JPS59140301A - Manufacture of hydrogen occluding alloy of rare earth metal-nickel system - Google Patents

Manufacture of hydrogen occluding alloy of rare earth metal-nickel system

Info

Publication number
JPS59140301A
JPS59140301A JP58013597A JP1359783A JPS59140301A JP S59140301 A JPS59140301 A JP S59140301A JP 58013597 A JP58013597 A JP 58013597A JP 1359783 A JP1359783 A JP 1359783A JP S59140301 A JPS59140301 A JP S59140301A
Authority
JP
Japan
Prior art keywords
rare earth
earth metal
alloy
powdered
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58013597A
Other languages
Japanese (ja)
Inventor
Hideo Toma
東馬 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to JP58013597A priority Critical patent/JPS59140301A/en
Publication of JPS59140301A publication Critical patent/JPS59140301A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • C22C1/0441Alloys based on intermetallic compounds of the type rare earth - Co, Ni
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a titled alloy with a single-stage process without annealing by admixing specified pts. wt. powdered metallic Ni with metallic powder contg. specified pts. wt. powdered rare earth metal, and heating the mixture under specified conditions. CONSTITUTION:1-300pts.wt. powdered metallic Ni is admixed with metallic powder contg. at least 100pts.wt. powdered rare earth metal and/or powdered alloy thereof. La etc. is used as the rare earth metal and misch metal etc. is used as the alloy. 1-300pts.wt. metals such as Al, Fe etc. can also be added as the third and the fourth elements. All the materials to be used are regulated to <=about 20 mesh. Then the mixture is heated at 800-1,200 deg.C for 1-10hr under the vacuum (about 10<-1>-10<-4>mm.Hg) or in the presence of inert gas such as Ar. In this way, the phase wherein each constituent is diffused uniformly, can be obtained and the annealing is not required.

Description

【発明の詳細な説明】 本発明は希土類金属−ニッケル系水素吸蔵合金の製造法
、更に詳細にはアニール処理の不要な希土類金属−ニッ
ケル系水素吸蔵合金の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a rare earth metal-nickel hydrogen storage alloy, and more particularly to a method for producing a rare earth metal-nickel hydrogen storage alloy that does not require an annealing treatment.

従来より、ランタン、セリウム、プラセオジウム、ネオ
ジウム、サマリウムなどの希土類金属及び/又はミツシ
ュメタルガどのニッケル金属を1300℃以上にて溶融
し、次いで水素吸蔵力を付与しプラトー圧にて水素を放
出し得るよう1100゜〜1200℃にて約5時間アニ
ール処理を行なう°希土類金属系水素吸蔵合金の製造法
が知られている。
Conventionally, rare earth metals such as lanthanum, cerium, praseodymium, neodymium, and samarium and/or nickel metals such as Mitsubishi metal are melted at a temperature of 1300°C or higher, and then hydrogen storage capacity is imparted to the melting point at 1100°C so that hydrogen can be released at a plateau pressure. A method for producing rare earth metal-based hydrogen storage alloys is known in which annealing treatment is performed at a temperature of 1200 DEG C. for about 5 hours.

この公知方法では1300℃以上の高温を必要とする合
金製造工程とアニール処理工程とを要し、コスト高とな
っていた。
This known method requires an alloy manufacturing process and an annealing process that require high temperatures of 1300° C. or higher, resulting in high costs.

本発明は各種合金を容易に所定割合に配合し得る製造法
であり且つアニール処理の必要がなく、1段階の工程に
て希土類金属−ニッケル系水素吸蔵合金を経済的に製造
する方法を提供することを。
The present invention provides a manufacturing method that allows various alloys to be easily blended in predetermined proportions, does not require annealing treatment, and provides a method for economically manufacturing rare earth metal-nickel hydrogen storage alloys in a one-step process. That.

目的とする。purpose.

本発明の希土類金属−ニッケル系水素吸蔵合金の製造法
は希土類金属粉末及1−xはその合金粉末100重量部
を少くとも含む金属粉末にニッケル金属粉末1〜300
重量部を添加混合し、該混合物を真空下若しくは不活性
ガスの存在下において800°〜1200℃にて1〜1
0時間加熱処理することを特徴とする。
The method for producing a rare earth metal-nickel hydrogen storage alloy of the present invention is to add 1 to 300 parts of nickel metal powder to a metal powder containing at least 100 parts by weight of rare earth metal powder and 1-x alloy powder thereof.
1 to 1 part by weight at 800° to 1200°C under vacuum or in the presence of an inert gas.
It is characterized by heat treatment for 0 hours.

