JPH04151489A - Method of sensing melted state in dc arc furnace - Google Patents

Method of sensing melted state in dc arc furnace

Info

Publication number
JPH04151489A
JPH04151489A JP2275587A JP27558790A JPH04151489A JP H04151489 A JPH04151489 A JP H04151489A JP 2275587 A JP2275587 A JP 2275587A JP 27558790 A JP27558790 A JP 27558790A JP H04151489 A JPH04151489 A JP H04151489A
Authority
JP
Japan
Prior art keywords
arc
raw material
temperature
melting
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2275587A
Other languages
Japanese (ja)
Other versions
JP2940133B2 (en
Inventor
Kikuma Izumi
和泉 喜久磨
Masakatsu Naruse
成瀬 正克
Hidetsugu Sakakibara
榊原 英貢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2275587A priority Critical patent/JP2940133B2/en
Priority to KR1019910015809A priority patent/KR940005472B1/en
Publication of JPH04151489A publication Critical patent/JPH04151489A/en
Application granted granted Critical
Publication of JP2940133B2 publication Critical patent/JP2940133B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B7/00Heating by electric discharge

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

PURPOSE:To perform additional loading of melting raw material at a proper time and save energy by a method wherein a difference between a temperature of a furnace wall detected by a temperature sensing device placed at an arc varying directional position and another temperature at another furnace wall detected by another temperature sensing device at another location is measured so as to judge a melting condition in the furnace. CONSTITUTION:During a melting operation, thermal flow fluxes at a furnace wall of each of accompanying installing locations are detected by the first and second temperature sensing devices 31 and 32. Under this condition, when a melting raw material 34 at a deflected direction of an arc A is melted completely, a panel surface of the first water-cooled panel 25 is exposed against the arc A. Then, a thermal flow flux received by that surface is increased. In turn, since the second water-cooled panel 26 is not exposed yet, the thermal flow fluxes are kept low. Due to this fact, a difference in thermal flowes detected by both temperature sensitive devices 31 and 32 is increased, thereby an increased difference in temperature at the furnace walls of each of the installing locations is measured in reference to an increased difference in outputs of each of the temperature sensitive devices 31 and 32. Measurement of such an increased difference in temperatures enables the melting of the melting raw material 34 to be detected and reached to the melting raw material adjacent to the first water-cooling panel 25.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は直流アーク炉において、炉体内で溶解される
溶解原料の溶解状況を検出する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detecting the state of melting of molten raw material melted in a furnace body in a DC arc furnace.

〔従来の技術〕[Conventional technology]

rL流アーク炉においては、上部電極と炉内に装入され
た溶解原料との間でアークが発せられ、そのアークによ
って溶解原料が溶解される。その溶解の場合、溶解原料
の溶解の進行に伴ない上部電極が下降される。従来はこ
の上部電極の上下位置から炉内における溶解原料の溶解
状況を推定していた。
In the rL flow arc furnace, an arc is emitted between the upper electrode and the molten raw material charged into the furnace, and the molten raw material is melted by the arc. In the case of melting, the upper electrode is lowered as the melting raw material progresses. Conventionally, the state of melting of the melted raw material in the furnace was estimated from the vertical position of this upper electrode.

〔発明が解決しようとするsllg) この従来の直流アーク炉の溶解状況検出方法では上部電
極の下方の溶解原料の溶解状況はよくわかるがその周囲
の溶解原料の溶解状況はわかりづらい問題点があった。
[Sllg to be solved by the invention] This conventional method for detecting the melting state of a DC arc furnace has the problem that although the melting state of the melted raw material below the upper electrode can be clearly seen, it is difficult to understand the melting state of the melted raw material around it. Ta.

この為、その検出結果に基づいて溶解原料の連装をする
システムでは、既に前の溶解原料が完全に溶解してしま
っていて、それまで無駄なアーク加熱をしていた(電歇
な電力消費をしていた)といった不経済性を生じたり、
未溶解の溶解原料が多く残っていて連装の溶解原料が山
のようになり、炉Iが閉まらなくて多くのロスタイムを
住じさせてしまうという問題点があった。
For this reason, in a system that sequentially charges molten raw materials based on the detection results, the previous molten raw materials have already been completely melted, and until then there was unnecessary arc heating (reducing electric power consumption). ), resulting in uneconomical effects such as
There was a problem that there was a lot of unmelted melted raw material remaining, and the melted raw materials in the multiple sets were piled up, and the furnace I could not be closed, resulting in a lot of lost time.

