US3922236A - Electrical contact materials - Google Patents

Electrical contact materials Download PDF

Info

Publication number
US3922236A
US3922236A US384161A US38416173A US3922236A US 3922236 A US3922236 A US 3922236A US 384161 A US384161 A US 384161A US 38416173 A US38416173 A US 38416173A US 3922236 A US3922236 A US 3922236A
Authority
US
United States
Prior art keywords
powder
electrical contact
approximately
copper
contact material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US384161A
Inventor
Peter Douglas
David John Pedder
Peter John Swallow
Terrence Ardern Davies
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric USA Inc
Original Assignee
Square D Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Square D Co filed Critical Square D Co
Priority to US05/586,763 priority Critical patent/US3981726A/en
Application granted granted Critical
Publication of US3922236A publication Critical patent/US3922236A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S75/00Specialized metallurgical processes, compositions for use therein, consolidated metal powder compositions, and loose metal particulate mixtures
    • Y10S75/95Consolidated metal powder compositions of >95% theoretical density, e.g. wrought
    • Y10S75/951Oxide containing, e.g. dispersion strengthened

Definitions

  • the invention relates to electrical contact materials for use in electrical contacts and to methods of producing the electrical contact materials:
  • the invention provides an electrical contact material which consists of a mixture of silver, 5 to 50 weight percent of copper and 2 to 20 weight percent of lanthanum, strontium chromite of formula La Sr CrO where the values ofx lie between and 1.0, formed as a hard chemically inert, non-metallic phase of high electrical conductivity both within the bulk of, and at the surface of, the contact material.
  • the invention also provides a method of producing an electrical contact material including the steps of providing irregular silver powder having a powder particle size of not greater than approximately 350British Standard mesh; providing irregular copper powder having a powder particle size of not greater than 350 British Standard mesh; providing lanthanum, strontium chromite powder of formula La ,Sr,CrO where the values of x lie between 0 and 1.0, and having a powder particle size of not greater than approximately 10 microns; mixing the powders together to provide a fine, evenly dispersed mixture containing to 50 weight percent of copper, 2 to 20 weight percent of La Sr,,.CrO and the remainder silver; compacting the powder mixture into a desired shape; and sintering the compacted shape.
  • An electrical contact material according to the invention which is especially adapted for light duty applications consists of a mixture of silver, 5 to 50 weight percent of copper, and 2 to 20 weight percent of lanthanum, strontium chromite of formula La ,,Sr,CrO where the values of x lie between 0 and 1.0.
  • the La- Sr CrO forms as a hard, chemically inert, non-metallic phase of high electrical conductivity both within the bulk of, and at the surface of, the contact material.
  • the phase has a high electrical conductivity i.e. a specific resistivity within the range 1 to 10" ohm.cm.
  • the phase is thermodynamically stable with respect to the environment and the matrix metal or alloy.
  • the phase possesses high thermal stability in order to withstand thermal treatments likely to occur during the fabrication of the contact piece part.
  • the phase is chemically inert.
  • phase isharder than the tarnish films likely to form on the matrix metal or alloy, for example, oxide or sulphide films.
  • the La Sr,CrO non-metallic phase will, therefore, form as a hard, chemically inert, non-metallic phase of high electrical conductivity both within the bulk of, and at the surface of, the contact material.
  • the presence of the highly conductive, non-metallic phase .at the surface of electrical contacts fabricated from the electrical contact material according to the invention effectively minimizes the increase in contact resistance by providing highly conductive paths across the contacting interface.
  • tarnish films which may form on the electrical contact material will be disrupted by the harder, chemically inert, non-metallic phase at the contact surface so that electrical contact is maintained; the discrete islands of highly conductive, non-metallic material effectively constitute anisotropic conducting paths through the otherwise electrically insulating tarnish film formed on the surrounding material.
  • the highly conductive, non-metallic phase enhances the tarnish resistance of the basic silver/copper alloy.
  • the electrical contact materials according to the invention can be fabricated by any one of several known techniques but are best fabricated by power metallurgical techniques.
  • irregular silver powder is intimately mixed with fine, irregular copper powder and La Sr CrO powder to provide a fine, evenly dispersed mixture containing 5 to 50 weight percent copper, 2 to 20 weight percent of the non-metallic La- ,.Sr CrO powder, and the remainder silver.
  • the size and shape of the powder particles are of prime importance in the manufacture of optimum contact materials and all the powders should preferably be as fine as is economically possible. This in practice involves the use of irregular silver and copper powders having a powder particle size of less than approximately 350 British Standard mesh and La Sr,CrO powder having a powder particle size of less than 10 microns and preferably less than 2 microns.
  • a typical commercially available silver powder which can be utilized is Thessco (a registered trademark in Great Britain) silver powder produced by Sheffield Smelting Company, a subsidiary of Engelhard Industries of Great Britain.
  • This silver powder which is a precipitated powder of commercial purity is of irregular morphology, a powder particle size of less than 300 British Standard mesh and an apparent density of 1.9 gms/cc.
  • This material also has (i) a geometric mean linear intercept by transmission microscopy of 17.8 microns, standard deviation 2.0 and (ii) a geometric mean linear intercept on a polished section of 4.1 microns, standard deviation 2.0.
  • This commercially available silver powder is sieved before being used to remove the powder particles which are of a size greater than approximately 350 British Standard mesh.
  • the copper constituent should preferably be provided by clean, fine, dendritic copper powder of the specified particle size.
  • the lanthanum, strontium chromite (La ,Sr CrO powder can for example, be produced by spray decomposition of La, Sr and Cr nitrates in stoichiometric proportions.
  • the oxide mixture resulting from this process is then sintered in air for approximately hour at a temperature of approximately l,250C.
  • the sintered powder is then milled for 96 hours under acetone in an agate planetary miller and washed in dilute hydrochloric acid. This powder is free from impurities such as strontium chromate and has a submicron powder particle size.
  • the intimate mixing of the silver, copper and La- Sr CrO powders can be effected by dry tumble milling.
  • dry tumble milling In order for the dry tumble milling to be effective for these powders it is important that the following mixing conditions are adhered to:
  • the constituent powders should have a particle size as specified in a preceding paragraph.
  • the powders should be desiccators stored, or
  • the volume to be mixed should be from 50 grams upwards; the actual mixing time being dependent upon the size of the mix.
  • the copper composition should be in the range 5 to 50 weight percent and the La Sr CrO nonmetallic phase composition should be in the range 2 to 20 weight percent.
  • the volume of the drum should be of the order of 2 to times the volume of the powder being mixed in order to prevent the movement of the powder being restricted.
  • the relative humidity inside the drum should be in the range 0 to 70% and the inside drum temperature should be in the range 10 to 30C.
  • the speed of rotation of the drum should be such that the powders are continually in motion during mixing. Increasing the speed of rotation of the drum will decrease the time requiredfor good mixing. If the speed of rotation is excessive, however, then, due to the influence of centrifugal forces, mixing will be hindered.
  • the duration of powder mixing is generally dependent upon the copper and La Sr CrO non-metallic phase content of the powder; the larger the copper and electrically non-metallic phase content the longer the mixing time.
  • Typical mixing conditions for the silver, copper and La Sr CrO powders in mixing volumes in the range 50 to 1000 grams, a copper composition in the range 5 to 50 weight percent and a La Sr,CrO non-metallic 4 phase composition in the range L0 to 20 weight percent are as follows:
  • the drum volume was of the order of 2 to 10 times that of the powders being mixed.
  • the mixing was carried out at 20C (range 17C to 23C) with a relative humidity of approximately 60% (range 45 to 65%).
  • the drum was revolved at rpm.
  • the powder mixture is then compacted at a pressure of'approximately 20 tons per square inch using molds into the desired shape for the electrical contacts.
  • the powder compacts are then sintered by being heated in an atmosphere of 3% hydrogen/97% nitrogen gas mixture at a temperature of 750C for a period of time of approximately 1 hour.
  • the processing schedule used results in some of the La ,Sr, CrO non-metallic material being present at the surface of the electrical contact where it stands proud of the surface as discrete islands of a hard, chemically inert, non-metallic phase of high electrical conductivity on a silver/copper sea.
  • the density of the contact material is then increased by a coining or stamping operation at a pressure of approximately 50 tons per square inch.
  • the temperature and pressure schedule of this method which produces contact compacts having a density of at least 98 percent of the theoretical maximum density, represents the optimum schedule for the powder particle sizes outlined in the preceding paragraph. It is envisaged that this schedule, and in particular the compacting and stamping pressures, may be changed if finer powders of different morphology are utilized.
  • the presence of the highly conductive, non-metallic phase in the electrical contacts produced by the method according to the invention effectively minimizes the increase in contact resistance previously referred to by providing highly conductive paths across the contacting interface and by inhibiting the tarnishing ability of the basic silver/copper alloy.
  • the tarnishing films which, as previously stated, tend to form on the contact material are disrupted by the harder, chemically inert, non-metallic phase at the contact surface so that electrical contact is maintained by conducting phase to silver/copper or conducting phase to conducting phase contact; the discrete islands of highly conductive, non-metallic material effectively constitute anisotropic conducting paths through the otherwise electrically insulating oxide formed on the surrounding silver/copper material.
  • Examples of electrical contact materials produced by the method outlined in the preceding paragraphs in the form of domed electrical contacts are given below together with the associated contact resistance data.
  • the electrical contacts were degreased in iso-propanol and subjected to accelerated tarnishing tests conducted in an atmosphere of moist air containing H S.
  • the atmosphere consisted of l000 ppm of H 8 in moist air.
  • the electrical contacts were exposed to this atmosphere for a period of approximately 10 minutes at room temperature. ,All the contact resistance measurements were made across the interface between the domed contact surface and a flat polished silver reference surface.
  • the electrical contact materials containing 5 weight percent of La Sr CrQ exhibit more than an order of magnitude reduction in contact resistance, at all contact forces, compared with the basic silver/copper alloy.
  • the electrical contact materials given above were also exposed to moist air for 52 hours at a temperature of approximately 50C, and showed only very slight tarnishing. The highest value of contact resistance recorded was 0.004 ohms. The electrical contact materials were then further exposed to 100 ppm of H 8 in moist air at room temperature for a period of approximately 10 minutes and the contact resistance data that was obtained was comparable with the data given in the above tables.
  • An electrical contact material which consists of a mixture of silver, 5 to 50 Weight percent of copper and 6 2 to 20 weight .percent of lanthanum, strontium chromite of formula La,s,sr,cro,, where the values ofx lie between Oand 1;,0, formed as a hard, chemically inert, non-metallic phase of high electrical conductivity both within the bulk of, and at the surface of, the contact material, v
  • An electrical contact formed from a material which consists of a, mixture of silver, 5 to 50 weight percent of,copper and-2 to 20 weight percent of lanthanum, strontium chromite of formula La Sr CrO where the values-offix-lie between 0 and L0, formed as a hard, chemically inert, non-metallic phase of high electrical conductivity both within the bulk of, and at the surface of, the contact material.
  • a method of producing an electrical contact material including the steps of providing irregular silver powder having a powder particle size of not greater than approximately 350 mesh; providing irregular copper powder having a powder particle size of not greater than approximately 350 mesh; providing lanthanum strontium chromite powder of formula La, Sr,CrO
  • the values lie between 0 and 1.0, and having a powder particle size of not greater than approximately 10 microns; mixing the powders together to provide a fine, evenly dispersed mixture containing 5 to 50 weight percent of copper, 2 to 20 weight percent of La- Sr CrO and the remainder silver; compacting the powder mixture into a desired shape; and sintering the compacted shape.
  • a method as claimed in claim 11 wherein the provision of the La Sr CrO powder includes the steps of mixing La, Sr and Cr nitrates in stoichiometric proportions; spray decomposing the mixed nitrate solution to provide a mixed oxide powder; sintering the oxide powder in air; milling the sintered powder under acetone; and washing the milled powder in dilute hydrochloric acid.
  • a method as claimed in claim 11 wherein the lanthanum, strontium chromite is of formula La -,Sr CrO 14.
  • a method as claimed in claim 12 wherein the lanthanum, strontium chromite is of formula La Sr CrO 15.
  • a method as claimed in claim 14 wherein the sintering of the mixed oxide powder is effected for approximately hour at a temperature of approximately 16.
  • a method as claimed in claim 13 wherein the sintering of the powder compact is effected in an atmosphere of 3% hydrogen/97% nitrogen gas mixture at a temperature of 750C for a period of approximately 1 hour.
  • a method as claimed in claim 11 which includes the step of coining the sintered compacts to increase the density thereof.
  • An electrical contact material produced by a method including the steps of providing irregular silver powder having a powder particle size of not greater than approximately 350 British Standard mesh; providing irregular copper powder having a powder particle size of not greater than approximately 350 British Standard mesh; providing lanthanum strontium chromite powder of formula La, ,Sr,CrO where the values ofx lie between 0 and 1.0, and having a powder particle size of not greater than approximately 10 microns; mixing the powders together to provide a fine, evenly dispersed mixture containing 5 to weight percent of copper, 2 to 20 weight percent of La, ,Sr,CrO and the remainder silver; compacting the powder mixture into a desired shape; and sintering the compacted shape.
  • An electrical contact material produced by the method as claimed in claim 22 wherein the provision of the La ,Sr CrO powder includes the steps of mixing La, Sr and Cr nitrates in stoichiometric proportions; spray decomposing the mixed nitrate solution to provide a mixed oxide powder; sintering the oxide powder in air; milling the sintered powder under acetone; and washing the milled powder in dilute hydrochloric acid.
  • strontium chromite is of formula La ,Sr CrO UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION PATENT NO. 13,922,236

Abstract

An electrical contact material which consists of a mixture of silver, 5 to 50 weight percent of copper and 2 to 20 weight percent of lanthanum, strontium chromite of formula La1 xSrxCrO3, where the values of x lie between 0 and 1.0, formed as a hard, chemically inert, non-metallic phase of high electrical conductivity both within the bulk of, and at the surface of, the contact material. Methods of producing the electrical contact materials utilizing powder metallurgical techniques are outlined.

Description

tlnite States atet Douglas et al.
1 1 Nov. 25, 1975 (in- 1]. .lr 75/206 llamano 1. 252/521 Irimur ['.'.\umim'rBenjamin R. Padgett Altar/1c). Agent. or FirmH. .1. Rathhun; .1. Pristelski l 57 1 ABSTRACT An electrical contact material which consists of a mixture 01 silver. 5 to 5() weight percent of copper and 2 to 21) weight percent of lanthanum, strontium chromite ol' formula La, ,.Sr ,.(r();, where the values 01'.\' lie between (1 and 1.0. formed as a hard. chemicall inert. non-metallic phase of high electrical conductivity both within the bulk 01, and at the surface of, the contact material. Methods of producing the electrical contact materials utilizing powder metallurgical techniques are outlined.
25 Claims, No Drawings ELECTRICAL CONTACT MATERIALS The invention relates to electrical contact materials for use in electrical contacts and to methods of producing the electrical contact materials:
Electrical contact materials which consist of a mixture of silver and copper are known; the copper constituent being used because of its hardness and resistance to wear in comparison with pure silver. It is also known that the tarnish resistance and electrical conductivity of these silver/copper alloys decrease with increase in copper content.
It is an object of the present invention to provide an electrical contact material for the fabrication of electrical contacts with prolonged reliable continuity of electrical conductivity across the interface between its contact surface and the metal surface it is contacting under all environmental conditions.
The invention provides an electrical contact material which consists of a mixture of silver, 5 to 50 weight percent of copper and 2 to 20 weight percent of lanthanum, strontium chromite of formula La Sr CrO where the values ofx lie between and 1.0, formed as a hard chemically inert, non-metallic phase of high electrical conductivity both within the bulk of, and at the surface of, the contact material.
The invention also provides a method of producing an electrical contact material including the steps of providing irregular silver powder having a powder particle size of not greater than approximately 350British Standard mesh; providing irregular copper powder having a powder particle size of not greater than 350 British Standard mesh; providing lanthanum, strontium chromite powder of formula La ,Sr,CrO where the values of x lie between 0 and 1.0, and having a powder particle size of not greater than approximately 10 microns; mixing the powders together to provide a fine, evenly dispersed mixture containing to 50 weight percent of copper, 2 to 20 weight percent of La Sr,,.CrO and the remainder silver; compacting the powder mixture into a desired shape; and sintering the compacted shape.
The foregoing and other features according to the invention will be better understood from the following description of specific embodiments of the invention.
An electrical contact material according to the invention which is especially adapted for light duty applications consists of a mixture of silver, 5 to 50 weight percent of copper, and 2 to 20 weight percent of lanthanum, strontium chromite of formula La ,,Sr,CrO where the values of x lie between 0 and 1.0. The La- Sr CrO forms as a hard, chemically inert, non-metallic phase of high electrical conductivity both within the bulk of, and at the surface of, the contact material.
The I .a, Sr,,.CrO non-metallic phase which is present in the contact material as a fine dispersion of discrete particles, the mean particle size not exceeding approximately microns, possess the following properties:
a. The phase has a high electrical conductivity i.e. a specific resistivity within the range 1 to 10" ohm.cm.
b. The phase is thermodynamically stable with respect to the environment and the matrix metal or alloy.
c. The phase possesses high thermal stability in order to withstand thermal treatments likely to occur during the fabrication of the contact piece part.
d. The phase is chemically inert.
e. The phase isharder than the tarnish films likely to form on the matrix metal or alloy, for example, oxide or sulphide films.
The La Sr,CrO non-metallic phase will, therefore, form as a hard, chemically inert, non-metallic phase of high electrical conductivity both within the bulk of, and at the surface of, the contact material.
The presence of the highly conductive, non-metallic phase .at the surface of electrical contacts fabricated from the electrical contact material according to the invention effectively minimizes the increase in contact resistance by providing highly conductive paths across the contacting interface.
Also tarnish films which may form on the electrical contact material will be disrupted by the harder, chemically inert, non-metallic phase at the contact surface so that electrical contact is maintained; the discrete islands of highly conductive, non-metallic material effectively constitute anisotropic conducting paths through the otherwise electrically insulating tarnish film formed on the surrounding material.
In addition, the highly conductive, non-metallic phase enhances the tarnish resistance of the basic silver/copper alloy.
The electrical contact materials according to the invention can be fabricated by any one of several known techniques but are best fabricated by power metallurgical techniques.
In a method according to the invention for producing an electrical contact material which consists of silver, copper and La Sr CrO fine, irregular silver powder is intimately mixed with fine, irregular copper powder and La Sr CrO powder to provide a fine, evenly dispersed mixture containing 5 to 50 weight percent copper, 2 to 20 weight percent of the non-metallic La- ,.Sr CrO powder, and the remainder silver.
The size and shape of the powder particles are of prime importance in the manufacture of optimum contact materials and all the powders should preferably be as fine as is economically possible. This in practice involves the use of irregular silver and copper powders having a powder particle size of less than approximately 350 British Standard mesh and La Sr,CrO powder having a powder particle size of less than 10 microns and preferably less than 2 microns.
The use of fine powder ensures that a fine even dispersion of the powders is obtained in the finished contact material.
A typical commercially available silver powder which can be utilized is Thessco (a registered trademark in Great Britain) silver powder produced by Sheffield Smelting Company, a subsidiary of Engelhard Industries of Great Britain. This silver powder which is a precipitated powder of commercial purity is of irregular morphology, a powder particle size of less than 300 British Standard mesh and an apparent density of 1.9 gms/cc. This material also has (i) a geometric mean linear intercept by transmission microscopy of 17.8 microns, standard deviation 2.0 and (ii) a geometric mean linear intercept on a polished section of 4.1 microns, standard deviation 2.0. This commercially available silver powder is sieved before being used to remove the powder particles which are of a size greater than approximately 350 British Standard mesh.
The copper constituent should preferably be provided by clean, fine, dendritic copper powder of the specified particle size.
The lanthanum, strontium chromite (La ,Sr CrO powder can for example, be produced by spray decomposition of La, Sr and Cr nitrates in stoichiometric proportions. The oxide mixture resulting from this process is then sintered in air for approximately hour at a temperature of approximately l,250C. The sintered powder is then milled for 96 hours under acetone in an agate planetary miller and washed in dilute hydrochloric acid. This powder is free from impurities such as strontium chromate and has a submicron powder particle size.
It is important to note that these materials should be kept clean and dry in storage in order to prevent moisture absorption and surface oxidation (this is especially important for the silver and copper powders). The powder storage could for example be effected by the use of desiccators.
The intimate mixing of the silver, copper and La- Sr CrO powders can be effected by dry tumble milling. In order for the dry tumble milling to be effective for these powders it is important that the following mixing conditions are adhered to:
a. The constituent powders should have a particle size as specified in a preceding paragraph.
b. The powders should be desiccators stored, or
stored with some alternative means being employed of preventing absorption of moisture and surface oxidation.
c. The volume to be mixed should be from 50 grams upwards; the actual mixing time being dependent upon the size of the mix.
d. The copper composition should be in the range 5 to 50 weight percent and the La Sr CrO nonmetallic phase composition should be in the range 2 to 20 weight percent.
e. The volume of the drum should be of the order of 2 to times the volume of the powder being mixed in order to prevent the movement of the powder being restricted.
f. The relative humidity inside the drum should be in the range 0 to 70% and the inside drum temperature should be in the range 10 to 30C.
g. The speed of rotation of the drum should be such that the powders are continually in motion during mixing. Increasing the speed of rotation of the drum will decrease the time requiredfor good mixing. If the speed of rotation is excessive, however, then, due to the influence of centrifugal forces, mixing will be hindered.
h. The duration of powder mixing is generally dependent upon the copper and La Sr CrO non-metallic phase content of the powder; the larger the copper and electrically non-metallic phase content the longer the mixing time.
It should, however, be noted that the most significant variable in attaining a fine uniform dispersion of the copper and the La, ,,,Sr,CrO powders throughout the contact material is the absolute and relative sizes of the constituent powder particles and the optimum mixing schedule is largely determined by this factor.
Typical mixing conditions for the silver, copper and La Sr CrO powders in mixing volumes in the range 50 to 1000 grams, a copper composition in the range 5 to 50 weight percent and a La Sr,CrO non-metallic 4 phase composition in the range L0 to 20 weight percent are as follows:
a. The drum volume was of the order of 2 to 10 times that of the powders being mixed.
b. The mixing was carried out at 20C (range 17C to 23C) with a relative humidity of approximately 60% (range 45 to 65%).
c. The drum was revolved at rpm.
d. Two 5-hour mixing periods were carried out, the
powder mixture being sieved, between the two mixing stages, through a sieve having apertures of approximately 53 microns.
These mixing conditions have been found for the particular powders employed to give a uniformly mixed composite powder.
The powder mixture is then compacted at a pressure of'approximately 20 tons per square inch using molds into the desired shape for the electrical contacts.
The powder compacts are then sintered by being heated in an atmosphere of 3% hydrogen/97% nitrogen gas mixture at a temperature of 750C for a period of time of approximately 1 hour.
The processing schedule used results in some of the La ,Sr, CrO non-metallic material being present at the surface of the electrical contact where it stands proud of the surface as discrete islands of a hard, chemically inert, non-metallic phase of high electrical conductivity on a silver/copper sea.
The density of the contact material is then increased by a coining or stamping operation at a pressure of approximately 50 tons per square inch.
It should be noted that the temperature and pressure schedule of this method which produces contact compacts having a density of at least 98 percent of the theoretical maximum density, represents the optimum schedule for the powder particle sizes outlined in the preceding paragraph. It is envisaged that this schedule, and in particular the compacting and stamping pressures, may be changed if finer powders of different morphology are utilized.
The presence of the highly conductive, non-metallic phase in the electrical contacts produced by the method according to the invention effectively minimizes the increase in contact resistance previously referred to by providing highly conductive paths across the contacting interface and by inhibiting the tarnishing ability of the basic silver/copper alloy.
Also, the tarnishing films which, as previously stated, tend to form on the contact material are disrupted by the harder, chemically inert, non-metallic phase at the contact surface so that electrical contact is maintained by conducting phase to silver/copper or conducting phase to conducting phase contact; the discrete islands of highly conductive, non-metallic material effectively constitute anisotropic conducting paths through the otherwise electrically insulating oxide formed on the surrounding silver/copper material.
Examples of electrical contact materials produced by the method outlined in the preceding paragraphs in the form of domed electrical contacts are given below together with the associated contact resistance data. The electrical contacts were degreased in iso-propanol and subjected to accelerated tarnishing tests conducted in an atmosphere of moist air containing H S. The atmosphere consisted of l000 ppm of H 8 in moist air. The electrical contacts were exposed to this atmosphere for a period of approximately 10 minutes at room temperature. ,All the contact resistance measurements were made across the interface between the domed contact surface and a flat polished silver reference surface.
EXAMPLE 1 Silver 5 weight percent copper 5 weight percent 5 La Sr CrO This material, when compared with a silver 5 weight per cent copper alloy exhibited a marked reduction in contact resistance after exposure to atarnishing 1O atmosphere as shown in the following table:
Contact Resistance (ohms) at the following contact forces weight percent copper allow also exhibited a marked reduction in contact resistance after exposure to a tarnishing atmosphere as shown in the following table:
Contact Resistance (ohms) at the following contact forces.
Contact Material 30g 100g Silver 10 weight per cent Copper. 0.400 0.095 Silver 10 weight per cent Copper 5 weight per cent La Sr CrO 0.017 0.0048
It can, therefore, be seen from the above that the electrical contact materials containing 5 weight percent of La Sr CrQ, exhibit more than an order of magnitude reduction in contact resistance, at all contact forces, compared with the basic silver/copper alloy.
The electrical contact materials given above were also exposed to moist air for 52 hours at a temperature of approximately 50C, and showed only very slight tarnishing. The highest value of contact resistance recorded was 0.004 ohms. The electrical contact materials were then further exposed to 100 ppm of H 8 in moist air at room temperature for a period of approximately 10 minutes and the contact resistance data that was obtained was comparable with the data given in the above tables.
Similar improvements in contact performance over the basic silver/copper alloy have been observed for electrical contact materials with a copper concentration in the range 5 to 50 weight percent and a La ,-Sr,. CrO concentration in the range 2 to 20 weight percent.
It is to be understood that the foregoing description of specific examples of this invention is made by way of example only and is not to be considered as a limitation in its scope.
What is claimed is:
1. An electrical contact material which consists of a mixture of silver, 5 to 50 Weight percent of copper and 6 2 to 20 weight .percent of lanthanum, strontium chromite of formula La,s,sr,cro,, where the values ofx lie between Oand 1;,0, formed as a hard, chemically inert, non-metallic phase of high electrical conductivity both within the bulk of, and at the surface of, the contact material, v
2. An electrical contact formed from a material which consists of a, mixture of silver, 5 to 50 weight percent of,copper and-2 to 20 weight percent of lanthanum, strontium chromite of formula La Sr CrO where the values-offix-lie between 0 and L0, formed as a hard, chemically inert, non-metallic phase of high electrical conductivity both within the bulk of, and at the surface of, the contact material.
3.'An electrical contact material as claimed in claim 1 wherein the lanthanum, strontium chromite is of formulaLaMSrmsCrO 48 Anelectrical contactas claimed in claim 2 wherein the lanthanumrstro'ntium chromite is of the formula La0 Sro3CrO3f 5; An. electricaLcontact materialas claimed in claim 3 whereintheaLa S'r CrO content by weight is 5.0
percent.- a I 6. An electrical contact as claimed in claim 4 wherein the La Sr CrO content by weight is 5.0 percent.
7. An electrical contact material as claimed in claim 5 wherein the copper content by weight is 5 percent.
8. An electrical contact as claimed in claim 6 wherein the copper content by weight is 5 percent.
" 9. An electrical contact material as claimed in claim 5 wherein the copper content by weight is 10 percent. 10. An electrical contact as claimed in claim 6 wherein the copper content by weight is 10 percent.
11. A method of producing an electrical contact material including the steps of providing irregular silver powder having a powder particle size of not greater than approximately 350 mesh; providing irregular copper powder having a powder particle size of not greater than approximately 350 mesh; providing lanthanum strontium chromite powder of formula La, Sr,CrO
where the values lie between 0 and 1.0, and having a powder particle size of not greater than approximately 10 microns; mixing the powders together to provide a fine, evenly dispersed mixture containing 5 to 50 weight percent of copper, 2 to 20 weight percent of La- Sr CrO and the remainder silver; compacting the powder mixture into a desired shape; and sintering the compacted shape.
12. A method as claimed in claim 11 wherein the provision of the La Sr CrO powder includes the steps of mixing La, Sr and Cr nitrates in stoichiometric proportions; spray decomposing the mixed nitrate solution to provide a mixed oxide powder; sintering the oxide powder in air; milling the sintered powder under acetone; and washing the milled powder in dilute hydrochloric acid.
13. A method as claimed in claim 11 wherein the lanthanum, strontium chromite is of formula La -,Sr CrO 14. A method as claimed in claim 12 wherein the lanthanum, strontium chromite is of formula La Sr CrO 15. A method as claimed in claim 14 wherein the sintering of the mixed oxide powder is effected for approximately hour at a temperature of approximately 16. A method as claimed in claim 14 wherein the milling of the sintered powder is effected for 96 hours.
17. A method as claimed in claim 13 wherein the sintering of the powder compact is effected in an atmosphere of 3% hydrogen/97% nitrogen gas mixture at a temperature of 750C for a period of approximately 1 hour.
18. A method as claimed in claim 11 wherein the compacting of the powder is effected at a pressure of approximately tons per square inch.
19. A method as claimed in claim 11 wherein the powder mixture is effected by dry tumble milling.
20. A method as claimed in claim 11 which includes the step of coining the sintered compacts to increase the density thereof.
21. A method as claimed in claim 20 wherein the coining is effected at a pressure of approximately 50 tons per square inch.
22. An electrical contact material produced by a method including the steps of providing irregular silver powder having a powder particle size of not greater than approximately 350 British Standard mesh; providing irregular copper powder having a powder particle size of not greater than approximately 350 British Standard mesh; providing lanthanum strontium chromite powder of formula La, ,Sr,CrO where the values ofx lie between 0 and 1.0, and having a powder particle size of not greater than approximately 10 microns; mixing the powders together to provide a fine, evenly dispersed mixture containing 5 to weight percent of copper, 2 to 20 weight percent of La, ,Sr,CrO and the remainder silver; compacting the powder mixture into a desired shape; and sintering the compacted shape.
23. An electrical contact material produced by the method as claimed in claim 22 wherein the provision of the La ,Sr CrO powder includes the steps of mixing La, Sr and Cr nitrates in stoichiometric proportions; spray decomposing the mixed nitrate solution to provide a mixed oxide powder; sintering the oxide powder in air; milling the sintered powder under acetone; and washing the milled powder in dilute hydrochloric acid.
24. An electrical contact material produced by the method as claimed in claim 22 wherein the lanthanum, strontium chromite is of formula La Sr CrO 25. An electrical contact material produced by the method as claimed in claim 23 wherein the lanthanum,
strontium chromite is of formula La ,Sr CrO UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION PATENT NO. 13,922,236
DATED November 25, 1975 INVENTOR(S) 3 PETER DOUGLAS ET AL it is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 5, line 27, change "allow" to read -a1loy- Delete claims 11-21, inclusive, and renumber claims 22-25 as claims 11-14 respectively.
Signed and Scaled this A ttest:
RUTH C. MASON C. MARSHALL DANN Arresting Officer (ummissiuner uj'latems and Trademarks UNITED STATES PATENT OFFICE QERTIFICATE OF CORRECTION PATENT NO. 3,922,236
DATED 3 November 25, 1975 INVENTOR(S) 1 PETER DOUGLAS ET AL It is certified that error appears in the above-identified patent and that said Letters Patent are hereby cor ected as shown below:
Column 5, line 27, change "allow" to read --alloy-- Delete claims 11-21, inclusive, and renumber claims 22-25 as claims 11-14 respectively.
Signed and Sealed thisthirtieth D a)! of March 1976 [SEAL] A ttest:
RUTH C. MASON C. MARSHALL DANN Arresting Officer Commissioner ofParenls and Trademarks

Claims (25)

1. An electrical contact material which consists of a mixture of silver, 5 to 50 weight percent of copper and 2 to 20 weight percent of lanthanum, strontium chromite of formula La1 xSrxCrO3, where the values of x lie between 0 and 1.0, formed as a hard, chemically inert, non-metallic phase of high electrical conductivity both within the bulk of, and at the surface of, the contact material.
2. AN ELECTRICAL CONTACT FORMED FROM A MATERIAL WHICH CONSISTS OF A MIXTURE OF SILVER, 5 TO 50 WEIGHT PERCENT OF COPPER AND 2 TO 20 WEIGHT PERCENT OF LANTHANUM, STRONTIUM CHROMITE OF FORMULA LA1-X SRXCRO3, WHERE THE VALUES OF X LIE BETWEEN 0 TO 1.0, FORMED AS A HARD, CHEMICALLY INERT, NONMETALLIC PHASE OF HIGH ELECTRICAL CONDUCTIVITY BOTH WITHIN THE BULK OF, AND AT THE SURFACE OF, THE CONTACT MATERIAL.
3. An electrical contact material as claimed in claim 1 wherein the lanthanum, strontium chromite is of formula La0.7Sr0.3CrO3.
4. An electrical contact as claimed in claim 2 wherein the lanthanum, strontium chromite is of the formula La0.7Sr0.3CrO3.
5. An electrical contact material as claimed in claim 3 wherein the La0.7Sr0.3CrO3 content by weight is 5.0 percent.
6. An electrical contact as claimed in claim 4 wherein the La0.7Sr0.3CrO3 content by weight is 5.0 percent.
7. An electrical contact material as claimed in claim 5 wherein the copper content by weight is 5 percent.
8. An electrical contact as claimed in claim 6 wherein the copper content by weight is 5 percent.
9. An electrical contact material as claimed in claim 5 wherein the copper content by weight is 10 percent.
10. An electrical contact as claimed in claim 6 wherein the copper content by weight is 10 percent.
11. A METHOD OF PRODUCING AN ELECTRICAL CONTACT MATERIAL INCLUDING THE STEPS OF PROVIDING IRREGULAR SILVER POWDER HAVING A POWDER PARTICLE SIZE OF NOT GREATER THAN APPROXIMATELY 350 MESH; PROVIDING IRREGULAR COPPER POWDER HAVING A POWDER PARTICLE SIZE OF NOT GREATER THAN APPROXIMATELY 350 MESH; PROVIDING LANTHANUM STRONTIUM CHROMITE POWDER OF FORMULA LA1-XSRXCRO3, WHERE THE VALUES LIE BETWEEN 0 AND 1.0, AND HAVING A POWDER PARTICLE SIZE OF NOT GREATER THAN APPROXIMATELY 10 MICRONS; MIXING THE POWDERS TOGETHER TO PROVIDE A FINE, EVENLY DISPERSED MIXTURE CONTAINING 5 TO 50 WEIGHT PERCENT OF COPPER, 2 TO 20 WEIGHT PERCENT OF LA1-XSRXCRO3 AND DESIRED SHAPE; AND SINTERING THE COMPACTED SHAPE. DESIRED SHAPE; AND SINTERING THE COMPACTED SHAPE.
12. A method as claimed in claim 11 wherein the provision of the La1 x SrxCrO3 powder includes the steps of mixing La, Sr and Cr nitrates in stoichiometric proportions; spray decomposing the mixed nitrate solution to provide a mixed oxide powder; sintering the oxide powder in air; milling the sintered powder under acetone; and washing the milled powder in dilute hydrochloric acid.
13. A method as claimed in claim 11 wherein the lanthanum, strontium chromite is of formula La0.7Sr0.3CrO3.
14. A method as claimed in claim 12 wherein the lanthanum, strontium chromite is of formula La0.7Sr0.3CrO3.
15. A method as claimed in claim 14 wherein the sintering of the mixed oxide powder is effected for approximately 1/2 hour at a temperature of approximately 1,250*C.
16. A method as claimed in claim 14 wherein the milling of the sintered powder is effected for 96 hours.
17. A method as claimed in claim 13 wherein the sintering of the powder compact is effected in an atmosphere of 3% hydrogen/97% nitrogen gas mixture at a temperature of 750*C for a period of approximately 1 hour.
18. A method as claimed in claim 11 wherein the compacting of the powder is effected at a pressure of approximately 20 tons per square inch.
19. A method as claimed in claim 11 wherein the powder mixture is effected by dry tumble milling.
20. A method as claimed in claim 11 which includes the step of coining the sintered compacts to increase the density thereof.
21. A method as claimed in claim 20 wherein the coining is effected at a pressure of approximately 50 tons per square inch.
22. AN ELECTRICAL CONTACT MATERIAL PRODUCED BY A METHOD INCLUDING THE STEPS OF PROVIDING IRREGULAR SILVER POWDER HAVING A POWDER PARTICLE SIZE OF NOT GREATER THAN APPROXIMATELY 350 BRITISH STANDARD MESH; PROVIDING IRREGULAR COPPER POWDER HAVING A POWDER PARTICLE SIZE OF NOT GREATER THAN APPROXIMATELY 350 BRITISH STANDARD MESH; PROVIDING LANTHANUM STRONTIUM CHROMITE POWDER OF FORMULA LA1-XSRXCRO3, WHERE THE VALUES OF X LIE BETWEEN 0 AND 1.0, AND HAVING A POWDER PARTICLE SIZE OF NOT GREATER THAN APPROXIMATELY 10 MICRONS; MIXING THE POWDERS TOGETHER TO PROVIDE A FINE, EVENLY DISPERSED MIXTURE CONTAINING 5 TO 50 WEIGHT PERCENT OF COPPER, 2 TO 20 WEIGHT PERCENT OF LA1-XSRXCRO3 AND THE REMAINDER SILVER; COMPACTING THE POWDER MIXTURE INTO A DESIRED SHAPE; AND SINTERING THE COMPACTED SHAPE.
23. An electrical contact material produced by the method as claimed in claim 22 wherein the provision of the La1 xSrxCrO3 powder includes the steps of mixing La, Sr and Cr nitrates in stoichiometric proportions; spray decomposing the mixed nitrate solution to provide a mixed oxide powder; sintering the oxide powder in air; milling the sintered powder under acetone; and washing the milled powder in dilute hydrochloric acid.
24. An electrical contact material produced by the method as claimed in claim 22 wherein the lanthanum, strontium chromite is of formula La0.7Sr0.3CrO3.
25. An electrical contact material produced by the method as claimed in claim 23 wherein the lanthanum, strontium chromite is of formula La0.7Sr0.3CrO3.
US384161A 1972-08-01 1973-07-30 Electrical contact materials Expired - Lifetime US3922236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US05/586,763 US3981726A (en) 1972-08-01 1975-06-13 Electrical contact materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB3582672A GB1401037A (en) 1972-08-01 1972-08-01 Electrical contact materials

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/586,763 Division US3981726A (en) 1972-08-01 1975-06-13 Electrical contact materials

Publications (1)

Publication Number Publication Date
US3922236A true US3922236A (en) 1975-11-25

Family

ID=10381921

Family Applications (1)

Application Number Title Priority Date Filing Date
US384161A Expired - Lifetime US3922236A (en) 1972-08-01 1973-07-30 Electrical contact materials

Country Status (2)

Country Link
US (1) US3922236A (en)
GB (1) GB1401037A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1984003389A1 (en) * 1983-02-23 1984-08-30 American Telephone & Telegraph Thick film resistor circuits
US4499009A (en) * 1981-12-21 1985-02-12 Mitsubishi Denki Kabushiki Kaisha Electrode composition for vacuum switch
US4830780A (en) * 1987-10-23 1989-05-16 Allied-Signal Inc. Preparation of lanthanum chromate and lanthanum chromite powders by sol-gel
US4927647A (en) * 1987-07-13 1990-05-22 R. J. Reynolds Tobacco Company Anti-stick package for hygroscopic foods
US5061402A (en) * 1987-10-23 1991-10-29 Allied-Signal Inc. Preparation of lanthanum chromate powders by sol-gel
US5128284A (en) * 1987-10-23 1992-07-07 Allied-Signal Inc. Preparation of lanthanum chromite powders by sol-gel
US5796017A (en) * 1993-08-23 1998-08-18 Siemens Aktiengesellschaft Silver-based contact material, use of such a contact material, in switchgear for power engineering applications and method of manufacturing the contact material
US5800932A (en) * 1995-02-28 1998-09-01 The Furukawa Electric Co., Ltd. Electric contact material and a manufacturing method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3385677A (en) * 1965-06-30 1968-05-28 Siemens Ag Sintered composition material
US3506437A (en) * 1967-11-07 1970-04-14 Textron Inc Method for making silver/cadmium oxide contact materials
US3630968A (en) * 1969-07-15 1971-12-28 Agency Ind Science Techn Oxide having the structural formula (la1-xcax)cro3 where x is between .01 and .15 and a method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3385677A (en) * 1965-06-30 1968-05-28 Siemens Ag Sintered composition material
US3506437A (en) * 1967-11-07 1970-04-14 Textron Inc Method for making silver/cadmium oxide contact materials
US3630968A (en) * 1969-07-15 1971-12-28 Agency Ind Science Techn Oxide having the structural formula (la1-xcax)cro3 where x is between .01 and .15 and a method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4499009A (en) * 1981-12-21 1985-02-12 Mitsubishi Denki Kabushiki Kaisha Electrode composition for vacuum switch
US4537743A (en) * 1981-12-21 1985-08-27 Mitsubishi Denki Kabushiki Kaisha Electrode composition for vacuum switch
WO1984003389A1 (en) * 1983-02-23 1984-08-30 American Telephone & Telegraph Thick film resistor circuits
US4503090A (en) * 1983-02-23 1985-03-05 At&T Bell Laboratories Thick film resistor circuits
US4927647A (en) * 1987-07-13 1990-05-22 R. J. Reynolds Tobacco Company Anti-stick package for hygroscopic foods
US4830780A (en) * 1987-10-23 1989-05-16 Allied-Signal Inc. Preparation of lanthanum chromate and lanthanum chromite powders by sol-gel
US5061402A (en) * 1987-10-23 1991-10-29 Allied-Signal Inc. Preparation of lanthanum chromate powders by sol-gel
US5128284A (en) * 1987-10-23 1992-07-07 Allied-Signal Inc. Preparation of lanthanum chromite powders by sol-gel
US5796017A (en) * 1993-08-23 1998-08-18 Siemens Aktiengesellschaft Silver-based contact material, use of such a contact material, in switchgear for power engineering applications and method of manufacturing the contact material
US5800932A (en) * 1995-02-28 1998-09-01 The Furukawa Electric Co., Ltd. Electric contact material and a manufacturing method therefor

Also Published As

Publication number Publication date
GB1401037A (en) 1975-07-16

Similar Documents

Publication Publication Date Title
US3893821A (en) Silver electrical contact materials containing La{hd 1{118 x{b Sr{hd x{b CrO{HD 3
EP1705154A1 (en) Indium oxide powder and method for producing same
US3922236A (en) Electrical contact materials
JP3361194B2 (en) Cobalt / cobalt oxide powder, method for its production and its use
US3981726A (en) Electrical contact materials
US2657127A (en) Production of chromium-alloyed corrosion-resistant metal powders and related products
US4056365A (en) Silver electrical contact materials and method of making
US3957508A (en) Electrical contact materials
US4450135A (en) Method of making electrical contacts
US3576619A (en) Method for making alloy powders
JPS59119713A (en) Storage battery and method of producing same
US3893820A (en) Cu-{8 Ag{9 -CdO electric contact materials
JPH0470380B2 (en)
US2170814A (en) Method of preparing copper powder
Davies et al. Silver electrical contact materials containing La 1-x Sr x CrO 3
US3853537A (en) Sintering alloy
US3920452A (en) Light-duty electrical contacts
US4011053A (en) Electrical contact material and process
US3778257A (en) Light-duty electrical contacts of silver and ruthenium oxide
JPS621835A (en) Manufacture of ag-nio electric contact point material
US4427625A (en) Silver cadmium oxide electrical contacts
US4003755A (en) Dispersion-hardened lead alloy
JPS648063B2 (en)
JP2735936B2 (en) Dispersion-strengthened Ni alloy powder excellent in sinterability and method for producing the same
US3966464A (en) Electrical contact materials and methods of making the same