以下、本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明にて用いる希土類金属はランタン、セリラム、プ
ラセオジウム、ネオジウム、サマリウムを挙げることが
でき、その合金としてはミツシュる。これらのうち特に
、ランタン、ミツシュメタルが水素吸蔵圧が低いので好
ましく用いることができる。本発明では希土類金属及び
/又けその合金を粉砕して粉末として使用する8粉末粒
度は特に臨界的なものではないが20メツシユ以下とす
るのが好ましい。
Rare earth metals used in the present invention include lanthanum, cerium, praseodymium, neodymium, and samarium, and alloys thereof include lanthanum, cerium, praseodymium, neodymium, and samarium. Among these, lanthanum and mitshu metal are particularly preferably used because they have a low hydrogen storage pressure. In the present invention, the particle size of the pulverized rare earth metal and/or metal alloy used as powder is not particularly critical, but it is preferably 20 mesh or less.

本発明では、上述の希土類全都及び/又はその合金に加
えて、希土類金属−ニッケル系水素吸蔵合金の第3元素
及び第4元素とな#)得る金属、例えばアルミニウム、
鉄、マンガン、クロム、チタン、ジルコンの粉末を添加
してもよい。粉末粒度は20メツシユ以下とするのが好
ましい。
In the present invention, in addition to the above-mentioned rare earth metals and/or alloys thereof, metals such as aluminum,
Powders of iron, manganese, chromium, titanium, and zircon may be added. The powder particle size is preferably 20 mesh or less.

本発明では希土類金属及び/又はその合金の粉末を少く
とも含む金属粉末にニッケル金属粉末を添加混合する。
In the present invention, nickel metal powder is added to and mixed with metal powder containing at least powder of rare earth metal and/or its alloy.

ニッケル金属粉末の粒度は特に臨界的外ものではないが
、20メツシユ以下とするのが望ましい。これは粒度が
大きすぎると、拡散が不十分になシ、小さすぎると表面
酸化をおこすためである。ニッケル金属粉末の添加割合
は希土類金属及び/又はその合金の粉末工Oo重i部に
対して1〜300重量部の範囲にて所望の最終水素吸蔵
合金が得られる量比とする。同様に、前記第3元素及び
第4元素となり得る金属及び/又けその合金の添加量は
前記希土類金属及び/又はその合金の粉末1oo重量部
に対して1〜300重量部の範囲にて所望の最終水素吸
蔵合金が得られる量比とする。
The particle size of the nickel metal powder is not particularly critical, but is preferably 20 mesh or less. This is because if the particle size is too large, diffusion will be insufficient, and if the particle size is too small, surface oxidation will occur. The proportion of the nickel metal powder to be added is 1 to 300 parts by weight based on the weight of the powder of the rare earth metal and/or its alloy, so that the desired final hydrogen storage alloy can be obtained. Similarly, the amount of the metal and/or its alloy that can serve as the third element and the fourth element is preferably in the range of 1 to 300 parts by weight per 10 parts by weight of the powder of the rare earth metal and/or its alloy. The amount ratio is such that the final hydrogen storage alloy of

ニッケル金属粉末を含む金属粉末の混合物は次いで80
0°〜12000、好ましくは1ooo〜1200℃に
て1〜10時間、好ましくは3.5〜4.5時間真空下
若しくは不活性ガスの存在下に加熱処理する。真空度F
i通常10−’〜10−’y+mHg、 好i シ< 
h工O〜10”−mHgとする。不活性ガスとしてはア
ルゴン、ヘリウム、アルゴン−水素混合ガスを挙げるこ
とができる。加熱温度が8oo℃未満では金属粉末の拡
散が不十分であり、所望とする合金が得られす、また一
方1200℃を越えると形状維持がむずかしい。本発明
による上記加熱処理においてニッケル金属粉末、希土類
金属及び/又けその合金の粉末、並びに第3元素及び第
4元素の金属粉末は溶融拡散され、各成分が均一に拡散
された相が形成される。従来公知の溶融法で得られた合
金は、不均一相が混在しているために、アニール処理に
て均一な相にしなければ、所定の水素吸蔵物としての性
能が得られない。
The mixture of metal powders, including nickel metal powder, is then heated to 80%
Heat treatment is carried out at 0° to 12000° C., preferably 100° C. to 1200° C., for 1 to 10 hours, preferably 3.5 to 4.5 hours under vacuum or in the presence of an inert gas. Vacuum degree F
i Normally 10-' to 10-'y + mHg, good i <
The inert gas may include argon, helium, and argon-hydrogen mixed gas. If the heating temperature is less than 80°C, the diffusion of the metal powder will be insufficient, and the desired temperature will not be achieved. On the other hand, when the temperature exceeds 1200°C, it is difficult to maintain the shape.In the above heat treatment according to the present invention, nickel metal powder, rare earth metal and/or alloy powder, and third and fourth element The metal powder is melted and diffused to form a phase in which each component is uniformly diffused.Alloys obtained by conventional melting methods contain a mixture of heterogeneous phases, so they cannot be uniformly formed by annealing. If it is not made into a phase, the desired performance as a hydrogen storage material cannot be obtained.

本発明により得られる希土類−ニッケル系水素吸蔵合金
としては次の一般式のものを挙げることができる。
Examples of rare earth-nickel hydrogen storage alloys obtained by the present invention include those of the following general formula.

RN i x (x=1〜5 ) RNix−yAy(x=1〜5、y=0.1〜0.7、
A=At。
RNix (x=1-5) RNix-yAy (x=1-5, y=0.1-0.7,
A=At.

Mn y F e % Co %T 1、Zr)RNi
x−yAyBz(X=1〜5、y=0.1〜0.72=
0.01〜1、A、 B=Az 、 Mn、 Fe、 
Co、T1、ZrでA\B) 本発明の製造方法により得られた希土類金属−ニッケル
系水素吸蔵合金はアニール処理を行っていないにもかか
わらず公知方法により製造された希土類金属−ニッケル
系水素吸蔵合金と水素吸蔵力において変らず、しかも所
望の配合にて容易に所定の合金を得ることができる。
Mn y F e % Co % T 1, Zr) RNi
x-yAyBz (X=1-5, y=0.1-0.72=
0.01~1, A, B=Az, Mn, Fe,
Co, T1, Zr A\B) Although the rare earth metal-nickel hydrogen storage alloy obtained by the production method of the present invention is not annealed, it is a rare earth metal-nickel hydrogen storage alloy produced by a known method. The hydrogen storage capacity is the same as that of the storage alloy, and a desired alloy can be easily obtained with a desired composition.

以下、本発明を下記の実施例につき説明するが、本実施
例にのみ限定されるものではない。なお、部は重量部を
表わす。
Hereinafter, the present invention will be explained with reference to the following examples, but it is not limited only to these examples. Note that parts represent parts by weight.

実施例1 希土類金にとしてランタンを用い、粉砕機にて20メツ
シユに粉砕した。ニッケル金属も同様にして20メツシ
ユに粉砕した。ランタン金属粉末100部に対しニッケ
ル金属粉末250部を添加し、十分混合した。かように
して得られた金属粉末混合物を鋼製型に入れ、油圧プレ
スを用いて直径30m、厚さ20mのペレットをつ〈9
.ステンレス製しトルIf入れアルゴン雰囲気下で12
00℃、4時間熱処理を行った。
Example 1 Lanthanum was used as rare earth gold and was ground into 20 meshes using a grinder. Nickel metal was similarly ground into 20 meshes. 250 parts of nickel metal powder was added to 100 parts of lanthanum metal powder and thoroughly mixed. The metal powder mixture thus obtained was placed in a steel mold, and a hydraulic press was used to form pellets with a diameter of 30 m and a thickness of 20 m.
.. Made of stainless steel and heated under argon atmosphere for 12 hours.
Heat treatment was performed at 00°C for 4 hours.

得られたランタン−ニッケル系水素吸蔵合金(LaNi
5 )の水素吸蔵特性を容量法にて測定したところ、4
0℃5Qat%の水素を吸蔵した。
The obtained lanthanum-nickel hydrogen storage alloy (LaNi
When the hydrogen storage properties of 5) were measured by the volumetric method, it was found that 4
At 0°C, 5Qat% of hydrogen was absorbed.

実施例2〜11 下記表に記載の各種希土類金属を用い、表に記載の反応
条件にて各種の希土類−ニッケル合金を実施例1に記載
の手法により作製した。水素吸蔵φ 力を実施例1に従って測定した結果を表に示す。
Examples 2 to 11 Various rare earth-nickel alloys were produced by the method described in Example 1 using the various rare earth metals listed in the table below and under the reaction conditions listed in the table. The results of measuring the hydrogen storage φ force according to Example 1 are shown in the table.

Claims (1)

【特許請求の範囲】[Claims] 希土類金属粉末及び/又はその合金粉末100重量部を
少くとも含む金属粉末にニッケル金属粉末1〜300重
量部を添加混合し、該混合物を真空下若しくけ不活性ガ
スの存在下において800゜〜1200℃にて1〜10
時間加熱処理することを特徴とする希土類金属−ニッケ
ル系水素吸蔵合金の製造法。
1 to 300 parts by weight of nickel metal powder is added and mixed to a metal powder containing at least 100 parts by weight of rare earth metal powder and/or its alloy powder, and the mixture is heated to 800° to 800° under vacuum or in the presence of an inert gas. 1-10 at 1200℃
A method for producing a rare earth metal-nickel hydrogen storage alloy, which is characterized by time-heat treatment.
JP58013597A 1983-01-29 1983-01-29 Manufacture of hydrogen occluding alloy of rare earth metal-nickel system Pending JPS59140301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58013597A JPS59140301A (en) 1983-01-29 1983-01-29 Manufacture of hydrogen occluding alloy of rare earth metal-nickel system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58013597A JPS59140301A (en) 1983-01-29 1983-01-29 Manufacture of hydrogen occluding alloy of rare earth metal-nickel system

Publications (1)

Publication Number Publication Date
JPS59140301A true JPS59140301A (en) 1984-08-11

Family

ID=11837613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58013597A Pending JPS59140301A (en) 1983-01-29 1983-01-29 Manufacture of hydrogen occluding alloy of rare earth metal-nickel system

Country Status (1)

Country Link
JP (1) JPS59140301A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141741A (en) * 1984-08-02 1986-02-28 Daido Steel Co Ltd Hydrogen occluding alloy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328244A (en) * 1976-08-30 1978-03-16 Matsushita Electric Ind Co Ltd Negative electrode plate of storage battery and method of manufacturing thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328244A (en) * 1976-08-30 1978-03-16 Matsushita Electric Ind Co Ltd Negative electrode plate of storage battery and method of manufacturing thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6141741A (en) * 1984-08-02 1986-02-28 Daido Steel Co Ltd Hydrogen occluding alloy
JPH0577732B2 (en) * 1984-08-02 1993-10-27 Daido Steel Co Ltd

Similar Documents

Publication Publication Date Title
US2467675A (en) Alloy of high density
JPH0362764B2 (en)
GB2043114A (en) Method for the production of non -evaporable ternary gettering alloys
JP2955662B1 (en) Ternary hydrogen storage alloy and method for producing the same
US2884688A (en) Sintered ni-al-zr compositions
WO2002081763A1 (en) Hydrogen storage alloy, production method therefor and ickel-hydrogen secondary battery-use cathode
US3533760A (en) Dispersion strengthened nickel-chromium alloy composition
JP4121711B2 (en) Hydrogen storage metal-containing material and method for producing the same
US3278280A (en) Workable ruthenium alloy and process for producing the same
US3009809A (en) Sintering of iron-aluminum base powders
US2657127A (en) Production of chromium-alloyed corrosion-resistant metal powders and related products
JPH0215619B2 (en)
JPS59140301A (en) Manufacture of hydrogen occluding alloy of rare earth metal-nickel system
US3922236A (en) Electrical contact materials
Murty et al. Synthesis of nanocrystalline NiAl over a wide composition range by mechanical alloying
JPH0247535B2 (en)
US3573903A (en) Ductile high temperature tungstenrhenium alloy and process for making same
US3779717A (en) Nickel-tantalum addition agent for incorporating tantalum in molten nickel systems
JPS648063B2 (en)
JP2654171B2 (en) Hydrogen storage alloy
JPH0570693B2 (en)
JP2001266864A (en) Hydrogen-storing alloy, alloy powder for nickel hydrogen secondary battery negative electrode and negative electrode for the same
JPS6369701A (en) Metallic material for occluding hydrogen
JPH01129936A (en) Manufacture of hydrogen occlusion alloy
JPH05163511A (en) Production of alloy powder