本願発明は上記従来技術の問題点(技術的課題)を解決
する為になされたもので、炉内におけるアークの偏向方
向の側で1f!解原料の溶解が最も速く進む部分の炉壁
とそれ以外の部分の炉壁の温度差の大小の測定により、
溶解原料の溶解状況を精度高く検出できて、その結果、
溶解原料の連装を適正な時点で行なえ、もって省エネル
ギーを図ることができるようにした直流アーク炉の溶解
状況検出方法を提供することを目的としている。
The present invention was made in order to solve the problems (technical problems) of the prior art described above, and it is possible to achieve 1 f! By measuring the temperature difference between the part of the furnace wall where the raw material is melting fastest and the other part of the furnace wall,
The dissolution status of melted raw materials can be detected with high accuracy, and as a result,
It is an object of the present invention to provide a method for detecting the melting state of a DC arc furnace, which enables continuous loading of melted raw materials at appropriate times and thereby saves energy.

〔課題を解決する為の手段〕[Means to solve problems]

上記目的を達成する為に、本願発明にけおる直流アーク
炉の溶解状況検出方法は、中空の炉体の下部には炉底電
極が、上部には上部電極が夫々設けられ、上記円電極は
夫々導体を介して電力供給装置に接続されて、上記電力
供給装置から上記円電極に直流電流を供給することによ
り上部電極と炉体内に装入された溶解原料との間にアー
クを生ぜしめ、そのアークによって溶解原料を溶解する
ようにしてある直流アーク炉において、上記炉体におけ
る炉壁には、夫々炉壁の温度を検出するようにした感温
装置を相互に離間した複数箇所に付設すると共に、その
うちの一つの付設位置は、上記導体から及ぼされる電磁
力によるアークの偏向方向の側の位lに定め、上記溶解
原料の溶解中においては、上記アークの変更方向側の位
置にある感温装置と他の位置にある感温装置によって夫
々検出される炉壁の温度の温度差の大小を測定すること
によって、炉体内の溶解原料の溶解状況を判別するもの
である。
In order to achieve the above object, the method for detecting the melting state of a DC arc furnace according to the present invention includes a bottom electrode at the bottom of the hollow furnace body, an upper electrode at the top, and the circular electrode each connected to a power supply device via a conductor, and by supplying a direct current from the power supply device to the circular electrode, an arc is generated between the upper electrode and the molten raw material charged into the furnace body; In a DC arc furnace in which the melting material is melted by the arc, temperature-sensing devices are attached to the furnace wall of the furnace body at multiple locations spaced apart from each other to detect the temperature of the furnace wall, respectively. At the same time, one of them is installed at a position on the side of the direction in which the arc is deflected by the electromagnetic force exerted from the conductor, and during melting of the melted raw material, one of the sensors is placed on the side in the direction of change of the arc. The state of melting of the melted raw material in the furnace body is determined by measuring the difference in temperature between the furnace wall temperatures detected by the temperature device and the temperature sensing device located at other locations.

〔作用〕[Effect]

上部電極と溶解原料との間で生ずるアークにより溶解原
料が溶解される。その溶解はアークの偏向方向の側にお
いてその進行が鰻も速い、アークの偏向方向の側の溶解
原料が全て溶解してその側の炉壁が露出すると、そこの
炉壁に付設した感温装置によって検出される炉壁温度が
上昇し、他の場所の感温装置によって検出される炉壁温
度との差が増大する。従ってその温度差の増大を知るこ
とによって上記アークの偏向方向の側の溶解原料が全て
溶解したことを検出できる。
The molten raw material is melted by an arc generated between the upper electrode and the molten raw material. The melting progresses faster on the side in the direction of arc deflection.When all the melted raw materials on the side in the direction of arc deflection are melted and the furnace wall on that side is exposed, a temperature sensing device attached to the furnace wall on that side is exposed. The furnace wall temperature detected by the furnace wall temperature increases, and the difference between the furnace wall temperature and the furnace wall temperature detected by the temperature sensing device at another location increases. Therefore, by knowing the increase in the temperature difference, it can be detected that all of the melted raw material on the side in the deflection direction of the arc has been melted.

〔実施例〕〔Example〕

以下本願の実施例を示す図面について説明する、第1図
及び第2図において、1は直流アーク炉を示す、符号2
〜23は直流アーク炉における周知の部材を示すもので
ある。即ち、2は炉体で、炉底3及び炉壁4から中空に
構成され、内部は溶解原料を存置させる為の原料存置空
間5となっている。6は炉底3の略中央部に取り付けた
炉底電極7は炉壁4の一部に設けた出鋼口、8は出鋼樋
9は作業口を夫々示す、10は炉体2に被せた炉蓋で、
電極孔11を有する。その電極孔11には上部電極12
が挿通されている。該上部電極12は1本のみが備えら
れている。上部電極12は電極支持機構13により上下
動可能に支持されている。電極支持機構13は周知の構
成で、14は電極支柱、15は昇降装置、16は電極支
腕、17は電極把持器を夫々示す次に電力の供給系統に
ついて説明する。19は炉底電極6に一端を接続した導
体即ち下部導体、2゜は支腕16に沿わせて設けられた
導体即ち上部導体(支腕母線と称される)の存在を示し
、その一端は上部電極12に接続しである。2L 22
は下部導体19や上部導体20の他端に夫々接続した可
撓電線である。23は変圧器室を示し、内部には炉用変
圧器等の電力供給装置が備えられ、その電力供給装置に
上記下部導体19や上部導体2oに連なる可撓電線21
、22が接続しである。
Below, the drawings showing the embodiments of the present application will be explained. In Figs. 1 and 2, 1 indicates a DC arc furnace, and the reference numeral 2
23 indicate well-known members in a DC arc furnace. That is, 2 is a furnace body, which is hollow and constituted by a furnace bottom 3 and a furnace wall 4, and the inside thereof is a raw material storage space 5 in which melted raw materials are stored. Reference numeral 6 indicates a furnace bottom electrode 7 attached to the approximate center of the furnace bottom 3, a tap hole provided on a part of the furnace wall 4, 8 represents a tap hole 9, and a working opening, and 10 represents a tap hole provided over the furnace body 2. With a hearth lid,
It has an electrode hole 11. The upper electrode 12 is in the electrode hole 11.
is inserted. Only one upper electrode 12 is provided. The upper electrode 12 is supported by an electrode support mechanism 13 so as to be movable up and down. The electrode support mechanism 13 has a well-known structure, with reference numeral 14 an electrode support, 15 a lifting device, 16 an electrode support arm, and 17 an electrode gripper.Next, the power supply system will be explained. 19 indicates the presence of a conductor, that is, a lower conductor, which has one end connected to the hearth bottom electrode 6, and 2° indicates the presence of a conductor, that is, an upper conductor (referred to as a support arm busbar) provided along the support arm 16; It is connected to the upper electrode 12. 2L 22
are flexible electric wires connected to the other ends of the lower conductor 19 and the upper conductor 20, respectively. Reference numeral 23 indicates a transformer room, in which a power supply device such as a furnace transformer is provided, and the power supply device includes a flexible electric wire 21 connected to the lower conductor 19 and the upper conductor 2o.
, 22 are connected.

