉蓋、5は排ガスダクトを示し、Dは付着物、
10は定期的に開口される出湯口を夫々示す。
In the figure, 3 indicates the furnace lid, 5 indicates the exhaust gas duct, D indicates deposits,
Reference numeral 10 indicates tap holes that are opened periodically.

そして電気炉操業における必要熱量は、■原料を溶融さ
せる為の熱、■Fe%Mn%51等の酸化物を還元させ
る為の熱、及び■溶湯やスラグに流動性を与える為の熱
の総和で与えられるが、これらの要求熱量は電極先端付
近で生じる抵抗熱によって供給される。七゛して電極先
端がそのときの炉内状況に対して最適位置にある時には
原料の溶融、還元反応、生成物の流動性向上の各要求に
寄与する熱がバランス良く分配され、供給電力が最人眼
有効に活用されると共に、安定した操炉状態を得ること
ができる。
The amount of heat required for electric furnace operation is the sum of: ■ heat for melting raw materials, ■ heat for reducing oxides such as Fe%Mn%51, and ■ heat for imparting fluidity to molten metal and slag. However, these required amounts of heat are supplied by the resistance heat generated near the electrode tip. When the electrode tip is in the optimal position for the current situation inside the furnace, the heat that contributes to the melting of raw materials, the reduction reaction, and the improvement of product fluidity is distributed in a well-balanced manner, and the power supply is reduced. The human eye can be used effectively and stable furnace operation conditions can be obtained.

この様なところから、炉内状況に応じて電極先端位置の
制御(殊に上昇速度)を如何にうまくコントロールする
かということは、電気炉の操業効率を高めていくうえで
最も重要な課題であシ、これまでにも種々の方法が提案
されている。そして現在実施されている代表的な電極位
置制御法は下記■、■の方法であるが、続いて説明する
如く満足し得るものとは言い難い。
From this point of view, the most important issue in increasing the operational efficiency of electric furnaces is how to properly control the electrode tip position (especially the rate of rise) according to the conditions inside the furnace. Various methods have been proposed so far. The typical electrode position control methods currently in use are the following methods (1) and (2), but as explained below, these methods are far from satisfactory.

■湯面の上昇速度を予め推定しておき、この速度に応じ
て電極を一定の速度で上昇させて行く方法。
■A method in which the rising speed of the hot water level is estimated in advance and the electrode is raised at a constant speed according to this speed.

■各電極に流れる電流が一定となる様に電極の上昇速度
をコントロールする方法。
■A method of controlling the rising speed of the electrodes so that the current flowing through each electrode remains constant.

上記■の方法は、電気炉内における湯面全体の上昇速度
が一定である限シ最も簡単で好ましい方法と言えるが、
実操業における湯面の上昇速度は殆んどの場合一定では
ないので次の様な問題が生じてくる。即ち各電極配置部
における湯面位置は前述の如く一定ではないので、各電
極先端の高さ位置を同じにした場合は各電極の先端と湯
面間の距離は個々に若干違っているが、との距離が長い
ところでは電気抵抗値が高くなって当該部分での原料消
費量が増大する結果、電極の消耗量が増大して電極長さ
が短くなる。電極長さが短くなると当該電極部の電気抵
抗値が更に高くなってその電極は湯面からますます浮い
た状態となってくる。
The above method (■) can be said to be the simplest and preferable method as long as the rate of rise of the entire hot water level in the electric furnace is constant.
In most cases, the rising speed of the hot water level during actual operation is not constant, which causes the following problems. In other words, since the position of the hot water level in each electrode arrangement part is not constant as mentioned above, if the height position of each electrode tip is the same, the distance between the tip of each electrode and the hot water level will be slightly different individually. The electric resistance value increases in areas where the distance is long, and the amount of raw material consumed in that area increases.As a result, the amount of electrode consumption increases and the length of the electrode becomes shorter. As the length of the electrode becomes shorter, the electrical resistance value of the electrode becomes higher and the electrode becomes more and more floating above the hot water surface.

一方前記距離の短いところでは電気抵抗値が低い為電極
の消耗量は少なく、その電極はますます湯面中に沈む傾
向になυ、この悪循環が起こると炉吹き、電極切損、通
電流によるトリップ等のトラブルが発生し易くなり、安
定した操業状態を維持して行くことが困難になる。
On the other hand, in areas where the distance is short, the electrical resistance is low, so the amount of electrode wear is small, and the electrode tends to sink further into the hot water surface.If this vicious cycle occurs, furnace blowing, electrode breakage, and current flow may occur. Troubles such as trips are more likely to occur, making it difficult to maintain stable operating conditions.

一方前記■のいわゆる電極電流一定制御法では、各電極
配置位置毎に電気抵抗値が異なると共に、溶湯生成量の
不均一によって湯面上昇速度も相当違うので、定電流制
御を行なうと例えば第2図の操業例に示す如く電極が個
々に上昇又は下降するいわゆるシーソー現象を起こし、
安定した溶解・還元帯域を維持することができない。
On the other hand, in the so-called constant electrode current control method described in (2) above, the electrical resistance value differs for each electrode placement position, and the rate of rise of the molten metal level also varies considerably due to the unevenness of the amount of molten metal produced. As shown in the operation example in the figure, a so-called seesaw phenomenon occurs in which the electrodes individually rise or fall.
Unable to maintain stable dissolution/reduction zone.

本発明者等はこうした事情に着目し、電気炉操業を安定
に維持・継続し得ると共に、供給電力を最大限有効に活
用することのできる電極制御法を確立しようとして種々
研究を進めてきた。本発明はかかる研究の結果完成され
たものであって、その構成は、電気炉の操業に際し電極
先端の高さ位置を制御する方法において、電気抵抗指標
を測定しつつ予め定められた当該電気抵抗指標の最適範
囲の上限を逸脱した場合は電極の上昇速度を低下させ、
下限を逸脱した場合は電極の上昇速度を高めることによ
シ、電気抵抗指標が設定範囲内に保持される様に制御す
るところに要旨を有するものである。
The present inventors have focused on these circumstances and have conducted various studies in an attempt to establish an electrode control method that can stably maintain and continue electric furnace operation and make the most effective use of supplied power. The present invention has been completed as a result of such research, and has a configuration in which a predetermined electrical resistance is measured while an electrical resistance index is measured in a method for controlling the height position of an electrode tip during operation of an electric furnace. If the indicator deviates from the upper limit of the optimal range, reduce the rising speed of the electrode,
The gist of this method is to control the electrical resistance index so that it is maintained within a set range by increasing the rising speed of the electrode when the lower limit is exceeded.

本発明において電気抵抗指標とは代表的には電気抵抗値
そのものを言うが、この他電気抵抗値と相関性を有する
力率、インピーダンス、リアクタンス、インダクタンス
等を総称するものである。
In the present invention, the electrical resistance index typically refers to the electrical resistance value itself, but also collectively refers to power factor, impedance, reactance, inductance, etc. that have a correlation with the electrical resistance value.

但し以下では電気抵抗値を主体にして本発明の構成及び
作用効果を詳細に説明する。
However, below, the configuration and effects of the present invention will be explained in detail, focusing mainly on the electrical resistance value.

電気炉操業において電極への通電によシ発生する抵抗熱
は、前述の様に■原料を溶融させる為の熱、■Fe%M
n1Si等の酸化物を還元させる為の熱、及び■溶湯や
スラグに流動性を与える為の熱、として消費されるもの
で、抵抗熱がこれら■〜■の総熱量としてバランス良く
消費されたときに供給電力は最も有効に発揮され且つ炉
況は最も安定する。そして上記の様な状態は、炉内状況
に対して各電極の先端位置が最適位置にあるときに得ら
れることも先に述べた通電である。しかしながら電気炉
の各電極配置部における炉内状況は、原料充填密度の不
均一や各部におけるコークス/原料比のアンバランス等
の為に必ずしも一定である訳ではなく、まして操炉時に
は溶湯生成量の不均一という要素も加わる為、各電極配
置部の状況を均一に保つことは容易でない。
As mentioned above, the resistance heat generated by energizing the electrodes during electric furnace operation is: ■ Heat for melting the raw material, ■ Fe%M
It is consumed as heat to reduce oxides such as n1Si, and heat to give fluidity to molten metal and slag. When resistance heat is consumed in a well-balanced manner as the total heat amount of these The power supplied to the furnace is most effectively utilized and the furnace condition is most stable. The above-mentioned state is also obtained when the tip position of each electrode is at the optimal position with respect to the situation inside the furnace. However, the condition inside the electric furnace at each electrode location is not necessarily constant due to non-uniformity in the packing density of raw materials and unbalanced coke/raw material ratio in each part, and even more so, the amount of molten metal produced during furnace operation is not constant. Since the element of non-uniformity is also added, it is not easy to keep the conditions of each electrode arrangement portion uniform.

そこで本発明者等は、原料充填密度の不均一等には関係
なく電極の最適先端位置を実質的に示すことのできる指
標をめ、その指標を基に各電極の昇降作動を行なう様に
すれば、炉況を安定に維持し得ると共に供給電力を各電
極毎に有効に活用し得るのではないかと考え、その線に
沿って研究を進めた。その結果、炉内装入物の種類等に
よってその絶対値は異なるが、電極配置位置における電
気抵抗値がある範囲内に収まる様に各電極の昇降速度を
制御してやれば、各電極先端位置における発熱量がほぼ
一定となって溶湯生成量及び電極消耗量等が略均等とな
シ、供給電力の有効利用という目的が達成されると共に
、電極長さの不均一化が防止されて炉内状況を安定に維
持し得ることを知った。
Therefore, the inventors of the present invention determined an index that can substantially indicate the optimum tip position of the electrode, regardless of the unevenness of the packing density of the raw materials, and started raising and lowering each electrode based on that index. For example, we thought that it would be possible to maintain stable furnace conditions and make effective use of the supplied power for each electrode, and we proceeded with our research along these lines. As a result, although the absolute value differs depending on the type of furnace contents, etc., if the lifting speed of each electrode is controlled so that the electrical resistance at the electrode placement position is within a certain range, the amount of heat generated at the tip of each electrode is almost constant, and the amount of molten metal produced and the amount of electrode consumption are approximately equal.The objective of effectively utilizing the supplied power is achieved, and unevenness of the electrode length is prevented, which stabilizes the situation inside the furnace. I learned that I can maintain it.

ちなみに第3図は本発明の方法によシミ気炉操業(シリ
コマンガンの製造)を行なった場合の電極制御例を示し
たもので、炉内電気抵抗値及び各電極深度の経時変化を
示したグラフである。本例では炉内電気抵抗値の制御範
囲を(3刈0−4〜5刈0−4)Ωに設定しているが、
これはシリコマンガンを原料とする予備実験によシ、供
給電力を最も有効に活用し得る最適電気抵抗値の範囲と
して予めめておいたものである。即ち本例では、各電極
の装入に当たって各電極部における炉内電気抵抗値が上
記好適範囲内となる様に各電極の深度を調整しておき、
溶解開始後における各電極の上昇速度は原則として一定
にする。そして操炉期間中各電極部における電気抵抗値
を連続的に測定しておき、その値が上記設定電気抵抗値
の下限を逸脱したときは当該電極の上昇速度を高め、一
方上限を逸脱したときは当該電極の上昇速度を低下させ
、各電極部における炉内電気抵抗値がいずれも前記設定
電気抵抗値の範囲に収まる様に制御するものである。
Incidentally, Figure 3 shows an example of electrode control when a simi-air furnace is operated (manufacturing silicomanganese) according to the method of the present invention, and shows changes over time in the electric resistance value in the furnace and the depth of each electrode. It is a graph. In this example, the control range of the electric resistance value in the furnace is set to (3-cut 0-4 to 5-cut 0-4) Ω.
This was determined in advance through preliminary experiments using silicomanganese as the optimum range of electrical resistance values that would allow the most effective use of the supplied power. That is, in this example, when charging each electrode, the depth of each electrode is adjusted so that the in-furnace electrical resistance value at each electrode part is within the above-mentioned preferred range,
As a general rule, the rate of rise of each electrode after the start of dissolution is constant. Then, during the furnace operation period, the electrical resistance value at each electrode section is continuously measured, and when the value deviates from the lower limit of the above-mentioned set electrical resistance value, the rising speed of the relevant electrode is increased, and on the other hand, when the value deviates from the upper limit This is to reduce the rate of rise of the electrode and control so that the in-furnace electrical resistance values at each electrode portion are all within the range of the set electrical resistance values.

即ち第3図の例では、溶解開始後消費電力量Atでは各
電極I、n、I[Iの何れの電気抵抗値も設定範囲に収
まっており、電極の上昇速度を変更する必要はない。し
かし消費電力量Aに達すると電極■の電気抵抗値が設定
値の下限(3X10−’Ω)を逸脱したので、該電極■
の上昇速度を高めている。
That is, in the example of FIG. 3, at the power consumption At after the start of melting, the electrical resistance values of each electrode I, n, I[I are within the set range, and there is no need to change the rising speed of the electrodes. However, when the power consumption amount A was reached, the electrical resistance value of electrode ■ exceeded the lower limit of the set value (3X10-'Ω), so electrode
is increasing its rate of rise.

その結果当該電極■部分における相対的な抵抗発熱量が
増大して原料消費量が増大すると共に電極■の先端消耗
量も増大し、電気抵抗値は上昇傾向を示す様になる。そ
して消費電力量Bに達すると電気抵抗値は再び設定範囲
内に戻るので、電極mの上昇速度を当初の速度に戻して
運転を続ける。
As a result, the relative amount of heat generated by resistance at the electrode (2) increases, raw material consumption increases, and the amount of wear at the tip of electrode (2) also increases, so that the electrical resistance value tends to rise. Then, when the power consumption amount B is reached, the electrical resistance value returns to within the set range, so the rising speed of the electrode m is returned to the initial speed and operation is continued.

消費電力量Cに達すると今度は電極Iにおける電気抵抗
値が設定値の上1a(5x1o−aΩ)を超えたので、
当該電極工の上昇速度を低下させる(図では速度をマイ
ナス、即ち電極を降下させている)。
When the power consumption amount C was reached, the electrical resistance value at electrode I exceeded the set value of 1a (5x1o-aΩ), so
Decrease the rising speed of the electrode worker (in the figure, the speed is negative, that is, the electrode is lowered).

その結果電極工部分における抵抗熱を相対的に低下して
電極lの先端消耗量も減少するので、電気抵抗値は低下
傾向を示す様になる。そして消費電力量りに達すると電
気抵抗値は再び設定範囲内に戻るので、電極■の上昇速
度を当初の速度に戻す。
As a result, the resistance heat in the electrode part is relatively reduced and the amount of wear at the tip of the electrode 1 is also reduced, so that the electrical resistance value tends to decrease. Then, when the power consumption amount is reached, the electrical resistance value returns to within the set range, so the rising speed of the electrode (2) is returned to the original speed.

尚電極■については溶解開始から出湯に至るまで常に設
定電気抵抗値範囲内に収まっているので、上昇速度を変
更する必要はない。
As for electrode (3), since it is always within the set electrical resistance value range from the start of melting to the time of tapping, there is no need to change the rising speed.

かくして各電極先端部における抵抗発熱量は一定の範囲
に制御されることになシ、且つ電極消耗量も電極I〜■
共にほぼ一定に保たれるので、各電極の先端位置はほぼ
一定の位置に調整されなから略均等速度で上昇すること
になる。その結果、一部の電極が過度に浮いたシ或は沈
んだ状態になる恐れがなくなシ、溶解・還元帯域を適正
な状態で安定に維持しつつ操業を続けることができる。
In this way, the amount of resistance heat generated at the tip of each electrode is controlled within a certain range, and the amount of electrode consumption is also limited to electrodes I~■.
Since both are kept substantially constant, the positions of the tips of each electrode are not adjusted to a substantially constant position, but rise at a substantially uniform speed. As a result, there is no possibility that some of the electrodes will be excessively floating or sinking, and operation can be continued while stably maintaining the dissolution/reduction zone in an appropriate state.

しかも設定電気抵抗値の範囲は、供給電力を最も有効に
活用し得る範囲として予め定めたものであるから、各電
極における電気抵抗値をこの設定範囲に収めることによ
って、供給電力を最大限有効に活用し得る様になること
は言うまでもない。
Moreover, the range of the set electrical resistance value is predetermined as the range in which the supplied power can be used most effectively, so by keeping the electrical resistance value of each electrode within this set range, the supplied power can be maximized. Needless to say, it can be put to good use.

尚設定電気抵抗値の範囲が装入原料等によって変わるこ
とは先に述べた通りであり、例えば高炭素シリコマンガ
ンの場合は2X10−’〜l0XIO−’Ω(より好ま
しくは、4X10−’〜6刈0−4Ω)、シリコマンガ
ンの場合は2X10−’〜7X10−’Ω(より好まし
くは3X10−’〜5X10−’Ω)の範囲であるが、
より普遍的な範囲として示すならば1刈0−4〜20X
10−’Ωである。
As mentioned above, the range of the set electrical resistance value varies depending on the charging raw materials, etc. For example, in the case of high carbon silicomanganese, it is 2X10-' to 10XIO-'Ω (more preferably 4X10-' to 6 In the case of silicomanganese, it is in the range of 2X10-' to 7X10-'Ω (more preferably 3X10-' to 5X10-'Ω),
If you want to show it as a more universal range, 1 cut 0-4~20X
10-'Ω.

本発明における電極制御の要素として、電気抵抗値の他
、該抵抗値と相関性の高い力率、インピーダンス、リア
クタンス、インダクタンス等を採用した場合の制御法も
基本的に同一であシ、予め好適範囲を設定しておいて、
各電極毎に実測される値が該好適範囲に収まる様に各電
極の上昇速度を調整すればよい。例えば第4図はSf−
Mnを原料とし、制御要素として力率を選択した場合の
制御例を示しだグラフであシ1.消費電力量Xまでを溶
解期、Xから出湯開始までを還元期と考えて好適力率の
範囲を設定している。この例では電極別力率が終始好適
力率範囲に入っておシ、電極深度の変更を必要としてい
ないが、実測力率が該範囲を逸脱した場合は第3図の例
と同様にして電極の上昇速度を調整し、力率が常に前記
好適範囲に収まる様に制御が行なわれる。
As electrode control elements in the present invention, in addition to the electrical resistance value, the control method when employing power factor, impedance, reactance, inductance, etc. that are highly correlated with the resistance value is basically the same, and is preferably set in advance. Set the range and
The rising speed of each electrode may be adjusted so that the value actually measured for each electrode falls within the preferred range. For example, Fig. 4 shows Sf-
This graph shows an example of control when Mn is used as a raw material and power factor is selected as the control element.1. The preferred power factor range is set by considering the period up to the power consumption amount X as the melting period, and the period from X until the start of hot water dispensing as the reduction period. In this example, the power factor for each electrode is within the preferred power factor range from beginning to end, and there is no need to change the electrode depth. However, if the actual power factor deviates from the range, the electrode depth should be changed as in the example in Figure 3. Control is performed so that the power factor always falls within the preferred range by adjusting the rising speed of the power factor.

本発明は以上の様に構成されるが、要は制御要素として
電気抵抗指標を採用し、供給電力を最も有効に活用し得
る最適の該電気抵抗指標の範囲を予め設定しておき、操
業時に実測される同電気抵抗指標が常に上記設定範囲に
収まる様に各電極の上昇速度をコントロールすること釦
よって、適正且つ安定した炉内状況を維持しつつ電気炉
操業を効率良〈実施し得ることになった。
The present invention is configured as described above, but the point is that an electrical resistance index is adopted as a control element, and the optimum range of the electrical resistance index that can make the most effective use of the supplied power is set in advance, and during operation, By controlling the rising speed of each electrode so that the measured electrical resistance index always falls within the above-mentioned range, the electric furnace can be operated efficiently while maintaining an appropriate and stable furnace condition. Became.

ちなみに実機(トランス容量20,0OOKVA)を用
い、原料として高炭素フェロマンガン〔設定電気抵抗値
範囲は3X10 ’〜7X10−’Ω〕及びシリコマン
ガン〔設定電気抵抗値範囲は2X10 ’〜6X10”
−’Ω〕を用いて行なった延べ5か月間の現場実験によ
ると、平均の溶解電力原単位は、制御なしの場合(電気
抵抗の変化はlXl0−’〜20X10””’Ω)に比
べて高炭素フェロマンガンの場合で296、シリコマン
ガンの場合で1.9チ向上することが確認され、またM
nロスを比較すると高炭素フェロマンガンの場合で1.
4%、シリコマンガンの場合で2.5−夫々減少し得る
という結果を得た。またこの間の3つの電極周囲におけ
る原料消費量比率の標準偏差の平均は、制御なしの場合
4.57’Jであったものが本発明の制御を行なうこと
によって3.08%に減少し、炉吹き、電極切損、過電
流によるトリップ等の問題は一切生じなかった。
By the way, using an actual machine (transformer capacity 20,0OOKVA), the raw materials were high carbon ferromanganese [setting electrical resistance value range is 3X10' to 7X10-'Ω] and silicomanganese [setting electrical resistance value range is 2X10' to 6X10''
According to a field experiment conducted over a total of 5 months using 1.5-1.5 Ω, the average dissolution power consumption was lower than that without control (the change in electrical resistance was lXl0-' to 20 It was confirmed that high carbon ferromanganese improved by 296, and silicomanganese improved by 1.9.
Comparing the n loss, in the case of high carbon ferromanganese, it is 1.
The results showed that the reduction could be reduced by 4% and 2.5% in the case of silicomanganese. Moreover, the average standard deviation of the raw material consumption ratio around the three electrodes during this period was 4.57'J without control, but it decreased to 3.08% by implementing the control of the present invention. There were no problems such as blowing, electrode breakage, or tripping due to overcurrent.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電気炉の操業状況を示す概略縦断面説明図、第
2図は定電流制御を行なった場合の電極深度の経時変化
を示すグラフ、第3,4図は本発明の電極制御例を示す
グラフである。 1・・・電気炉々壁 2・・・電極 3・・・炉蓋 4・・・原料装入口 5・・・排ガスダクト A・・・原料 C・・・コークスベッド 第1図 経過時u0(時間) R皿 季 −−是跳略 嚢
Fig. 1 is a schematic vertical cross-sectional explanatory diagram showing the operational status of an electric furnace, Fig. 2 is a graph showing changes in electrode depth over time when constant current control is performed, and Figs. 3 and 4 are examples of electrode control according to the present invention. This is a graph showing. 1... Electric furnace walls 2... Electrodes 3... Furnace lid 4... Raw material charging port 5... Exhaust gas duct A... Raw material C... Coke bed Figure 1 elapsed time u0 ( time) R plate season--this is the jump bag

Claims (1)

【特許請求の範囲】[Claims] 電気炉の操業に際し電極先端の高さ位置を制御する方法
において、電気抵抗指標を測定しつつ予め定められた当
該電気抵抗指標の最適範囲の上限を逸脱した場合は電極
の上昇速度を低下させ、下限を逸脱した場合は電極の上
昇速度を高めることによシ、電気抵抗指標が設定範囲内
に保持される様に制御することを特徴とする電気炉の電
極位置制御方法。
In a method for controlling the height position of an electrode tip during operation of an electric furnace, an electric resistance index is measured, and if the electric resistance index deviates from the upper limit of a predetermined optimum range, the rising speed of the electrode is reduced, A method for controlling the electrode position of an electric furnace, characterized in that when the lower limit is exceeded, the electric resistance index is controlled to be maintained within a set range by increasing the rising speed of the electrode.
JP8747984A 1984-04-27 1984-04-27 Method of controlling position of electrode for electric furnace Granted JPS60232477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8747984A JPS60232477A (en) 1984-04-27 1984-04-27 Method of controlling position of electrode for electric furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8747984A JPS60232477A (en) 1984-04-27 1984-04-27 Method of controlling position of electrode for electric furnace

Publications (2)

Publication Number Publication Date
JPS60232477A true JPS60232477A (en) 1985-11-19
JPS635671B2 JPS635671B2 (en) 1988-02-04

Family

ID=13916063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8747984A Granted JPS60232477A (en) 1984-04-27 1984-04-27 Method of controlling position of electrode for electric furnace

Country Status (1)

Country Link
JP (1) JPS60232477A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017032A (en) * 2009-07-07 2011-01-27 Hyuga Seirensho:Kk Method for operating electric furnace for smelting ferro-nickel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017032A (en) * 2009-07-07 2011-01-27 Hyuga Seirensho:Kk Method for operating electric furnace for smelting ferro-nickel

Also Published As

Publication number Publication date
JPS635671B2 (en) 1988-02-04

Similar Documents

Publication Publication Date Title
RU2226553C1 (en) Method and device for production of melted iron
EP2210959B1 (en) Process for producing molten iron
JP5236926B2 (en) Manufacturing method of molten steel
JP5408417B2 (en) Operation method of electric furnace for ferronickel smelting
JP2914674B2 (en) Heat dissolution method
JPS60232477A (en) Method of controlling position of electrode for electric furnace
JP2000017319A (en) Operation of arc furnace
JP2968183B2 (en) Electric arc melting furnace
US4412857A (en) Method of smelting ferronickel in ore-smelting electrical furnace under a layer of charge
JPH11344287A (en) Operation of arc furnace
JP3539334B2 (en) Recovery method of zinc in dust
US3522356A (en) Electric furnace corona melting process
JP2003293024A (en) Method for operating electric furnace
JP2002327211A (en) Method for melting cold iron source
JP2000111270A (en) Method for melting cold iron source
JP3017009B2 (en) Blast furnace operation method
JPH06341773A (en) Operation stabilizing method for electric furnace
JP3031203B2 (en) Hot metal production method
JPH07278634A (en) Operation of scrap melting furnace
JPH05239515A (en) Method for operating blast furnace
JP2897362B2 (en) Hot metal production method
JP2001316715A (en) Method for melting cold iron source
JP2000345229A (en) Method for arc-melting cold iron source
JPH0978110A (en) Operation of blast furnace
JP2003253322A (en) Method for melting stainless steel in electric furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees