JPH0636469Y2 - Detector for consumption of bottom electrode of DC arc furnace - Google Patents

Detector for consumption of bottom electrode of DC arc furnace

Info

Publication number
JPH0636469Y2
JPH0636469Y2 JP10359588U JP10359588U JPH0636469Y2 JP H0636469 Y2 JPH0636469 Y2 JP H0636469Y2 JP 10359588 U JP10359588 U JP 10359588U JP 10359588 U JP10359588 U JP 10359588U JP H0636469 Y2 JPH0636469 Y2 JP H0636469Y2
Authority
JP
Japan
Prior art keywords
bottom electrode
furnace
electrode
consumption
refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10359588U
Other languages
Japanese (ja)
Other versions
JPH0224291U (en
Inventor
範夫 青
敏道 牧
昭一 高橋
洋 清水
Original Assignee
日本鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本鋼管株式会社 filed Critical 日本鋼管株式会社
Priority to JP10359588U priority Critical patent/JPH0636469Y2/en
Publication of JPH0224291U publication Critical patent/JPH0224291U/ja
Application granted granted Critical
Publication of JPH0636469Y2 publication Critical patent/JPH0636469Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は直流アーク炉において、特に炉底電極の消耗状
態を適確に把握し得るようにした炉底電極消耗量検出装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a furnace bottom electrode consumption amount detecting device for a DC arc furnace, and in particular, it is capable of accurately grasping the consumption state of the furnace bottom electrode. .

(従来の技術) 従来から、例えば製鉄用の大容量アーク炉は、電源の供
給が容易で,かつ電圧の制御が容易であることから、交
流式アーク炉が主力になっていた。一方、近年では半導
体技術の進歩によって電力用半導体素子も大容量化が可
能となり、これに伴ってアーク炉も交流式アーク炉から
直流アーク炉に移行しつつある。この直流アーク炉は、
炉用変圧器までの経路,設備は交流式のものと同様であ
るが、炉用変圧器で炉用電圧に降圧した後、サイリスタ
装置等の整流装置により交流を直流に変換する。そし
て、サイリスタ方式の場合には、直流回路にリアクトル
を挿入する。また、直流回路は、炉底電極に至るまでの
二次導体(陽極側)と、カーボン電極からなる可動電極
に至るまでの二次導体(陰極側)とから構成される。
(Prior Art) Conventionally, for example, in a large-capacity arc furnace for steelmaking, an AC arc furnace has been the mainstream because it is easy to supply power and control voltage. On the other hand, in recent years, the capacity of semiconductor elements for electric power can be increased due to the progress of semiconductor technology, and accordingly, the arc furnace is also shifting from an AC arc furnace to a DC arc furnace. This DC arc furnace
The route to the transformer for the furnace and the equipment are the same as those of the AC type, but after the voltage is reduced to the furnace voltage by the transformer for the furnace, the AC is converted to DC by the rectifying device such as a thyristor device. Then, in the case of the thyristor system, the reactor is inserted in the DC circuit. Further, the DC circuit is composed of a secondary conductor (anode side) up to the furnace bottom electrode and a secondary conductor (cathode side) up to a movable electrode made of a carbon electrode.

従来の交流式アーク炉は必ず3本の可動電極により構成
されたが、直流アーク炉の場合は必ずしも3本ではな
く、少なくとも1本の電極を用いればよい。すなわち、
150t炉ぐらいまでは1本の電極で構成することが可能で
あり、電極の周囲はシンプルとなるが、炉底電極が必要
となる。そして、この炉底電極は、その寿命および安全
性が非常に重要な問題となる。
A conventional AC arc furnace is always composed of three movable electrodes, but in the case of a DC arc furnace, it is not necessarily three, and at least one electrode may be used. That is,
It is possible to construct a single electrode up to about 150t furnace, and the circumference of the electrode is simple, but a furnace bottom electrode is required. The life and safety of this furnace bottom electrode are very important issues.

さて、直流アーク炉における炉底電極は、通常炉中央部
の炉底耐火物中に、炉の規模に応じて通電ピンを多数本
埋設したものを陽極としている。また、各通電ピンは、
通常の丸棒を端末加工して集電板に取付けて二次導体と
接続し、さらに各通電ピンの下端は強制空冷を行なっ
て、耐火物中の通電ピンの溶損を防止するようにしてい
る。勿論、耐火物中の通電ピン上部の溶鋼と接触する部
分は溶けるが、耐火物が有る限り溶けて固まることの繰
返しで、消耗はしない。ただし、耐火物が消耗してくる
と、通電ピンもその分だけ減ってくることになる。
Now, the bottom electrode in a DC arc furnace is usually a furnace bottom refractory in the center of which is provided with a large number of current-carrying pins embedded as an anode. Also, each energizing pin is
An ordinary round bar is processed into an end, attached to a current collector plate and connected to a secondary conductor.Furthermore, the lower end of each current-carrying pin is forcibly air-cooled to prevent melting damage to the current-carrying pin in the refractory. There is. Of course, the portion of the refractory material in contact with the molten steel above the current-carrying pin melts, but as long as the refractory material is present, it melts and solidifies repeatedly, and is not consumed. However, when the refractory is worn out, the number of current-carrying pins will decrease accordingly.

(考案が解決しようとする課題) ところで、このような直流アーク炉において、炉底電極
の寿命は大切なファクタであり、その寿命を管理するこ
とは極めて重要である。そのため従来では、多数本の通
電ピンの内部に熱電対を各別に挿入して通電ピンの温度
を監視し、最高温度が管理限界温度に達すると炉底電極
の交換を行なうようにしている。
(Problems to be Solved by the Invention) In such a DC arc furnace, the life of the bottom electrode is an important factor, and it is extremely important to manage the life. Therefore, conventionally, thermocouples are individually inserted into a large number of energizing pins to monitor the temperature of the energizing pins, and when the maximum temperature reaches the control limit temperature, the furnace bottom electrode is replaced.

しかしながら、このような方法では次のような問題があ
る。すなわち、電極温度は、必ずしも炉底電極の残存量
(残っている厚み)と再現性のある比例関係になく、ま
た炉床温度,空冷状況,通電電流レベルなど他の影響が
大きいことから、炉底電極の残存量、還元すれば炉底電
極の消耗量を精度良く定量的に把握することが不可能で
ある。このため、炉底電極の底抜け防止対策としては有
効的ではあるものの、炉底電極交換のスケジューリング
や炉底電極原単位低減のための交換判定データとしては
十分に活用できていない。
However, such a method has the following problems. That is, the electrode temperature is not always in a reproducible proportional relationship with the remaining amount (remaining thickness) of the bottom electrode of the furnace, and other influences such as the hearth temperature, air-cooling condition, and energization current level are large. If the residual amount of the bottom electrode and the reduction amount are reduced, it is impossible to accurately and quantitatively grasp the consumption amount of the furnace bottom electrode. Therefore, although it is effective as a measure for preventing the bottom electrode of the bottom electrode from falling out, it has not been sufficiently utilized as the scheduling data for the bottom electrode replacement and the replacement determination data for reducing the unit consumption of the bottom electrode.

本考案は上記のような問題を解決するために成されたも
ので、炉底電極の消耗量を適確にかつ容易に把握するこ
とができ、炉底電極の底抜け防止、および炉底電極交換
のスケジューリングや炉底電極原単位低減に極めて有効
的な信頼性の高い直流アーク炉の炉底電極消耗量検出装
置を提供することを目的とする。
The present invention has been made to solve the above problems, and can accurately and easily grasp the amount of consumption of the bottom electrode, prevent the bottom electrode from falling out, and replace the bottom electrode. It is an object of the present invention to provide a highly reliable apparatus for detecting the amount of consumption of the bottom electrode of a DC arc furnace, which is highly effective for the scheduling and reduction of the unit consumption of the bottom electrode.

(課題を解決するための手段) 上記の目的を達成するために本考案では、直流アーク炉
における炉底電極の構造体に絶縁物を隔てて埋設された
少なくとも2本の電極と、各電極のうち,基準となる1
本の電極と他の電極との間の通電性を検出する通電性検
出手段とを備えて構成している。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, at least two electrodes embedded with insulators in a structure of a bottom electrode in a DC arc furnace, and Of which, the standard 1
The present invention is configured by including a conductivity detecting means for detecting conductivity between the book electrode and another electrode.

(作用) 従って、本考案の炉底電極消耗量検出装置においては、
炉底電極が消耗して溶鋼に接する耐火物上面が減ると、
消耗前には絶縁物を隔てて埋設されている2本の電極の
上端に溶鋼が接触するため、各々の電極間の通電性を通
電性検出手段で検出することによって、炉底電極の消耗
を検出することが可能となる。
(Operation) Therefore, in the furnace bottom electrode consumption amount detecting device of the present invention,
When the furnace bottom electrode is consumed and the upper surface of the refractory that contacts molten steel decreases,
Since the molten steel comes into contact with the upper ends of the two electrodes buried with the insulators in between before the exhaustion, the electrical conductivity between the electrodes is detected by the electrical conductivity detecting means, so that the consumption of the furnace bottom electrode is reduced. It becomes possible to detect.

(実施例) 以下、本考案の一実施例について図面を参照して説明す
る。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings.

第1図は、本考案による直流アーク炉の炉底電極消耗量
検出装置の構成例を示す図である。第1図において、直
流アーク炉の炉底電極1の一部を構成する、炉中央部の
炉底耐火物2の中には、図示のように鋼製の通電ピン3
を多数本埋設して陽極としている。また、各通電ピン3
は鋼製の丸棒を端末加工してなり、これらを集電板4に
取付けて端子5を介して二次導体6と接続し、図示しな
い可動電極(陰極)との間に直流電圧を印加するように
している。さらに、各通電ピン3の下端は強制空冷を行
なっており、耐火物中の通電ピンの溶損を防止するよう
にしている。
FIG. 1 is a diagram showing an example of the configuration of a furnace bottom electrode wear amount detecting device for a DC arc furnace according to the present invention. In FIG. 1, in a furnace bottom refractory 2 in the center of the furnace, which constitutes a part of the furnace bottom electrode 1 of the DC arc furnace, as shown in the drawing, a steel current-carrying pin 3 is used.
Are embedded to form an anode. Also, each energizing pin 3
Is a steel round bar that is end-processed. These are attached to a current collector plate 4, connected to a secondary conductor 6 via a terminal 5, and a DC voltage is applied between it and a movable electrode (cathode) not shown. I am trying to do it. Further, the lower end of each energizing pin 3 is subjected to forced air cooling to prevent melting damage of the energizing pin in the refractory.

一方、炉の周辺部および中央部の炉底耐火物2の中に
は、消耗検出用の複数本(本実施例では2本)の棒状の
電極7および8をそれぞれ埋設している。ここで、基準
となる1本の電極7は、図示のように炉底耐火物2の底
部から上部に貫通するように設け、また他の電極8は図
示のように炉底耐火物2の底部からほぼ中央部位置まで
設けている。さらに、電極7の下端部は導体91,および
リレー10を介して電源11に接続し、また電極8の下端部
は導体92を介して電源11に接続している。さらに、リレ
ー10が動作することにより、図示しない接点が閉路して
アラームを発生するようにしている。そして、この導体
91,92、リレー10、および電源11により、各電極間の通
電性を検出する通電性検出手段を構成している。なお第
1図において、12は直流アーク炉の炉床を構成する耐火
物、13は溶鋼をそれぞれ示すものである。
On the other hand, in the furnace bottom refractory 2 in the peripheral portion and the center portion of the furnace, a plurality of (two in this embodiment) rod-shaped electrodes 7 and 8 for detecting wear are embedded. Here, one reference electrode 7 is provided so as to penetrate from the bottom portion of the furnace bottom refractory 2 to the upper portion as shown in the figure, and the other electrode 8 is provided as the bottom portion of the furnace bottom refractory 2 as shown in the figure. From the center to the central position. Further, the lower end of the electrode 7 is connected to the power supply 11 via the conductor 91 and the relay 10, and the lower end of the electrode 8 is connected to the power supply 11 via the conductor 92. Further, the relay 10 operates to close a contact (not shown) to generate an alarm. And this conductor
The 91, 92, the relay 10, and the power supply 11 constitute a conductivity detecting means for detecting the conductivity between the electrodes. In FIG. 1, 12 is a refractory material forming the hearth of the DC arc furnace, and 13 is molten steel.

以上の如く構成した直流アーク炉の炉底電極消耗量検出
装置において、直流アーク炉の操業を開始した当初の時
点では、炉底耐火物2はほとんど消耗せず、溶鋼13に接
する炉底耐火物2の上面Aは図示状態にある。そして、
炉底耐火物2は絶縁物であることから、2本の電極7,8
の間には通電路が形成されない。従って、この場合には
リレー10が動作しないためにアラームは出力されず、炉
底耐火物2の残存量が多い、すなわち炉底電極1の消耗
量が少ないことが把握できる。
In the apparatus for detecting the amount of wear of the bottom electrode of the DC arc furnace configured as described above, at the beginning of the operation of the DC arc furnace, the furnace bottom refractory 2 is hardly consumed and the furnace bottom refractory contacting the molten steel 13 is consumed. The upper surface A of 2 is in the illustrated state. And
Since the furnace bottom refractory 2 is an insulator, two electrodes 7,8
No electric path is formed between them. Therefore, in this case, since the relay 10 does not operate, the alarm is not output, and it can be understood that the remaining amount of the furnace bottom refractory 2 is large, that is, the consumption amount of the furnace bottom electrode 1 is small.

次に、直流アーク炉の操業に伴って炉底耐火物2が消耗
すると、溶鋼13に接する炉底耐火物2の上面Aが減る。
そして、やがてこの炉底耐火物2の上面Aが電極8の上
端部である図示破線状態まで消耗すると、2本の電極7,
8に溶鋼が接触するため、電源11→導体92→電極8→溶
鋼13→電極7→導体91→リレー10→電源11による電気的
な通電路が形成される。従って、この場合にはリレー10
が動作してアラームが出力され、炉底耐火物2の残存量
が少ない、すなわち炉底電極1の消耗量が多くなって限
界に達したことを把握することができる。
Next, when the furnace bottom refractory 2 is consumed with the operation of the DC arc furnace, the upper surface A of the furnace bottom refractory 2 in contact with the molten steel 13 decreases.
Then, when the upper surface A of the furnace bottom refractory 2 is consumed up to the state of the broken line in the figure which is the upper end of the electrode 8, the two electrodes 7,
Since molten steel comes into contact with 8, an electric conduction path is formed by the power source 11 → conductor 92 → electrode 8 → molten steel 13 → electrode 7 → conductor 91 → relay 10 → power source 11. Therefore, in this case relay 10
Is activated and an alarm is output, and it is possible to understand that the remaining amount of the furnace bottom refractory 2 is small, that is, the consumption amount of the furnace bottom electrode 1 has increased and the limit has been reached.

上述したように、本実施例による直流アーク炉の炉底電
極消耗量検出装置では、次のような効果が得られるもの
である。
As described above, the apparatus for detecting the amount of wear of the bottom electrode of the DC arc furnace according to the present embodiment has the following effects.

(a)炉底電極1(炉底耐火物2)の消耗の状態を、極
めて適確にかつ容易にしかも精度良く検出することが可
能となる。
(A) It becomes possible to detect the state of wear of the furnace bottom electrode 1 (furnace bottom refractory 2) extremely accurately, easily, and accurately.

(b)炉底電極1(炉底耐火物2)の消耗進行パターン
データをベースにアラーム設定することによって、炉底
電極1の交換時期の推定および準備に十分に活用するこ
とが可能となる。
(B) By setting an alarm based on the consumption progress pattern data of the bottom electrode 1 (furnace bottom refractory 2), it becomes possible to fully utilize it for estimating and preparing the replacement time of the bottom electrode 1.

(c)炉底電極1(炉底耐火物2)の消耗の状態を適確
に把握できるため、炉底電極1原単位を低減することが
可能となる。
(C) Since the consumption state of the furnace bottom electrode 1 (furnace bottom refractory 2) can be accurately grasped, it is possible to reduce the unit consumption of the furnace bottom electrode 1.

(d)炉底電極1(炉底耐火物2)の消耗状態を検出す
るのに、従来のような熱電対を使用していないため、検
出装置が破損したり故障したりする恐れがなく、極めて
信頼性の高い検出を行なうことが可能となる。
(D) Since a conventional thermocouple is not used to detect the wear state of the bottom electrode 1 (furnace bottom refractory 2), there is no risk of damage or failure of the detector. It is possible to perform detection with extremely high reliability.

尚、上記実施例では消耗検出用の電極を2本埋設した場
合について述べたが、これに限らず消耗検出用の電極を
3本以上の複数本だけ炉底耐火物に埋設して、それぞれ
の上端部位置に何段階かのレベルを持たせ、アラームを
夫々に対応する段数だけ出力するようにしてもよい。
In the above-mentioned embodiment, the case where two wear detecting electrodes are buried is described. However, the present invention is not limited to this, and only three or more wear detecting electrodes are buried in the furnace bottom refractory, and each of them is buried. The upper end position may be provided with several levels and the alarms may be output by the corresponding number of steps.

第2図は、3本の電極を炉底耐火物中に埋設した場合の
実施例構成を概略的に示すものであり、第1図と同一部
分には同一符号を付して示している。第2図において、
14は炉底耐火物2中に新たに埋設した電極であり、その
下端は導体93およびリレー15を介して電源11に接続して
いる。ここで、電極14はその上端部が、他の電極7と8
の上端部のほぼ中間位置となるように設けている。ま
た、リレー15が動作することにより、図示しない接点が
閉路してアラームを発生するようにしている。従って、
本実施例では炉底電極1の炉底耐火物2の消耗に伴っ
て、2段階にわたってアラームが出力されるため、より
一層信頼性の高い炉底電極の消耗検出を行なうことが可
能となる。
FIG. 2 schematically shows the construction of an embodiment in which three electrodes are embedded in a furnace bottom refractory, and the same parts as those in FIG. 1 are designated by the same reference numerals. In FIG.
Reference numeral 14 is an electrode newly embedded in the furnace bottom refractory 2, and its lower end is connected to the power source 11 via the conductor 93 and the relay 15. Here, the upper end of the electrode 14 is the other electrodes 7 and 8
It is provided so as to be located approximately in the middle of the upper end of the. Further, when the relay 15 operates, a contact (not shown) is closed to generate an alarm. Therefore,
In this embodiment, since the alarm is output in two steps in association with the consumption of the furnace bottom refractory 2 of the furnace bottom electrode 1, it is possible to detect the consumption of the furnace bottom electrode with higher reliability.

また、上記実施例において、基準となる電極7として
は、炉底電極1自身の通電ピン3を利用するようにして
もよい。
Further, in the above-described embodiment, the current-carrying pin 3 of the furnace bottom electrode 1 itself may be used as the reference electrode 7.

さらに、上記実施例において、基準となる電極7として
は、直流アーク炉の可動電極を利用するようにしてもよ
い。
Furthermore, in the above embodiment, a movable electrode of a DC arc furnace may be used as the reference electrode 7.

(考案の効果) 以上説明したように本考案によれば、炉底電極の消耗量
を適確にかつ容易に把握することができ、炉底電極の底
抜け防止、および炉底電極交換のスケジューリングや炉
底電極原単位低減に極めて有効な信頼性の高い直流アー
ク炉の炉底電極消耗量検出装置が提供できる。
(Effect of the Invention) As described above, according to the present invention, it is possible to accurately and easily grasp the consumption amount of the bottom electrode, prevent the bottom electrode from falling out, and schedule the bottom electrode replacement. It is possible to provide a highly reliable apparatus for detecting the consumption of the bottom electrode of a DC arc furnace, which is highly effective in reducing the unit consumption of the bottom electrode.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案による直流アーク炉の炉底電極消耗量検
出装置の一実施例を示す構成図、第2図は本考案の一実
施例を示す構成図である。 1…炉底電極、2…炉底耐火物、3…通電ピン、4…集
電板、5…端子、6…二次導体、7,8,14…電極、91,92,
93…導体、10,15…リレー、11…電源、12…耐火物、13
…溶鋼。
FIG. 1 is a block diagram showing an embodiment of a furnace bottom electrode wear amount detecting device for a DC arc furnace according to the present invention, and FIG. 2 is a block diagram showing an embodiment of the present invention. 1 ... Furnace bottom electrode, 2 ... Furnace bottom refractory, 3 ... Current-carrying pin, 4 ... Current collector plate, 5 ... Terminal, 6 ... Secondary conductor, 7, 8, 14 ... Electrode, 91, 92,
93 ... Conductor, 10, 15 ... Relay, 11 ... Power supply, 12 ... Refractory, 13
… Molten steel.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】直流アーク炉における炉底電極の構造体に
絶縁物を隔てて埋設された少なくとも2本の電極と、 前記各電極のうち,基準となる1本の電極と他の電極と
の間の通電性を検出する通電性検出手段と、 を備えて成ることを特徴とする直流アーク炉の炉底電極
消耗量検出装置。
1. At least two electrodes embedded in a structure of a bottom electrode in a DC arc furnace with an insulator therebetween, and one of the electrodes, which is a reference electrode, and another electrode. An apparatus for detecting the consumption of the bottom electrode of a DC arc furnace, comprising: an electric conductivity detecting means for detecting the electric conductivity between the electrodes.
JP10359588U 1988-08-04 1988-08-04 Detector for consumption of bottom electrode of DC arc furnace Expired - Lifetime JPH0636469Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10359588U JPH0636469Y2 (en) 1988-08-04 1988-08-04 Detector for consumption of bottom electrode of DC arc furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10359588U JPH0636469Y2 (en) 1988-08-04 1988-08-04 Detector for consumption of bottom electrode of DC arc furnace

Publications (2)

Publication Number Publication Date
JPH0224291U JPH0224291U (en) 1990-02-16
JPH0636469Y2 true JPH0636469Y2 (en) 1994-09-21

Family

ID=31334572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10359588U Expired - Lifetime JPH0636469Y2 (en) 1988-08-04 1988-08-04 Detector for consumption of bottom electrode of DC arc furnace

Country Status (1)

Country Link
JP (1) JPH0636469Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712874Y2 (en) * 1988-11-09 1995-03-29 大同特殊鋼株式会社 Bottom electrode for DC arc furnace

Also Published As

Publication number Publication date
JPH0224291U (en) 1990-02-16

Similar Documents

Publication Publication Date Title
JP6138283B2 (en) Current measurement of individual electrodes in an electrolysis system.
US4541099A (en) DC Arc furnace improved hearth construction
US20110074358A1 (en) Battery Protection Device which Utilizes Light Current to Control Heavy Current
JPH0636469Y2 (en) Detector for consumption of bottom electrode of DC arc furnace
US4377452A (en) Process and apparatus for controlling the supply of alumina to a cell for the production of aluminum by electrolysis
HU188704B (en) Electrode for melted salt-electrolysis
US3495018A (en) Arc voltage control for consumable electrode furnaces
JPH06331278A (en) Monitoring method of insulation of dc arc furnace
JP3480786B2 (en) Induction melting furnace leak detector
JPH0712874Y2 (en) Bottom electrode for DC arc furnace
JPH04165289A (en) Insulation monitor for dc arc furnace
JPH0629672Y2 (en) Jiro furnace with hearth monitor
JPH0257890A (en) Control method for running of cooling fan for dc arc furnace bottom electrode
JP2624419B2 (en) DC arc furnace power supply method
JPS6041838B2 (en) Device inside DC arc furnace
RU2009422C1 (en) Method of determining parameters of heating of ore-heating furnace after idling period
JP2935997B2 (en) Molten metal level detector
US4073640A (en) Method of melting slag
JPH0624157Y2 (en) Bottom electrode of DC electric furnace
JP3132653B2 (en) Fuel cell power plant with degreasing monitor
JP4622387B2 (en) Vacuum arc remelting furnace
JP2021157892A (en) Induction melting furnace, monitoring method thereof, and sleeve
KR20230169199A (en) Improved method and apparatus for martensitic-free brazing process
JP4300835B2 (en) Insulation monitoring method and apparatus for DC arc heating apparatus
JP2790036B2 (en) Lithium rechargeable battery charger