次に上記直流アーク炉1に付された溶解状況検出用の構
成について説明する。25は第1の水冷パネル、26は
第2の水冷パネルで、これらは炉壁4にその一部を構成
する状態に取付けてあり、各々には給水管27と排水管
28が接続しである。第1の水冷パネル25は炉壁にお
ける後述の如きアークAの偏向方向の側の箇所(溶解原
料が最も早く溶解する部分すなわちホノトスポ、ト部に
隣接した箇所)に設けられ、第2の水冷パネル26は第
1の水冷パネル25とは離間した箇所、例えば本例では
第1の水冷パネル25とは反対の側の箇所に設けである
。31は第1の水冷パネル25に付設した第1の感温装
置で、第1の水冷パネル25の位置における炉壁の温度
を検出する為のものである。本例では第1の水冷パネル
25の給水と排水の各水温の差を測定して第1の水冷パ
ネル25のパネル面の熱流束を感知するようにしたもの
が用いである。32は第2の水冷パネル26に付設した
第2の感温装置で、第2の水冷パネル26の位置におけ
る炉壁の温度を検出する為のものであり、上記第1の感
温装置31と同様のものが用いである。向上記者感温装
置は、上記各水冷パネル25.26の内面であって、炉
壁の内側に位置するところに取付けた熱電対または測温
抵抗体とそれに接続した温度検出器とから成るものであ
ってもよい。
Next, the configuration for detecting the state of melting attached to the DC arc furnace 1 will be explained. 25 is a first water-cooled panel, and 26 is a second water-cooled panel, which are attached to the furnace wall 4 so as to constitute a part thereof, and a water supply pipe 27 and a drain pipe 28 are connected to each of them. . The first water-cooled panel 25 is provided on the furnace wall at a location on the side of the deflection direction of the arc A as described below (a location adjacent to the part where the melted raw material melts fastest, that is, the honoto spot), and the second water-cooled panel 26 is provided at a location apart from the first water-cooled panel 25, for example, in this example, at a location on the opposite side from the first water-cooled panel 25. 31 is a first temperature sensing device attached to the first water cooling panel 25, and is for detecting the temperature of the furnace wall at the position of the first water cooling panel 25. In this example, the heat flux on the panel surface of the first water-cooled panel 25 is sensed by measuring the difference between the water temperatures of the water supplied to the first water-cooled panel 25 and the water temperature of the drain water. 32 is a second temperature sensing device attached to the second water cooling panel 26, which is for detecting the temperature of the furnace wall at the position of the second water cooling panel 26, and is different from the first temperature sensing device 31 described above. A similar one is used. The improved reporter thermosensing device consists of a thermocouple or resistance thermometer mounted on the inner surface of each of the water-cooled panels 25 and 26, located inside the furnace wall, and a temperature detector connected to it. There may be.

上記直流アーク炉の操業について説明する。先ず炉底3
上の空間5に溶解原料34が装入される(籾袋)。次に
炉110を被せた後、電力供給装置から下部導体19及
び上部導体20を介して炉底電極6及び上部電極12に
アーク発生用の直流電流が供給される。すると炉底電極
6と上部電極12との間、又は、炉底電極6に電気的に
導通している溶解原料34(例えばスクラップ)と上部
電極12との間にアークAが発生する。そのアークAの
熱によって溶解原料34が溶解される。
The operation of the above DC arc furnace will be explained. First, hearth bottom 3
A molten raw material 34 is charged into the upper space 5 (paddy bag). Next, after covering the furnace 110, a DC current for arc generation is supplied from the power supply device to the furnace bottom electrode 6 and the upper electrode 12 via the lower conductor 19 and the upper conductor 20. Then, an arc A is generated between the furnace bottom electrode 6 and the upper electrode 12 or between the melted raw material 34 (for example, scrap) electrically connected to the furnace bottom electrode 6 and the upper electrode 12. The melted raw material 34 is melted by the heat of the arc A.

溶解状況は以下の通りである。溶解初期には上部電極1
2を中心とした上部電極径の約2倍の大きさの範囲にわ
たり溶解原料34が溶解される。そのような溶解が溶解
原料34の下部に進むにつれ上部電極12は下降される
0次に、上部電極12は下降した状態で、溶解原料34
はかまくら状に溶解され、その周囲の部分が崩れ落ちる
。この場合、導体1920から及ぼされる電磁力による
アークAの偏向方向側の溶解原料34の溶解が他の部分
より早く進み、第1の水冷パネル25が露出する0次に
全体的に溶解が進みフラットな溶鋼となる。
The dissolution situation is as follows. At the beginning of melting, the upper electrode 1
The melted raw material 34 is melted over a range approximately twice the diameter of the upper electrode centered on the upper electrode. The upper electrode 12 is lowered as such melting progresses to the lower part of the melted raw material 34. Next, in the lowered state, the upper electrode 12
It melts into a haze-like shape, and the parts around it collapse. In this case, the melting of the melted raw material 34 on the deflection direction side of the arc A due to the electromagnetic force exerted from the conductor 1920 progresses faster than in other parts, and the melting progresses as a whole until the first water-cooled panel 25 is exposed and becomes flat. It becomes molten steel.

上記のような溶解の過程において、空間5の未溶解の溶
解原料34が少なくなると、溶解原料の連装(2装、3
装・・・)が適宜行なわれる。
In the melting process as described above, when the unmelted raw material 34 in the space 5 decreases, the melted raw material is continuously loaded (2 loads, 3 loads).
) will be carried out as appropriate.

上記のようにして溶解原料の溶解が完了して全てが溶鋼
となると、炉体2が傾けられて出鋼ロアから出鋼が行な
われる。
When the melting of the molten raw materials is completed as described above and all of the material becomes molten steel, the furnace body 2 is tilted and steel is tapped from the tapping lower.

次に、上記のような溶解の過程における熔解状況の検出
について説明する。溶解中においては第1及び第2の感
温装置31.32によって各々の付設場所の炉壁での熱
流束が検出されている。この状態において前記のように
アークAの偏向方向側の溶解原料34が溶解してしまう
と、Wl、1の水冷パネル25のパネル面がアークAに
対し露出する。するとその面が受ける熱流束は大きくな
る。一方第2の水冷パネル26は未だ露出しない為、熱
流束は小さいままである。この為、両感温装置31.3
2で検出されるRIII流束の差が増大し、各々の感温
装置3132の出力の差の増大から各々の付設場所の炉
壁の温度差の増大が測定される。このような温度差が増
大したことを測定することにより、溶解原料34の熔解
が第1の水冷パネル25に隣接する溶解原料にまで達し
たことを検出することができる。
Next, detection of the melting state during the above-mentioned melting process will be described. During melting, the heat flux at the furnace wall at each attached location is detected by the first and second temperature sensing devices 31 and 32. In this state, if the melted raw material 34 on the deflection direction side of the arc A is melted as described above, the panel surface of the water-cooled panel 25 of Wl,1 is exposed to the arc A. This increases the heat flux that that surface receives. On the other hand, since the second water-cooled panel 26 is not exposed yet, the heat flux remains small. For this reason, both temperature sensing devices 31.3
2 increases, and from the increase in the difference in output of each temperature sensing device 3132, an increase in the temperature difference of the furnace wall at each attached location is measured. By measuring the increase in such a temperature difference, it is possible to detect that the melting of the melted raw material 34 has reached the melted raw material adjacent to the first water-cooled panel 25.

上記のような溶解を検出した場合、溶解原料(スクラッ
プ)の種類形状により、上記のように熱流束が大きくな
るまでの時間および消費電力量に差がある。従って、W
%流束がある一定値に達するまでの時間または消費電力
量により残りスクラップの溶解速度を計算することによ
って、連装判定および溶解判定を正確にかつ容昌に行な
うことができる。その結果、次の連装その他の工程を適
正な時点で行なうことができて、全熔解が完了するまで
の消費電力量の減少ならびにロスタイムの減少を図るこ
とができる。
When the above-mentioned melting is detected, there are differences in the time and power consumption until the heat flux increases as described above, depending on the type and shape of the melted raw material (scrap). Therefore, W
By calculating the dissolution rate of the remaining scrap based on the time it takes for the % flux to reach a certain value or the amount of power consumption, it is possible to accurately and conveniently perform the reloading determination and melting determination. As a result, the next continuous mounting and other steps can be carried out at appropriate times, and it is possible to reduce power consumption and loss time until complete melting is completed.

次に上記第1及び第2の水冷パネル25.26の配設場
所の決定について説明する。直流アーク炉においては、
下部導体19や上部導体20などが発生する電磁力によ
り、上部電極12と炉底電極6又は溶解原料34の間に
発生するアークAは、フレミングの左手の法則により一
定方向に偏向させられる。
Next, the determination of the installation locations of the first and second water cooling panels 25 and 26 will be explained. In a DC arc furnace,
Due to the electromagnetic force generated by the lower conductor 19, the upper conductor 20, etc., the arc A generated between the upper electrode 12 and the bottom electrode 6 or the molten raw material 34 is deflected in a certain direction according to Fleming's left-hand rule.

その偏向の方向は、変LL二次導体(上部導体20、下
部導体19)、水冷ケーブル2122の位置により電磁
解析をすれば求まる。また二次導体配置を考慮すれば、
自由に方向を変化させ得る。このアーク偏向方向に合わ
せて水冷パネル25.26および感温装置31.32を
前述のような条件で適切に配置すればよい。
The direction of the deflection can be determined by electromagnetic analysis based on the positions of the variable LL secondary conductors (upper conductor 20, lower conductor 19) and the water-cooled cable 2122. Also, if we consider the secondary conductor arrangement,
Can change direction freely. The water cooling panels 25, 26 and the temperature sensing devices 31, 32 may be appropriately arranged under the conditions described above in accordance with this arc deflection direction.

次に、上記水冷パネル及び感温装置は、炉壁においてよ
り多数の箇所に配設すると共にその内の一つはアークの
偏向方向の側の箇所に配設し、それらアークの偏向方向
の側の箇所に配設された感温装置とその他の箇所に配設
された感温装置とによって夫々検出される炉壁の温度の
温度差の大小を測定して、前述の如き溶解状態の判別を
行ってもよい。
Next, the water-cooled panels and temperature-sensing devices are installed at more locations on the furnace wall, and one of them is installed at a location on the side of the arc deflection direction. The temperature difference between the temperatures of the furnace wall detected by the temperature-sensing device installed at the location and the temperature-sensing device located at other locations is measured to determine the state of melting as described above. You may go.

次に第3図は第1及び第2の水冷パネル25e。Next, FIG. 3 shows the first and second water cooling panels 25e.

26eの配置の異なる例を示すもので、第1の水冷パネ
ル25eをアークAeの偏向方向の側に配置し、第2の
水冷パネル26eをその隣の位置に配置した例である。
26e, in which the first water-cooled panel 25e is placed on the side in the direction of deflection of the arc Ae, and the second water-cooled panel 26e is placed next to it.

なお、機能上前図のものと同−又は均等構成と考えられ
る部分には、前回と同一の符号にアルファベットのeを
付して重複する説明を省略した。
It should be noted that parts that are considered to have the same or equivalent structure as those in the previous figure in terms of function are given the same reference numerals as in the previous figure with the letter e, and redundant explanations are omitted.

次ニ第4図は水冷パネルの給排水温度の変化の一例を示
すものである。図示の如く排水温度が変化することによ
って、前述の如き感温装置によりアークの偏向方向側と
それ以外の側の炉壁各部の温度の温度差が検出され、そ
れによって溶解原料の溶解状況を把握することができる
。従ってその把握された状況に基づき図示の如く溶解原
料の連装を行なうことができる。
Figure 4 shows an example of changes in the water supply and drainage temperature of the water-cooled panel. As the waste water temperature changes as shown in the figure, the temperature sensing device as mentioned above detects the temperature difference between the temperatures of various parts of the furnace wall on the arc deflection direction side and on the other side, and from this, the melting status of the melting raw material can be grasped. can do. Therefore, based on the grasped situation, it is possible to carry out continuous loading of melted raw materials as shown in the figure.

〔発明の効果〕〔Effect of the invention〕

以上のように本願発明にあっては、溶解原料34の溶解
中においては、アークAの偏向方向の側即ち溶解原料3
4の溶解が最も速く進む側の炉壁の温度と、その他の側
の炉壁の温度との温度差の大小を測定するから、その温
度差の増大の測定によって、上記溶解が最も速く進む側
において炉壁4のきねの溶解原料まで溶解が達したこと
を正確に検出できる特長がある。このことは炉体内にお
ける溶解原料34の溶解状況を正確に把握できることで
あって、それを基に連装を行なうべき時点を適正に判断
でき、前記従来技術の如き問題を除去して省エネルギー
に貢献できる有用性がある。
As described above, in the present invention, during the melting of the molten raw material 34, the side in the direction of deflection of the arc A, that is, the molten raw material 3
Since the temperature difference between the temperature of the furnace wall on the side where the melting progresses fastest and the temperature of the furnace wall on the other sides in step 4 is measured, by measuring the increase in the temperature difference, it is possible to determine the side where the melting is progressing the fastest. It has the advantage of being able to accurately detect that the melting has reached the melted raw material on the furnace wall 4. This means that the melting status of the melted raw material 34 in the furnace body can be accurately grasped, and based on this, it is possible to appropriately judge the point at which double loading should be carried out, and it is possible to eliminate the problems of the above-mentioned conventional technology and contribute to energy conservation. It has usefulness.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本願の実施例を示すもので、第1図は直流アーク
炉の縦断面略示図、第2図はwi図の水平断面図、第3
図は水冷パネルの配置位置の異なる例を示す平面略示図
、第4図は水冷パネルの給排水温度の変化の一例を示す
グラフ。 2・・・炉体、6・・・炉底電極、12・・・上部電極
、31.32・・・感温装置、34・・・溶V#原料、
A−・・アーク。 第 図 第 図 第 図 第 午 図 ft n 吋 闇
The drawings show an embodiment of the present application, and Fig. 1 is a schematic vertical cross-sectional view of a DC arc furnace, Fig. 2 is a horizontal cross-sectional view of Fig.
FIG. 4 is a schematic plan view showing examples of different arrangement positions of water-cooled panels, and FIG. 4 is a graph showing an example of changes in water supply and drainage temperature of the water-cooled panels. 2... Furnace body, 6... Hearth bottom electrode, 12... Upper electrode, 31.32... Temperature sensing device, 34... Molten V# raw material,
A-... Arc. Figure Figure Figure Figure Horse Figure ft n Darkness

Claims (1)

【特許請求の範囲】[Claims] 中空の炉体の下部には炉底電極が、上部には上部電極が
夫々設けられ、上記両電極は夫々導体を介して電力供給
装置に接続されて、上記電力供給装置から上記両電極に
直流電流を供給することにより上部電極と炉体内に装入
された溶解原料との間にアークを生ぜしめ、そのアーク
によって溶解原料を溶解するようにしてある直流アーク
炉において、上記炉体における炉壁には、夫々炉壁の温
度を検出するようにした感温装置を相互に離間した複数
箇所に付設すると共に、そのうちの一つの付設位置は、
上記導体から及ぼされる電磁力によるアークの偏向方向
の側の位置に定め、上記溶解原料の溶解中においては、
上記アークの変更方向側の位置にある感温装置と他の位
置にある感温装置によって夫々検出される炉壁の温度の
温度差の大小を測定することによって、炉体内の溶解原
料の溶解状況を判別することを特徴とする直流アーク炉
の溶解状況検出方法。
A hearth bottom electrode is provided at the bottom of the hollow furnace body, and an upper electrode is provided at the top, and both of the electrodes are connected to a power supply device through conductors, so that direct current is supplied from the power supply device to the two electrodes. In a DC arc furnace, an arc is generated between an upper electrode and a molten raw material charged into the furnace body by supplying an electric current, and the molten raw material is melted by the arc. In this method, temperature-sensing devices each detecting the temperature of the furnace wall are attached to multiple locations separated from each other, and one of the locations is
It is set at a position on the side of the deflection direction of the arc due to the electromagnetic force exerted from the conductor, and during melting of the melted raw material,
By measuring the difference in the temperature of the furnace wall detected by the temperature sensing device located on the arc change direction side and the temperature sensing device located at other positions, the melting status of the melted raw material in the furnace body is determined. A method for detecting melting status in a DC arc furnace, characterized by determining.
JP2275587A 1990-10-15 1990-10-15 Melting status detection method for DC arc furnace Expired - Fee Related JP2940133B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2275587A JP2940133B2 (en) 1990-10-15 1990-10-15 Melting status detection method for DC arc furnace
KR1019910015809A KR940005472B1 (en) 1990-10-15 1991-09-10 Method of sensing melted state in dc arc furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2275587A JP2940133B2 (en) 1990-10-15 1990-10-15 Melting status detection method for DC arc furnace

Publications (2)

Publication Number Publication Date
JPH04151489A true JPH04151489A (en) 1992-05-25
JP2940133B2 JP2940133B2 (en) 1999-08-25

Family

ID=17557536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2275587A Expired - Fee Related JP2940133B2 (en) 1990-10-15 1990-10-15 Melting status detection method for DC arc furnace

Country Status (2)

Country Link
JP (1) JP2940133B2 (en)
KR (1) KR940005472B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017226864A (en) * 2016-06-20 2017-12-28 新日鐵住金株式会社 Scrap burn through determination method in electric furnace, furnace wall wear amount estimation method in electric furnace, program and system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200453272Y1 (en) * 2008-12-01 2011-04-15 주식회사 앵커스타 Folding basket
KR200492976Y1 (en) * 2019-01-29 2021-01-14 주식회사 오션스코리아 Apparatus for automatic feeding
KR102199532B1 (en) * 2019-01-30 2021-01-07 한국해양대학교 산학협력단 Hybrid powered automatic feeding system for fish farms based on offchore structures
KR102214412B1 (en) * 2019-02-26 2021-02-08 조웅제 Auto feeding apparatus for fish of fish bowl

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017226864A (en) * 2016-06-20 2017-12-28 新日鐵住金株式会社 Scrap burn through determination method in electric furnace, furnace wall wear amount estimation method in electric furnace, program and system

Also Published As

Publication number Publication date
JP2940133B2 (en) 1999-08-25
KR920009268A (en) 1992-05-28
KR940005472B1 (en) 1994-06-18

Similar Documents

Publication Publication Date Title
EP2715262B1 (en) Electric induction furnace with lining wear detection system
CA1165726A (en) Method and apparatus for controlling the heat balance in aluminum reduction cells
EP3183521B1 (en) A system and a method for determining temperature of a metal melt in an electric arc furnace
JPH04151489A (en) Method of sensing melted state in dc arc furnace
CA2135496C (en) Dc arc furnace
US20170208653A1 (en) Device for positioning at least one electrode for smelting furnaces
JP2008075950A (en) Furnace bottom monitoring method and device for melting furnace
US4549301A (en) Direct-current electric-arc furnace and method of operating same
JP4056534B2 (en) Furnace bottom temperature measuring method and apparatus, and melting furnace bottom monitoring method and apparatus
KR100399238B1 (en) Sub lance combinations probe and thereof measuring method for converter
CN102519245B (en) Measuring and controlling device for roasting quality of self-baking electrode of calcium carbide furnace and method
JP3035125B2 (en) Tundish electric heating device
WO1996033389A1 (en) A method and an arrangement for determining the height position of an electrode
JPH08165510A (en) Level detector for molten steel in dc arc furnace
JPH075018A (en) Method and device for detecting fluid and position of boundary part of fluid
JP2005226105A (en) Method and instrument for measuring level of molten material in blast furnace
JPH07260364A (en) Apparatus for and method of heating and melting metal
JPH03285746A (en) Tundish provided with plasma heating apparatus
JPS62112911A (en) Method of controlling melting processing furnace
JPH01174886A (en) Arc furnace for detecting in-furnace status
JP2008096067A (en) Control method for plasma melting furnace
JPH06300450A (en) Electrode length monitoring method for dc arc furnace
KR20020045216A (en) Apparatus for continuously detecting level of molten iron in slag of blast furnace
JP2925727B2 (en) Method and apparatus for detecting melting state of charged raw material in arc furnace and water cooling panel for arc furnace
JP3744426B2 (en) Method and apparatus for measuring slag oxidation

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees