JPS5913746A - Preparation of acrylic acid - Google Patents

Preparation of acrylic acid

Info

Publication number
JPS5913746A
JPS5913746A JP12292482A JP12292482A JPS5913746A JP S5913746 A JPS5913746 A JP S5913746A JP 12292482 A JP12292482 A JP 12292482A JP 12292482 A JP12292482 A JP 12292482A JP S5913746 A JPS5913746 A JP S5913746A
Authority
JP
Japan
Prior art keywords
acrylic acid
water
stage
wastewater
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12292482A
Other languages
Japanese (ja)
Other versions
JPS6241659B2 (en
Inventor
Takahisa Sato
高久 佐藤
Yoshinobu Haruna
春名 義信
Atsushi Okubo
篤 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP12292482A priority Critical patent/JPS5913746A/en
Publication of JPS5913746A publication Critical patent/JPS5913746A/en
Publication of JPS6241659B2 publication Critical patent/JPS6241659B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To prepare the titled compound economically, without environmental pollution, by concentrating the process waste water of the catalytic vapor- phase propylene-oxidation process using a double effect evaporator, and reusing the obtained condensed liquid as the absorbent water for collecting acrylic acid. CONSTITUTION:Acrylic acid is prepared by the catalytic vapor-phase oxidation of propylene using steam and an O2-containing gas. In the above process, acrylic acid produced by the reactors 101 and 102 is cooled and absorbed in water in the collector 103 to obtain an aqueous solution. A part of the waste gas left after the collection is recycled to the oxidation reaction process through the pipe 10, and the aqueous solution of acrylic acid is sent to the acrylic acid separation steps 104-107. The waste water discharged from the separation step is concentrated by a double effect evaporator. That is, the waste water is introduced through the pipe 24 to the first evaporator 109, the vapor generated therefrom is recycled to the reactor 101, and the vapor generated from the second evaporator 110 is used as the heat source of the evaporator 109. The obtained condensed water is recycled through the pipe 9 and reused as the absorbent water for collecting acrylic acid.

Description

【発明の詳細な説明】 本発明はプロピレンを接触気相酸化してアクリル酸を製
造するプロセスにおいて、発生する廃水の有効利用なら
ひに無害化処理法に関するものである。詳しく述へると
本発明は、水蒸気および分子状酸素含有カスをn4]い
て、プロピレンを接触気相酸化してアクリル酸を製造す
るプロセスにおいて、該酸化反応で生成したアクリル酸
を水溶液として捕集したあとの廃ガスの一部を該酸化反
応用に循環使用し、−力捕集されたアクリル酸水溶液を
アクリル酸分離エフ程に導ひき、えられた廃水を2重効
用缶を用いて濃縮し、1段目の濃縮缶でえられる廃水の
蒸気を該酸化反応用に循環使用し、2段目の濃縮缶でえ
られる廃水蒸気を1段目濃縮缶の熱源に用い、えられる
凝縮水を生成アクリル酸の捕集用に循環使用し、さらに
2段目の濃縮缶でえられる濃縮廃水を上起片ガスの残部
とともに完全酸化処理せしめることを特徴とするアクリ
ル酸のクローズド/ステム化された製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for effectively utilizing and detoxifying wastewater generated in a process for producing acrylic acid by catalytic gas phase oxidation of propylene. Specifically, the present invention is a process for producing acrylic acid by catalytic gas phase oxidation of propylene using water vapor and molecular oxygen-containing residue, and collecting acrylic acid produced in the oxidation reaction as an aqueous solution. A part of the waste gas after this is recycled for the oxidation reaction, and the collected acrylic acid aqueous solution is led to the acrylic acid separation stage, and the resulting waste water is concentrated using a double-effect tank. The waste water vapor obtained in the first stage concentrator is recycled for the oxidation reaction, and the waste water vapor obtained in the second stage concentrator is used as a heat source for the first stage concentrator. A closed/stem system for producing acrylic acid, which is characterized in that the acrylic acid is circulated and used for collecting the produced acrylic acid, and the concentrated wastewater obtained in the second stage concentrator is completely oxidized together with the remainder of the supernatant gas. The present invention relates to a manufacturing method.

本発明者らは、すでに特願昭51 256 fl 2号
(特開昭52−10 R917号公報参照)[プロピオ
ン酸接触気相酸化によるアクリル酸の製造方法]によっ
て、[プロピレンを前段および後段反応器を通してアク
リル酸に酸化し、えられた反応生成ガスをアクリル酸捕
集装置にてアクリル酸水溶液と廃ガスにわけ、その廃ガ
スの一部を前段での反応用に循環使用するプロセス」を
提供した。そしてその特徴とするところ1l−J:[廃
ガスを前段反応に7+H使用する際に廃ガスの一部を含
む反応用原料ガス中のアクリル酸濃度が0.5容量係を
越えないようにするためアクリル酸捕集装置からの廃ガ
スの抽出温度を35〜80℃の範囲に保持し、かつ該廃
ガスの15〜85係を前段反応器に循環せしめること」
とした。そしてこの方法によって1プロピレンからアク
リル酸が長期間高収率でかつ高濃度な水溶液としてえら
れる目的も達成でき、その結果、反応および精製に程で
の1−ティ1l−i−イーの低減、排水量の減少、アク
リル酸の収率の増大等が達成され、極めて工業的に餌料
なプロセス」が提案されたのである。
The inventors of the present invention have already disclosed a method for producing acrylic acid by propionic acid-catalyzed gas phase oxidation (see Japanese Patent Application No. 51-256 fl 2 (see Japanese Patent Application Laid-open No. 52-10 R917)) in which propylene is used in the first and second stages of reaction. A process in which the resulting reaction product gas is separated into an acrylic acid aqueous solution and waste gas by an acrylic acid collection device, and a portion of the waste gas is recycled for use in the previous reaction. provided. Its characteristics are 1l-J: [When using waste gas in the first stage reaction, the concentration of acrylic acid in the raw material gas for reaction, which includes a part of the waste gas, should not exceed 0.5 volume. Therefore, the extraction temperature of the waste gas from the acrylic acid collection device should be maintained in the range of 35 to 80°C, and the 15 to 85 parts of the waste gas should be circulated to the first stage reactor.
And so. By this method, it is possible to obtain acrylic acid from 1-propylene in a high yield over a long period of time as a highly concentrated aqueous solution. A highly industrially viable process was proposed, which reduced the amount of wastewater and increased the yield of acrylic acid.

そこで、本発明者らは、手記発明方法をさらに工業的に
完成されたものとすへく検討した。すなわち、反応方法
、廃ガスのりザイクル刊用はその件\として該プロセス
からJII’出する1介水を1[)使用1する方法につ
いて集中して研究し、クローストプロセス化された本発
明方法を完成するに至ったものである。
Therefore, the inventors of the present invention have carefully examined the method of the manual invention to further improve it on an industrial scale. In other words, we focused on the reaction method and the method of using 1 [) 1 1 [) 1 [] 1 [1] produced from the process, and developed the method of the present invention which has been converted into a clost process. This is what we have come to complete.

プロピレノを接触気相酸化してアクリル酸を製造するプ
ロセスに丸・いては多量゛の廃水か排出する。
The process of producing acrylic acid by catalytic gas phase oxidation of propylene generates a large amount of waste water.

すなわち、該酸化反応にふ・ける原料ガス中にかなりの
量の水蒸気が混合使用さ′11、反応によって生成する
副生水と共に反応生成物の捕集装置に送られる。捕集装
置においては、−主生成物たる了クリル酸と共に手記水
蒸気も凝縮捕集されるが、この場合、吸収水にて直接接
触せしめて冷却凝縮せしめる方法が一般的であり、かく
して通常20〜70重量%のアクリル酸水溶液が回収さ
れる。この水溶液からはつぎの抽出捷たは共沸蒸留工程
でアクリル酸が分離されるとき多量の廃水が抽出されて
くる。この廃水の中には、未回収のアクリル酸や副生の
酢酸やプロピオン酸の他に微届のマレイン酸などの有機
酸、さらにアクロレイン、ホルルアルデヒド、アセトア
ルデヒドなどの了ルテヒド顛、あるいはこれら化合物か
らの種々の誘導体、さらに抽出や共沸蒸留用の有機溶媒
−や重合防止剤などが合言1で0.5〜5重量係程度含
有されている。
That is, a considerable amount of water vapor is mixed with the raw material gas involved in the oxidation reaction and is sent to the reaction product collection device together with by-product water produced by the reaction. In the collection device, water vapor is condensed and collected together with the main product, acrylic acid. In this case, the common method is to bring it into direct contact with absorbed water and cool and condense it. A 70% by weight aqueous acrylic acid solution is recovered. A large amount of waste water is extracted from this aqueous solution when acrylic acid is separated in the next extraction or azeotropic distillation step. This wastewater contains unrecovered acrylic acid, by-product acetic acid and propionic acid, as well as small amounts of organic acids such as maleic acid, as well as organic acids such as acrolein, formaldehyde, acetaldehyde, and other compounds. Various derivatives from , organic solvents for extraction and azeotropic distillation, polymerization inhibitors, etc. are contained in an amount of about 0.5 to 5% by weight.

このにつなかなりの量の有機物を含んだ廃水はそのまま
河川へ放流することはできないので、活性汚泥法とか濃
縮燃焼法などで無害化処理をせねばならない。しかし、
上記の活性汚泥法は設備費や経費も小さくはなく、また
無公害化処理も完全に行い難く、一方、濃縮燃焼法もこ
のような廃水全部をそのit処理するにはこれもまた設
備費や経費も高くつくプロセスとならざるをえない。
Because wastewater containing a considerable amount of organic matter cannot be directly discharged into rivers, it must be detoxified using activated sludge methods or concentrated combustion methods. but,
The above-mentioned activated sludge method requires not a small amount of equipment and expenses, and it is difficult to achieve complete pollution-free treatment.On the other hand, the concentrated combustion method also requires equipment costs to process all of this wastewater. This inevitably becomes an expensive process.

したがって、このように公害源となりやすいプロセス廃
水をいかに効率よく浄化するかはきわめて焦眉の」、業
−1−の大きな課題の つといえるであろう。
Therefore, how to efficiently purify process wastewater, which is likely to be a source of pollution, is an extremely urgent and major issue in industry.

一方、上述したようにアクII /し酸を製造するプロ
セスには、水蒸気や冷却吸収水とし2ての水の使1(1
」が多いためもあり、この廃水を11fO−該製造プロ
セスに戻すことも、プロセス開発上強く要望さI]てい
ることである。
On the other hand, as mentioned above, in the process of producing ac II/acid, water is used as water vapor or cooling absorption water.
This is partly because there is a large amount of 11fO, and there is a strong demand for process development to return this wastewater to the 11fO manufacturing process.

本発明者は該廃水をプロセス内に戻して1工使Illす
る方法を神々検利した。捷ず、廃水を子の捷\アクリル
酸の捕集用の吸収水として[I1使用すると、この吸収
水−アクリル酸水溶液−廃水の系内G′こ有機酸やその
他種々な不純物が濃縮蓄積して行き、遂Vこはある一定
の平衡濃度に達し、それ以降はアクリル酸とともに同伴
して抽出されたりして最終製品であるアクリル酸に混入
し、品質か低重することが判明した、7 さらに悪いことには、アクリル酸の捕集塔からの廃ガス
の一部を酸化反応の原料ガスの一部として使用する廃ガ
スリサイクルプロセスにおいて、アクリル酸捕集用の吸
収水として酸濃度の高くなつた廃水を再使用すると、ア
クリル酸の抽年率か低下するばかりでなく、酸化反応に
おける触媒の活性も次第に低下阻害され、アクリル酸の
収率の低下をきだずことが判明した。すなわち、吸収水
としての廃水の酸分の増加によりアクリル酸捕集装置で
のアクリル酸の捕集効率も低下し、その分すザイクルさ
れる廃ガス中に同伴されるためである。したがって、廃
水を無処理の11で再使用することは不都合であること
が明らかとなった。
The inventor discovered a method for returning the wastewater to the process. When wastewater is used as absorption water for collection of acrylic acid without separation, organic acids and other various impurities will be concentrated and accumulated in the system of absorption water - acrylic acid aqueous solution - wastewater. It was discovered that after reaching a certain equilibrium concentration, it was extracted together with acrylic acid and mixed into the final product, acrylic acid, resulting in a decrease in quality and weight.7 To make matters worse, in the waste gas recycling process where a part of the waste gas from the acrylic acid collection tower is used as part of the raw material gas for the oxidation reaction, the absorption water for acrylic acid collection has a high acid concentration. It has been found that when wastewater is reused, the extraction rate of acrylic acid not only decreases, but also the activity of the catalyst in the oxidation reaction gradually decreases and is inhibited, leading to a decrease in the yield of acrylic acid. That is, as the acid content of the wastewater as absorbed water increases, the efficiency of collecting acrylic acid in the acrylic acid collecting device also decreases, and the acrylic acid is entrained in the cycled waste gas. Therefore, it has become clear that it is inconvenient to reuse the wastewater without treatment.

このような問題を解決するため、本発明者らは2取効用
缶を使って廃水を濃縮し、廃水から蒸発してえられる凝
縮水を阿利用し、濃縮される廃水の無害化処理を検8」
シたところ、1段目の濃縮化からえられる廃水からの蒸
気をそのま″!、酸化酸化用応用環せしめ、2段目の濃
縮化からえられる廃水の蒸気を1段目の濃縮化の熱源と
して使用し、えられる凝縮液が吸収水として利用できる
こと、2段目の濃縮化でえもれる濃縮廃水はアクリル酸
を捕集したあとの廃ガスの残部とともに完全酸化処理せ
しめることが有利であることを見出し、本発明を完成す
るに至ったものである。
In order to solve these problems, the present inventors concentrated wastewater using a double-effect can, utilized the condensed water obtained by evaporation from the wastewater, and examined the detoxification treatment of the concentrated wastewater. 8"
However, the steam from the wastewater obtained from the first stage of condensation was directly applied to the oxidation ring, and the steam from the wastewater obtained from the second stage of condensation was used for the first stage of condensation. It is advantageous to use it as a heat source and use the resulting condensate as absorption water, and to completely oxidize the concentrated wastewater that leaks out in the second stage of concentration together with the remainder of the waste gas after collecting acrylic acid. This discovery led to the completion of the present invention.

すなわち、2段目の濃縮FTiかもえられる1発示凝縮
液のアクリル酸捕集用吸収水としての利用は、なんら−
に連したような小郡(ヤを一トぜず、アクロレイン、ポ
ルムアルデヒド、アセト了ルテヒトなとの軽θ1)煮物
の蓄積も起らず、アクリル酸の捕集も高水準を維持しう
ることかわかり、一方、1段目の濃縮化からえられ/こ
廃水の水蒸気IJ:、−Tクロレイン、ポルム了ルブヒ
ト、アセト了ルデヒt−ナトの軽沸点物と夕闇のアクリ
ル酸分を同伴するものの上記接触気相酸化反応に供する
原料ガス中において常に了り1jル酸分を0.5容量%
以下、とくに()、3容#係以下に調節しつつ使用しう
ろことか知見されたのである。
In other words, there is no use of the first-stage condensate, which may be concentrated FTi in the second stage, as absorption water for collecting acrylic acid.
There is no accumulation of boiled food (light θ1 with acrolein, pormaldehyde, and acetolytate) like that associated with the above, and the collection of acrylic acid can also be maintained at a high level. On the other hand, the water vapor IJ of the wastewater obtained from the first stage of condensation is accompanied by the light boiling point substances of T-chlorein, porium chloride, acetaldehyde, and acrylic acid in the evening. Always contain 0.5% by volume of acid in the raw material gas used for catalytic gas phase oxidation reaction.
Hereinafter, it was discovered that the scales should be used while adjusting the volume to 3 volume or less.

本発明において(は、反応に必要な水蒸気は実質的に1
段目の濃縮化の廃水の蒸気により供給されるために、ア
クリル酸捕集装置で吸収水が供給される吸収塔の塔頂温
度は任意に設定することができ、できるだけ低く設定す
ることにより−rクリル酸や水蒸気を実質的に凝縮吸収
させ、廃ガス中へ同伴されてυ1出される酸分がほとん
どセロとなるように操作しつる、工業的には一般に安価
に人手できる冷水塔水を使用しての冷却となるため、塔
頂温度40℃以下、好ましくは25〜10℃とする。吸
収塔の塔頂温度をできるだけ低く設定することにより、
吸収塔におけるアクリル酸の捕集を容易にしうる。また
ここで廃水の凝縮水をアクリル酸を捕集する吸収水とし
て循環使用するのであるが、吸収塔の塔高を低くできる
と共に従来廃水からそのit捨てられていたアクリル酸
を逆にこ廃水の凝縮水を吸収水として使用することによ
ってアクリル酸の回収ができる。またリザイクルされる
廃ガスの温度が低いため、リザイクルするガス風邦が小
さくなり、リサイクル用ブロヮーヲ小すくすることがで
きる。
In the present invention, the water vapor required for the reaction is substantially 1
The temperature at the top of the absorption tower to which the absorbed water is supplied by the acrylic acid collector can be set arbitrarily, since it is supplied by the vapor of the waste water from the condensation stage, and by setting it as low as possible - rCrylic acid and water vapor are substantially condensed and absorbed, and the acid content that is entrained in the waste gas and released is operated so that almost all of it becomes cellulose.Industrial use generally uses cold water tower water, which can be done manually at low cost. The tower top temperature is set to 40°C or less, preferably 25 to 10°C. By setting the top temperature of the absorption tower as low as possible,
It can facilitate the collection of acrylic acid in the absorption tower. In addition, the condensed water of the wastewater is recycled as absorption water to collect acrylic acid, and the height of the absorption tower can be lowered, and the acrylic acid that was conventionally discarded from the wastewater can be transferred to the wastewater. Acrylic acid can be recovered by using condensed water as absorption water. Furthermore, since the temperature of the recycled waste gas is low, the amount of gas to be recycled is reduced, and the recycling blower can be made smaller.

吸収水として使用する廃水の凝縮水は、2段目の濃縮化
の水蒸気からのものを用いた方がよい。
It is preferable that the condensed water of the waste water used as absorption water is from the steam of the second stage of condensation.

というのは、1段目の濃縮化の水蒸気には了クロレイン
、ホルムアルデヒド、了セトアルテヒドなどの軽沸点物
を含むゆえ吸収水として循環再使用すると吸収水−−T
クリル酸水隘液−廃水の系内に濃縮蓄積して行き、アク
リル酸とともに同伴して抽出されたりして、了クリル酸
の精製ト稈での重合性の問題、最終製品であるアクリル
酸(・・二も混入して品質か低下するからである。そこ
で、吸収水としては、廃水に含捷れる軽沸1−j物か除
去された2段目の濃縮化の廃水の凝縮水を用いる。
This is because the steam from the first stage of condensation contains light-boiling substances such as chlorolein, formaldehyde, and cetaldehyde, so if it is recycled and reused as absorbed water, the absorbed water becomes
Acrylic acid water solution - Concentrates and accumulates in the wastewater system and is extracted together with acrylic acid, resulting in problems with polymerization in the culm during purification of acrylic acid and the final product acrylic acid ( This is because the quality deteriorates due to the contamination of the waste water.Therefore, as the absorption water, the condensed water of the waste water from the second stage of concentration, which has removed the light-boiling substances 1-j contained in the waste water, is used. .

力゛、了クロレイン、ポルムアルデヒド、−rセト了ル
デヒトなどの軽沸点物をaむ1段目の濃縮化の水蒸気−
反応用水蒸気として反応器−循環使用される。軽沸点物
は反応器内で酸化・燃焼されるため系内には軽沸点物は
濃縮蓄積しない。
Water vapor in the first stage of condensation that contains light boiling point substances such as chlorolein, pormaldehyde, and chloride.
It is recycled and used as reaction steam in the reactor. Since light boiling point substances are oxidized and burned in the reactor, they do not concentrate and accumulate in the system.

この蒸気を接触気相酸化反応器の人11ノノス中の水蒸
気濃度が3〜30容量係、とぐに1〜15容量係と在る
ように添加混介し、しかも該反応器人[−1ガス中のア
クリル酸濃度か05容M%とくに0.3容昂循を越えな
いようにコントロールするのは容易なことである。2段
目の濃縮化からえられる濃縮廃液中には種々の固形物や
タール状物質などが混入しており、必要に応じてr過器
を通過せしめたのち、捕集装置からの廃ガスのうち、循
環分を除いた残部ガスとともに完全酸化処理され無公害
化処理される。
This steam is added and mixed so that the steam concentration in the gas phase 11 of the catalytic gas phase oxidation reactor is 3 to 30 volume, immediately 1 to 15 volume, It is easy to control the acrylic acid concentration so as not to exceed 0.5 volume M%, especially 0.3 volume M%. The concentrated waste liquid obtained from the second stage of concentration contains various solids and tar-like substances, and if necessary, after passing through an r-filter, the waste gas from the collection device is collected. Of this, the remaining gas, excluding the circulating portion, is completely oxidized and treated to make it non-polluting.

完全酸化処理装置は、触媒燃焼方式または・P月と混合
して燃焼させる直燃方式とが採用しつるか、有利には触
媒燃焼方式が採用でき、しかも・・ニカム状の相体に白
金、パラジウムなどの貴金属を担持せしめたモノ1jス
触媒を充填した完全酸化反応装置を用いるのが最適であ
る。このモノリス触ad1、タール状物や炭素析出の多
い高沸点物を有利に完全酸化(−7うるからである。
The complete oxidation treatment equipment can adopt either a catalytic combustion method or a direct combustion method in which it is mixed with P and is combusted, or advantageously a catalytic combustion method can be adopted. It is best to use a complete oxidation reactor filled with a monolithic catalyst supported with a noble metal such as palladium. This is because this monolith ad1 can advantageously completely oxidize (-7) high-boiling substances that tend to deposit a lot of tar and carbon.

かくして本発明方法を採用することにより、廃水量が実
質的にゼロの無公害化された、しかも設備的にもユーテ
ィリティの面でもきわめて経済的な工業的に有利なプロ
セスか可能となったのである。
Thus, by adopting the method of the present invention, it has become possible to create an industrially advantageous process that is pollution-free, with virtually no wastewater volume, and is extremely economical in terms of equipment and utilities. .

以下、本発明をより具体的に添付の第1図にしたがって
説明する。
Hereinafter, the present invention will be explained in more detail with reference to the attached FIG. 1.

反応原料ガス、すなわちライン1からの空気、ライン2
からのプロピレン、ライン3からは、1段目濃縮缶] 
0 !lからの蒸気およびラインiからの廃ガスの混合
した原料ガスに1ライン5を通り、オ】反応器101に
入り、さらにライン(iを経て第2反応器102に入り
、反応生成Jjスかライン7より114る。アク1ノル
酸を含有する反応/−1′、族カスはライン7よりアク
リル酸捕集装尚] 0 :うの下部に入り、冷却吸収に
よりアクリル酸が捕集されライン8よりアクリル酸水溶
液かえられる。捕集用の塔の土部にはライン9より2段
目の濃縮化110て基発せしめられた循環水が、安定剤
を含んだ吸収水として供給されアクリル酸が冷却吸収捕
集される。
Reaction feed gas, i.e. air from line 1, line 2
propylene from line 3, first stage concentrate can]
0! The raw material gas, which is a mixture of steam from line 1 and waste gas from line i, passes through line 5, enters the reactor 101, and then enters the second reactor 102 via line i, where the reaction product Jj 114 from line 7. Acrylic acid containing reaction/-1' group sludge enters the lower part of line 7, and acrylic acid is collected by cooling and absorption. The aqueous acrylic acid solution is exchanged from line 9 to the soil part of the collection tower.The circulating water originating from the second stage condensation 110 is supplied from line 9 as absorbed water containing a stabilizer, and the acrylic acid is is absorbed and collected by cooling.

了りIIル酸抽捕集103の塔頂のライン10より出る
廃ガスの一部はライン・1より反応用原料ノノスの人「
1ガスとして再使用され残りのガスはライン11を経て
排ガス燃焼装置112でライン】2からの2段目の濃縮
化1】0の濃縮廃水とともに燃焼無害化されライン13
より大気に放出される。
A part of the waste gas coming out from line 10 at the top of the column 103 is transferred to the raw material for reaction from line 1.
The remaining gas is reused as 1 gas, and the remaining gas is passed through line 11 and sent to an exhaust gas combustion device 112 where it is combusted and rendered harmless together with the concentrated wastewater from line 2.
released into the atmosphere.

ライン8よシくるアクリル酸水溶液は、必要により軽沸
点物放散塔(図示せず)に供給され、塔頂からの軽沸点
物はアクリル酸捕集塔103にリサイクルされ、塔底液
のアクリル酸水溶液は抽出塔104に供給される。抽出
塔104にて供給されメヒアクリル酸は塔底のライン1
4より供給される有機溶媒により抽出されライン15よ
り溶媒放散塔105に供給され塔頂より溶媒を回収して
ライン16.14を通って抽出塔】04に再使用され、
塔底から出てくるアクリル酸液はライン17を経て酢酸
分離塔106に入り、酢酸は塔頂のライン】8より分離
取出される。塔底から出る粗アクリル酸はライン19よ
り精留塔107に供給され塔頂より製品のアクリル酸が
ライン20より、また塔底よりライン21を経てとり出
される重質物はこの中の有用成分であるアクリル酸や重
合防止剤を回収(図省略)し、その残液は燃料として系
外にとシ出され使用される。抽出塔104の塔底から排
出するラフィネートはライン2.・2より溶媒回収塔1
()8に供給され塔頂から溶媒を回収し、ライン23.
14を経て抽出塔104にリサイクル使用される。そし
て、溶媒回収塔108の塔底液は、供給液と熱交換(図
省略)された後ライン(24よl)1段目の濃縮化J0
9に導かれ濃縮される。1段1]の濃縮化+ 09から
えられる蒸気はライン、うより第1リアクター101に
供給される。
The aqueous acrylic acid solution coming from line 8 is supplied to a light boiling point stripping tower (not shown) as necessary, and the light boiling points from the top of the tower are recycled to the acrylic acid collection tower 103. The aqueous solution is supplied to extraction column 104. The methiacrylic acid supplied in the extraction column 104 is passed through line 1 at the bottom of the column.
The organic solvent is extracted with the organic solvent supplied from 4, and is supplied to the solvent stripping tower 105 through line 15, and the solvent is recovered from the top of the tower and passed through line 16 and 14 to be reused in the extraction tower 04.
The acrylic acid liquid coming out from the bottom of the column enters the acetic acid separation column 106 via line 17, and acetic acid is separated and taken out from line 8 at the top of the column. The crude acrylic acid discharged from the bottom of the tower is supplied to the rectification tower 107 through line 19, the product acrylic acid is taken out from the top of the tower through line 20, and the heavy substances are taken out from the bottom of the tower through line 21, which are useful components. Certain acrylic acid and polymerization inhibitors are recovered (not shown), and the remaining liquid is pumped out of the system and used as fuel. The raffinate discharged from the bottom of the extraction column 104 is sent to line 2.・Solvent recovery tower 1 from 2
( ) 8 and recovers the solvent from the top of the column, line 23.
14 and then recycled to the extraction column 104. Then, the bottom liquid of the solvent recovery column 108 undergoes heat exchange with the feed liquid (not shown), and then is concentrated at the first stage of the line (24 l).
9 and concentrated. The vapor obtained from the condensation stage 1] is supplied to the first reactor 101 via a line.

2段目の濃縮化]10からえられるか気は1段目の濃縮
化1()9の熱源として用いられ、凝縮されたのちライ
ン9を通ってアクリル酸捕集装jM+o:>の吸収水と
して再使用される。寸だ、ライン24からの廃水にはア
クリル酸の製造プロセス中の他の廃水、例えはエセクタ
ースチームの凝縮水及び冷却水などを混入してもよい。
Second stage condensation] The water obtained from 10 is used as a heat source for the first stage condensation 1 () 9, and after being condensed, it passes through line 9 to the absorbed water of acrylic acid collector jM+o:>. reused as Indeed, the wastewater from line 24 may be mixed with other wastewaters from the acrylic acid manufacturing process, such as esector steam condensate and cooling water.

アクリル酸捕集装置からの廃カスのうち反応器へ再循環
される割合は、反応条件のプロピレン濃度、酸素濃度に
より決定されるが、通常は廃ガス量の15噛〜85係、
好ましくは20弼〜80係がよい。この割合が多過きる
と系内に蓄積するガス状不純物の濃度が上ってプロセス
的な小郡ばの原因になったり、また系内の酸素不足によ
る障害が起こりやすい。また、この割合が少ないときは
系内に酸素が過剰となってきて、燃焼範囲の関係からプ
ロピレン濃度を高められない欠点が生じる。
The proportion of waste gas from the acrylic acid collection device that is recycled to the reactor is determined by the propylene concentration and oxygen concentration of the reaction conditions, but is usually 15 to 85 times the amount of waste gas.
Preferably it is between 20 and 80 centimeters. If this ratio is too high, the concentration of gaseous impurities that accumulate in the system will increase, causing process problems, and failures due to lack of oxygen in the system will likely occur. Furthermore, if this ratio is small, there will be an excess of oxygen in the system, resulting in the drawback that the propylene concentration cannot be increased due to the combustion range.

反応廃ガスを不活性希釈ガスとして循環して利用する方
法は従来より広く用いられている。例えば、特開昭4’
7−10614号明細書ではプロピレンを2段反応させ
てアクリル酸を製造するに際し、反応廃ガスを不活性希
釈ガスとしてオ】段の反応に循環使用しているが、その
際に反応廃ガス中の凝縮目]能なガスを大部分除去して
、不活性希釈ガス表しての水蒸気の一部又は全部の代り
表して便用している。しかし、この方法には、反応廃カ
スを不活性希釈ガスとして再使用するたV)の条件につ
いて何ら詳細に言及していない。
A method of recycling and utilizing reaction waste gas as an inert diluent gas has been widely used. For example, JP-A-4'
In the specification of No. 7-10614, when propylene is reacted in two stages to produce acrylic acid, the reaction waste gas is recycled as an inert diluent gas for the reaction in step E. Most of the gas capable of condensation is removed and used as an inert diluent gas in place of some or all of the water vapor. However, this method does not mention in detail the conditions of V) in which the reaction waste residue is reused as an inert diluent gas.

本発明者らは、反応廃ガスを不活性希釈ガスとして反応
に再使用する方法について種々検討した結果、前述した
ごとく廃ガスを得る条件及びその再使用のだめの条件(
循環割合)が非常に重要であることを見出しそれらの条
件について鋭意研究したところ、廃ガスを取得するアク
リル酸の捕集装置の塔頂温度を25〜40℃、循環割合
を15〜85係、好捷しくけ20〜80%の範囲で廃ガ
スを再使用するときにはじめて工業的に有利に長期間に
わたって高収率でアクリル酸の得られることが判明し本
発明に到達した。前、小の特開昭47−− l 06]
 4号公報の方法にも・いて、例え一実施例13ては、
プロピレンの転化率が70%と低く、かつアクリル酸の
収率が50%と低いのは、反応条件も含めて、廃ガスを
り→ノーイクルする全プロセスの条件が本発明方法の条
件からはずれているこ吉によるものと推定される。
As a result of various studies on methods for reusing reaction waste gas in the reaction as an inert diluent gas, the present inventors found that the conditions for obtaining the waste gas and the conditions for reusing it as described above (
After discovering that the circulation rate (recirculation ratio) is very important, we conducted extensive research on these conditions, and found that the top temperature of the acrylic acid collection device for collecting waste gas was set at 25-40°C, the circulation ratio was set at 15-85°C, It has been found that acrylic acid can be industrially advantageously obtained in high yield over a long period of time only when waste gas is reused within a range of 20 to 80%, leading to the present invention. Previous, small Japanese Patent Publication No. 47--l 06]
According to the method of Publication No. 4, for example, in Example 13,
The reason why the conversion rate of propylene is low at 70% and the yield of acrylic acid is low at 50% is that the conditions of the entire process of converting waste gas to no-cycle, including the reaction conditions, deviate from the conditions of the method of the present invention. It is presumed that this was done by Irukokichi.

かくのごとぐ、本発明の特に廃カスをえるところの温度
条件及びその再使用する循環割合が重要な理由は未だ十
分解明されて贋ないが、酸化反応で生成する未確認の不
純物かこれらの条件をはずれると、リザイクル系内に蓄
積濃縮することによるかまたは、アクリル酸や副生の酢
酸等が十分に捕集されない表廃ガス吉吉もVこ反応器に
4り供給きれ、酸化反応で触媒反応を阻害するものと本
発明者らは推定している。なぜなら、本発明者らの知見
によれば、アクリル酸などの酸性物質が前段触媒層に混
入した場舒、プロピレノの転化率が低下すること、さら
に低下した転化率を高めようとして反応温度を」−げる
と選択性が低下する傾向をはっきりと−認めているから
である。そして、反応器に供給される原料ガス中の未捕
集で循環されたアクリル酸濃度を()、5容量係以下に
制限すると、触媒反応の経時的劣化が防止できることが
知見としてえられたのである。
As such, the reasons why the temperature conditions in which the waste waste is collected and the recycling rate for its reuse are important in the present invention are still not fully understood, but it may be due to unidentified impurities generated in the oxidation reaction or to these conditions. If this happens, the waste gas may be accumulated and concentrated in the recycle system, or acrylic acid and by-product acetic acid, etc., may not be sufficiently collected. The present inventors estimate that this inhibits the reaction. This is because, according to the findings of the present inventors, if an acidic substance such as acrylic acid is mixed into the front catalyst layer, the conversion rate of propylene decreases, and the reaction temperature is increased in an attempt to further increase the decreased conversion rate. This is because there is a clear tendency for selectivity to decrease as the temperature increases. Furthermore, it was found that if the concentration of uncollected and circulated acrylic acid in the raw material gas supplied to the reactor was limited to less than (2), by volume, deterioration of the catalytic reaction over time could be prevented. be.

そして捷だ、本発明の方法は、同伴される廃ガスを不活
性希釈ガスとして用いることにより、反応原$1ガス組
成を燃焼範囲からはすし、かつ触媒の長期活性保持のだ
めに必要な酸素量を新たに分−r状酸素含有ガス、たと
えば空気により補充する全く新規な技術思想による了ク
リル酸を高収率で安全に経済的に製造するための方法を
提供するものである。
Best of all, the method of the present invention uses the entrained waste gas as an inert diluent gas to bring the reactant gas composition out of the combustible range and to reduce the amount of oxygen necessary to maintain long-term activity of the catalyst. The object of the present invention is to provide a method for safely and economically producing acrylic acid in a high yield based on a completely new technical idea in which the oxidized acrylic acid is replenished with fresh oxygen-containing gas such as air.

本発明が特定する前段での酸素濃度がプロピレン濃度の
1.6〜4.()モル倍、好ましくは1.7〜3.0モ
ル倍の範囲に規制するのは、本発明をプロピレンからア
クリル酸へ1回通過で転化させるために必要な範囲であ
るためである。1.6に達しないモル比ではプロピレン
の転化率はAiJ段と後段との反応で上列してもアクリ
ル酸の74’i流収イ′の低下を招くのである。また、
4.0モル倍を越える場ばは、必然的に水蒸気量やプロ
ピレン濃度との関係から爆発や燃焼範囲に入ったり、あ
るいは」]業的にきわめて生産性の低いプロセスを余儀
なくされるので好脣しくない。
The oxygen concentration in the first stage specified by the present invention is 1.6 to 4.0% higher than the propylene concentration. The reason why the amount is limited to ( ) times by mole, preferably from 1.7 to 3.0 times by mole, is that this is the range necessary for converting propylene to acrylic acid in one pass in the present invention. If the molar ratio does not reach 1.6, even if the conversion of propylene is increased by the reaction between the AiJ stage and the subsequent stage, the acrylic acid flow rate decreases. Also,
If the amount exceeds 4.0 moles, it will inevitably fall into the explosion or combustible range due to the relationship with the amount of water vapor and propylene concentration, or it will be unavoidable to carry out processes with extremely low industrial productivity, so this is not desirable. It's not right.

本発明Vこ適する触媒は、前段触媒としては例えば!特
公昭47−42241号、特公昭イア −42242号
、特公昭47−428]3号、特公昭47−27441
C1号、特公昭47−4]329号、特公昭48−47
62号、特公昭48−476:う号、特公昭48−17
 (i 4号、特開昭48−5710号、特公昭48−
4765号、特開昭50− + 3 :(08号、特開
昭50−479]7号、特開昭49−3 (1308号
、特公昭47−298F!I号、特公昭47−3205
0号、特公昭47−32051号、特公昭47−320
52号、特公昭47−301 (i 3号、特開昭47
−1771.1号、特公昭47−21081号、特開昭
・19〜92006号等の各明細書に示される触媒のほ
か、前述の如く高い反応条件を満足しうるものであれば
すべて用いることができる。すなわち、前段の反応用と
して250〜450℃、好寸しくは270〜37(1℃
の反応温度で、ブaピレン3〜9容量係、好ましくは4
〜7容量幅、酸素3〜18容量係、好捷しくは6〜]6
容量係、水蒸気2〜30容昂係、好捷しくは4〜25容
量係、酸素とプロピレンの濃度モル比1.6〜4.O1
好ましくは1.7〜;3.Oの範囲のガスを接触時間1
.0〜7.2秒、好捷しくけ1.8〜3.6秒で反応さ
せてプロピレン転化率80モル係以」ハ好ましくは90
モル係以上、アクロレインおよび了クリル酸のa計中−
流収率70モル係以上、好丑しくは80モル幅以上を達
成しうる触媒であり、後段の触媒としては、例えば特公
昭49  ](119号特公昭49−11371号、特
開昭49−47276号、特開昭49−76810号、
特開昭49−133317号、特開昭50−25520
号、特開昭51i1−413918号、特公昭50−9
768号、特開昭50−1987号、特開昭50−83
280号、特開昭50−97592号、特開昭47−3
9018号等の各明細書に記載のものを用いることがで
きる。すなわち、後段の反応用として180〜350℃
、好ましくは200〜300℃の反応温度で接触時間1
.0〜7.2秒、好ましくは1.6〜3.0秒で反応さ
せて、Ai7段の反応から総合してプロピレンからアク
リル酸への中流収率70モル係以上、好寸しくけ75モ
ル係以上を達成しつる触媒であれ(LJよい。後段の反
応に供する原料ガス中には前段の反応で副生したアクリ
ル酸はそのま\供給されることかでき、むしろ後段の反
応に対し、水蒸気の存在と同様なIfましい結果を与え
、かつ後段の触媒の負荷を実質的に小さくする効果を示
す。
Catalysts suitable for the present invention are, for example, as pre-catalysts! Special Publication No. 47-42241, Special Publication No. 42242, Special Publication No. 428]3, Special Publication No. 47-27441
C1, Special Publication No. 47-4 ] 329, Special Publication No. 48-47
No. 62, Special Publication No. 1976-476: No. U, Special Publication No. 1977-17
(i No. 4, JP-A-48-5710, JP-A-48-
4765, JP 50-+3: (08, JP 50-479] 7, JP 49-3 (1308, JP 47-298F!I, JP 47-3205)
No. 0, Special Publication No. 47-32051, Special Publication No. 47-320
No. 52, Special Publication No. 47-301 (i No. 3, Japanese Patent Publication No. 1973
-1771.1, Japanese Patent Publication No. 47-21081, Japanese Patent Publication No. 19-92006, etc., any catalyst can be used as long as it can satisfy the high reaction conditions as mentioned above. Can be done. That is, for the first stage reaction, the temperature is 250 to 450°C, preferably 270 to 37°C (1°C).
at a reaction temperature of 3 to 9 volume parts of bu-a-pyrene, preferably 4
~7 capacity range, oxygen 3~18 capacity range, preferably 6~]6
Volume ratio, water vapor volume ratio: 2 to 30, preferably 4 to 25 volume ratio, concentration molar ratio of oxygen and propylene: 1.6 to 4. O1
Preferably 1.7~;3. Contact time 1 for gases in the range of O
.. 0 to 7.2 seconds, preferably 1.8 to 3.6 seconds to achieve a propylene conversion rate of 80 moles or more, preferably 90
More than molar ratio, a calculation of acrolein and acrylic acid -
It is a catalyst that can achieve a flow yield of 70 molar or more, preferably 80 molar or more, and as a catalyst in the latter stage, for example, Japanese Patent Publication No. 119-11371, Japanese Patent Publication No. 11371-1973, No. 47276, JP-A-49-76810,
JP-A-49-133317, JP-A-50-25520
No., JP-A No. 51i1-413918, JP-A No. 50-9
No. 768, JP-A-50-1987, JP-A-50-83
No. 280, JP-A-50-97592, JP-A-47-3
Those described in each specification such as No. 9018 can be used. That is, 180 to 350°C for the subsequent reaction.
, preferably at a reaction temperature of 200-300°C and a contact time of 1
.. The reaction time is 0 to 7.2 seconds, preferably 1.6 to 3.0 seconds, and the midstream yield from propylene to acrylic acid is 70 moles or more from the Ai 7-stage reaction, with a suitable size system of 75 moles. (LJ is good.Acrylic acid by-produced in the first-stage reaction can be supplied as is to the raw material gas used for the second-stage reaction. It provides the same desirable results as the presence of water vapor, and has the effect of substantially reducing the load on the downstream catalyst.

本発明は以上記述したとおりであるが、ル下に実施例お
よび比較例を示して本発明をさらに具体的に明らかにす
る。
The present invention has been described above, but the present invention will be explained more specifically by showing Examples and Comparative Examples below.

実施例 1 前段触媒の調製 水15)、を加熱しつつモリブデン酸アンモニウム10
.62Kg、パラタングステン酸アンモニウム3.24
に9を加えはげしく攪拌した(これをA液とする)。
Example 1 Ammonium molybdate 10 was heated while preparing water 15) for the first stage catalyst.
.. 62Kg, ammonium paratungstate 3.24
9 was added to the solution and stirred vigorously (this is referred to as Solution A).

別に硝酸コバル+−7,00Kgを2tの水に、硝酸第
2鉄2.43Kgを2tの水に、硝酸ヒスマス2.92
に9を濃硝酸0.6tを加えて酸性としだ水3tに、そ
れぞれ溶解させ、この3種の硝酸塩溶液を混合した液を
上記A液に滴下した。ついで二酸化ケイ素換算で2()
重量%を含有するノリ力ゾル2.44Kqおよび水酸化
カリウム20.2 S’を1.5tの水に溶解しだ液を
それぞれ加え、かくして生じた懸濁液を加熱蒸発せしめ
た後、成型し空気流通1” /150 ℃で6時間焼成
して触媒を調製した。この触媒の酸素り外の元素による
組成は原子比で、Co4 FeI B11w2M010
  Slユ、35 Koo、06であった。
Separately, cobal nitrate +-7,00kg was added to 2t of water, ferric nitrate 2.43kg was added to 2t of water, and hismuth nitrate was added to 2.92kg of water.
9 was acidified by adding 0.6 t of concentrated nitric acid and dissolved in 3 t of cold water, and a mixture of these three types of nitrate solutions was added dropwise to the above solution A. Then, in terms of silicon dioxide, it is 2 ()
2.44 Kq of Noriyoku sol and 20.2 S' of potassium hydroxide containing 2.44 Kq of wt% were dissolved in 1.5 t of water, and the resulting suspension was heated and evaporated, followed by molding. A catalyst was prepared by calcining for 6 hours at 1"/150°C with air flow.The composition of the catalyst other than oxygen was Co4FeIB11w2M010 in atomic ratio.
Sl Yu, 35 Koo, 06.

tΔ段触触19調製 水6()tを加熱掬拌しつつその中にパラタングステン
酸了ンモニウノ、1.254にり、メタバナジン酩了ン
モニウ7+ ] 、0 :3 Kg、モリブデン酸アン
モニウム4.06Kg、ついで重クロム酸アンモニウム
Ij、14に9をそれぞれ混入溶解し、別に硝酸釦II
;03Kgを(1,72tの水に溶解させた水溶液を作
成し、両液を混ばした。かくしてえられた混rン溶液を
蒸気加熱器伺のステンレス製蒸発器に人第1、担体基材
がα−アルミナからなり、表面−積1m2/?すT気孔
率42噛、75〜250ミクロンの(1径を有する細(
(、の占める容積が全細孔容積の(12幅を−もめる直
径;3〜5黙の粒状担体12tを加え攪拌しつつ蒸発乾
固して担体にイ・1着せしめたのち、400℃で5時間
焼成して触媒を調製した。この触媒の担体を除く酸素り
外の元素による組成は、原子比で、 Mo 12 V4.6 Cu 2.2 Cr O,6W
2.4であった。
While heating and stirring 6 tons of prepared water, 1.254 kg of paratungstic acid, 1.254 kg of metavanazine, 0:3 kg of ammonium molybdate, and 4.06 kg of ammonium molybdate were added. Then, mix and dissolve ammonium dichromate Ij, 14 and 9, and separately add nitric acid button II.
An aqueous solution was prepared by dissolving 03Kg in 1,72t of water, and both solutions were mixed. The material is made of α-alumina, has a surface area of 1 m2/?, a porosity of 42 mm, and a fine (with a diameter of 75 to 250 microns).
(The volume occupied by the total pore volume is the diameter of 12 times the total pore volume; 12 tons of granular carrier with 3 to 5 particles is added, evaporated to dryness with stirring, coated on the carrier, and then heated at 400°C. A catalyst was prepared by firing for 5 hours.The composition of this catalyst except for the carrier and other elements in atomic ratio was: Mo 12 V4.6 Cu 2.2 Cr O, 6W
It was 2.4.

反応及びアクリル酸の補集方法 」1紀前段触媒+2.(1tを内径25研、長さ3、 
+100 論の鋼鉄製反応管10本からなり、7エル側
は溶融塩を循環することにより熱交換が01能な多管式
反応器に均等に充填し1,325℃に加熱した。
"Reaction and acrylic acid collection method" 1st generation early stage catalyst + 2. (1t has an inner diameter of 25 grinds, a length of 3,
A multi-tubular reactor consisting of 10 steel reaction tubes of +100° C. was evenly packed into a multitubular reactor capable of heat exchange by circulating molten salt on the 7th L side, and heated to 1,325°C.

別に前記後段触媒9.Otを内径25rn1、長さ3.
00(1mmの鋼鉄製反応管10本からなり、ンエル側
に、溶融塩を循環することにより熱交換か可能な多管式
反応器に均等に充填し260℃に加熱した。
Separately, the second stage catalyst 9. Ot has an inner diameter of 25rn1 and a length of 3.
00 (consisting of 10 1 mm steel reaction tubes), the reactor was evenly packed into a multitubular reactor in which heat exchange could be performed by circulating molten salt on the inner side, and heated to 260°C.

2つの反応器は、熱交換器を備えた導管で連結し、前段
触媒を含む反応器から出る反応生成ガスを後段触媒を含
む反応器へ導入されるようにした。
The two reactors were connected by a conduit equipped with a heat exchanger so that the reaction product gas exiting from the reactor containing the first stage catalyst was introduced into the reactor containing the second stage catalyst.

後段触媒を含む反応器から出る反応生成ガスは内径20
 +1 mmのステンレス類の塔で外壁に水蒸気ジャケ
ットを有する20段の泡鐘棚を備え、その下部に多管式
の冷却器を備えており、塔の最」二部から重合禁止剤を
含む2段目の濃縮缶の廃水の凝縮水を1.0にり/ H
r流下させることによってアクリル酸をアクリル酸水溶
液として捕集し、さらに1段目の濃縮缶の廃水の水蒸気
! 、 2 Nm”/ Hrを反応、l−11水蒸気と
して用便用した。
The reaction product gas coming out of the reactor containing the latter stage catalyst has an inner diameter of 20
The tower is made of +1 mm stainless steel and is equipped with a 20-tier bubble rack with a steam jacket on the outer wall, and a multi-tubular cooler at the bottom. The condensed water of the waste water in the tiered concentrator is 1.0/H.
By letting it flow down, acrylic acid is collected as an acrylic acid aqueous solution, and furthermore, the water vapor of the wastewater from the first stage concentrator! , 2 Nm''/Hr was reacted and used as l-11 water vapor.

えられたアクリル酸水溶液から軽沸点物を除去したのち
、該アクリル酸水溶液に1.5重量倍の酢酸インプロピ
ルを用いてアクリル酸を抽出した。
After removing light boilers from the obtained acrylic acid aqueous solution, acrylic acid was extracted from the acrylic acid aqueous solution using 1.5 times the weight of inpropyl acetate.

抽出液にはアクロレイン換算で0.17重重量%アクロ
レイン、ホルムアルデヒド、アセトアルデヒドなどが含
まれ、ついで溶媒分離、軽沸点分離最後に精留の各工程
を経て製品アクリル酸をえた。
The extract contained 0.17 wt % acrolein, formaldehyde, acetaldehyde, etc. in terms of acrolein, and was then subjected to the following steps: solvent separation, light boiling point separation, and finally rectification to obtain the product acrylic acid.

−・力、抽残液からは溶剤を除去したのち、え1っれた
廃水(2,41(9,/Hr )を1段目の多管式の濃
縮缶に供給し2段目の濃縮缶で発生した蒸気を加熱源と
して水蒸気1.2 Nm”/ Hr (1,019/ 
I■r )を発生させ反応水蒸気として使用した。1段
目で濃縮された廃水]、4に7/Hrを2段目の多管式
の濃縮缶に供給し、外部から導入した水蒸気を加熱源と
して使用して廃水を濃縮し水蒸気1.OKp/)旨を発
生させ、この蒸気は1段目の濃縮缶の加熱源として使用
した。ここでえられた凝縮水はアクリル酸の吸収塔の吸
収水として使用した。1段目の濃縮缶で廃水は1.7倍
、2段目で4.7倍に濃縮され/ζ。2段目の加熱源の
水蒸気の圧力は6に9/n、・2Gか用いられ、2段目
および1段目の操作圧はそれぞれ3にり/c!t: ”
 GとIKり/l:m 2Gに設定された。濃縮1丑に
供給された廃水、1段目でえられた水蒸気、2段+f+
でえられた凝縮水および濃縮水の分析値は第1表の通り
であった。
- After removing the solvent from the raffinate, the extracted wastewater (2,41 (9,/Hr) is supplied to the first stage multi-tube concentrator, and then the second stage concentrates. Using the steam generated in the can as a heating source, the steam was heated to 1.2 Nm”/Hr (1,019/Hr).
I■r) was generated and used as reaction steam. The waste water concentrated in the first stage] and 4 to 7/Hr are supplied to the multi-tube concentrator in the second stage, and the waste water is concentrated using the water vapor introduced from the outside as a heating source, and the water vapor is concentrated. OKp/) was generated, and this steam was used as a heating source for the first stage concentrator. The condensed water obtained here was used as absorption water in an acrylic acid absorption tower. The wastewater is concentrated 1.7 times in the first stage concentrator and 4.7 times in the second stage /ζ. The pressure of the steam in the second stage heating source is 6 to 9/n, 2G, and the operating pressures of the second and first stages are 3/c, respectively. t: ”
G and IKri/l:m Set to 2G. Wastewater supplied to concentration 1, steam obtained in the 1st stage, 2nd stage +f+
The analytical values of the resulting condensed water and concentrated water were as shown in Table 1.

オ  】  表  (即位 重量%) アクリル酸  酢 酸  マレイン酸 その他有機物供
給水 0.5]  0.56 0.75 0.4:3了
クリル酸捕集装置から排出されるガスは、一部分をパー
ジする以外は送風機により前段触媒を含む反応器人口に
戻され、これに、プロピレンと空気と1段目の濃縮缶か
らの水蒸気とを加え、混合して前段触媒を含む反応器に
導入するようにした。前段反応器へプロピレン5.5容
量係、水蒸気+(1,0容量係、酸素12.5容量係、
その他少量の反応生成物と窒素からなる混合ガスを+6
.2m3/h(NT、P換算)で導入した。その時、ア
クリル酸捕集装置の塔頂温度(d35℃、廃ガスの循環
率は42.5係であった。
Table (Enthronement weight %) Acrylic acid Acetic acid Maleic acid Other organic matter supply water 0.5] 0.56 0.75 0.4:3 The gas discharged from the acrylic acid collection device is partially purged. The rest was returned to the reactor population containing the front-stage catalyst by a blower, and propylene, air, and steam from the first-stage concentrator were added to this, mixed, and introduced into the reactor containing the front-stage catalyst. . To the front reactor, propylene 5.5 volume, water vapor + (1.0 volume, oxygen 12.5 volume,
Mixed gas consisting of a small amount of other reaction products and nitrogen +6
.. It was introduced at a rate of 2 m3/h (in terms of NT and P). At that time, the top temperature of the acrylic acid collector (d35°C) and the waste gas circulation rate were 42.5%.

かくしてプロピレンの転化4′!+ 5、−+モル憾、
アクリル酸の収率は84.0モル%で安定して運転が行
なえた。なお、アクリル酸捕集装置の塔Iηからの流下
水は] 、 OKg/ Hr、−rクリ/l’l’lt
捕集イーは゛)8〜90係であった。まだこのとき原料
ガス中の酸濃度はアクリル酸として0.07容量係であ
った。
Thus the conversion of propylene 4'! +5, -+mol regret,
The yield of acrylic acid was 84.0 mol%, and stable operation was possible. In addition, the effluent from the tower Iη of the acrylic acid collection device is ], OKg/Hr, -rcri/l'l'lt
The collection rate was between 8 and 90. At this time, the acid concentration in the raw material gas was 0.07 volume as acrylic acid.

そしてこのアクリル酸水溶液からの後」−稈での分離精
製してえられた製品のアクリル酸の純度、重合性能にき
わめて満足すべきものてあり、この装置は3ケ月間の連
続運転後も装置になんらのトラブルも認めなかった。
The purity and polymerization performance of the acrylic acid obtained by separating and purifying this acrylic acid aqueous solution using the culm are extremely satisfactory, and the equipment remains stable even after three months of continuous operation. He didn't notice any problems.

比較例 1 実施例1において用いだのと同じ装置を用い、プロセス
はり下の如く変更した。すなわち、1段目の濃縮缶から
えられる廃水の水蒸気を2段目の濃縮缶の熱源として使
用し、その凝縮水をアクリル酸捕集工程に吸収水として
供給し、2段目の濃縮缶からえられる水蒸気をそのit
第1りアフター用の水蒸気として供給した。その他の反
応条件、操作条件を実施例1におけると同様としたとこ
ろ、原t1ガス中へ循環される酸濃度はアクリル酸とし
て0.tl−9容量係であり、プロピレン転化率91.
1モル係、アクリル酸収率83.7モル係と反応には才
つだく支障はなかったが、アクリル酸水溶液中のアクロ
レイン、ホルムアルデ貢ト、アセトアルデヒドなどアル
デヒド分が蓄積されて抽出工程からの抽出液中の了ルテ
ヒド分がアクロレインとして+1.93重量係となり、
溶剤分離塔で?週間の連続運転後重合物が閉塞を起し運
転不能の事態が起った。′Ifたえられたアクリル酸に
も着色を起すというトラブルが発生した。
Comparative Example 1 The same equipment used in Example 1 was used, with the process modified as described below. In other words, the waste water vapor obtained from the first-stage concentrator is used as a heat source for the second-stage concentrator, and the condensed water is supplied as absorption water to the acrylic acid collection process, and the waste water vapor obtained from the second-stage concentrator is The water vapor produced by it
It was supplied as steam for the first after-treatment. Other reaction conditions and operating conditions were the same as in Example 1, and the concentration of acid circulated into the raw t1 gas was 0.0% as acrylic acid. It has a tl-9 capacity ratio and a propylene conversion rate of 91.
1 mole, and the acrylic acid yield was 83.7 moles, so there was no problem with the reaction, but aldehyde components such as acrolein, formaldehyde, and acetaldehyde in the acrylic acid aqueous solution accumulated, and the extraction process was difficult. The amount of ruthehyde in the liquid becomes +1.93 weight as acrolein,
In a solvent separation column? After continuous operation for a week, the polymer blockage occurred and operation became impossible. A problem occurred in that the acrylic acid that had been deposited also became colored.

実施例 2 実施例1において用いたのと同じ装置およびプロセスを
用いて以Tの如〈実施した。すなわち、反応条件として
牙1リアクターへ導入される原料ガス組成を、プロピレ
ン6容量係、水蒸気15容量係、酸素13.7容量係、
残りは窒素、炭酸ガスなどの不活性および水蒸気ととも
に混入された微量の有機化合物となるようにして反応せ
しめ、アクリル酸捕集装置での塔頂温度を1()℃、υ
1出カスの循環率を2・1.9幅と設定した。プロピレ
ノ転化率95.1モル係、アクリル酸の収率は8:L8
モル係で安定した運転を行なった。アクリル酸捕集装置
へは2段目の濃縮化からの16水水蒸気を1段1」の濃
縮化で凝縮させてえた吸収水を+ 、 7 K7/ H
r流下させ、寸だ1段目の濃縮化からえられた水蒸気を
2.6 Ny+=3/1−1r (] 、7 K9/H
r )、酸化反応用としてオ】リアクターへ供給した。
Example 2 The following procedure was carried out using the same equipment and process used in Example 1. That is, the raw material gas composition introduced into the Fang 1 reactor as reaction conditions is 6 volumes of propylene, 15 volumes of water vapor, 13.7 volumes of oxygen,
The remainder is reacted with inert gases such as nitrogen and carbon dioxide, and trace amounts of organic compounds mixed in with water vapor, and the temperature at the top of the acrylic acid collection device is reduced to 1()℃, υ
The circulation rate of the 1-output waste was set at a range of 2.1.9. Conversion rate of propylene is 95.1 mol, yield of acrylic acid is 8:L8
Stable operation was carried out by the mole staff. Absorbed water obtained by condensing the 16 water vapor from the second stage of condensation through the first stage of condensation is sent to the acrylic acid collection device.
2.6 Ny+=3/1-1r (], 7 K9/H
r) was supplied to the reactor for oxidation reaction.

アクリル酸の捕集率は96〜97%、原料ガス中の酸分
はアクリル酸として[)、Of5係であった。捷だ1段
目の濃縮化では廃水は1.8倍に、2段目の濃縮化では
8.8倍にそれぞれ濃縮された。濃縮化へ供給された廃
水(”8 K9/ Hr )、1段目でえられた水蒸気
、2段目でえられた水蒸気の凝縮水および2段目で濃縮
された缶液の分析値は第2表に示すとおりてあった。
The collection rate of acrylic acid was 96 to 97%, and the acid content in the raw material gas was in the ratio of 5 as acrylic acid. The wastewater was concentrated 1.8 times in the first stage of the shredder, and 8.8 times in the second stage. The analytical values of the wastewater supplied to the concentrator (8 K9/Hr), the steam obtained in the first stage, the condensed water of the steam obtained in the second stage, and the bottom liquid concentrated in the second stage are as follows. It was as shown in Table 2.

オ 2 表 (単位 重用幅) アクリル酸  酢 酸  マレイン酸 その他有機物イ
」(給廃水 (1、4(10,420、6:((1、:
351段1]水蒸気 0.:う3   0.37   
0.+1・1    F+ 、 iう02段目凝縮水 
II 、 38   0−42    +) 、 01
i    fl 、 I I2段目濃縮水 tl、7f
i    O,605,(101,12
E 2 Table (Unit: Heavy duty range) Acrylic acid Acetic acid Maleic acid Other organic substances (supply and wastewater (1, 4 (10,420, 6:
351 stage 1] Water vapor 0. :U3 0.37
0. +1・1 F+, iU02nd stage condensed water
II, 38 0-42 +), 01
i fl, II 2nd stage concentrated water tl, 7f
i O,605,(101,12

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するための1つのフローシートを
示したものである。
FIG. 1 shows one flow sheet for implementing the invention.

Claims (1)

【特許請求の範囲】[Claims] (1)  水蒸気および分子状酸素含有ガスを用いてプ
ロピレンを接触気相酸化してアクリルiを製造するプロ
セスにおいて、該酸化反応で生成したアクリル酸を水溶
液として捕集したあとの廃ガスの一部を該酸化反応用に
循環使用し、一方捕集されたアクリル酸水溶液をアクリ
ル酸分離工程に導ひき、そこで排出される廃水を2重効
用缶を用いて濃縮し、1段目の濃縮缶でえられる廃水の
蒸気を該酸化反応用に循環使用し、その濃縮液は2段目
の濃縮缶に供給し、2段目の濃縮缶でえられる廃水の蒸
気を1段目の濃縮缶の熱源として使用し、えられた凝縮
水を生成したアクリル酸の捕集用に循環使用しさらに2
段目の濃縮缶でえられる濃縮廃水を上記廃ガスの残部と
ともに完全酸化処理せしめることを特徴とするアクリル
酸の製造方法。
(1) In the process of producing acrylic i by catalytic vapor phase oxidation of propylene using water vapor and molecular oxygen-containing gas, part of the waste gas after acrylic acid produced in the oxidation reaction is collected as an aqueous solution. is recycled for the oxidation reaction, while the collected acrylic acid aqueous solution is led to the acrylic acid separation process, and the wastewater discharged there is concentrated using a double-effect can, and the first concentration can The resulting wastewater vapor is recycled for the oxidation reaction, the concentrated liquid is supplied to the second-stage concentrator, and the wastewater vapor obtained in the second-stage concentrator is used as the heat source for the first-stage concentrator. The resulting condensed water was recycled to collect the acrylic acid produced.
A method for producing acrylic acid, which comprises completely oxidizing concentrated wastewater obtained in a third-stage concentrator together with the remainder of the waste gas.
JP12292482A 1982-07-16 1982-07-16 Preparation of acrylic acid Granted JPS5913746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12292482A JPS5913746A (en) 1982-07-16 1982-07-16 Preparation of acrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12292482A JPS5913746A (en) 1982-07-16 1982-07-16 Preparation of acrylic acid

Publications (2)

Publication Number Publication Date
JPS5913746A true JPS5913746A (en) 1984-01-24
JPS6241659B2 JPS6241659B2 (en) 1987-09-03

Family

ID=14847971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12292482A Granted JPS5913746A (en) 1982-07-16 1982-07-16 Preparation of acrylic acid

Country Status (1)

Country Link
JP (1) JPS5913746A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001163828A (en) * 1999-12-06 2001-06-19 Nippon Shokubai Co Ltd Method for preventing scale from adhering
US6348638B1 (en) * 1996-06-20 2002-02-19 Basf Aktiengesellschaft Method for removing by-products obtained when producing acrylic acid or methacrylic acids
US6441227B1 (en) 2000-06-23 2002-08-27 Saudi Basic Industries Corporation Two stage process for the production of unsaturated carboxylic acids by oxidation of lower unsaturated hydrocarbons
JP2003238485A (en) * 2001-12-10 2003-08-27 Nippon Shokubai Co Ltd Method and equipment for collecting (meth)acrylic acid
JP2013193970A (en) * 2012-03-16 2013-09-30 Mitsubishi Chemicals Corp Method for producing acrylic acid
JP2022125125A (en) * 2018-05-28 2022-08-26 ピアソン キャピタル エンバイロメンタル (ベイジン) リミテッド Efficient methods and compositions for recovery of products from organic acid pretreatment of plant materials

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6348638B1 (en) * 1996-06-20 2002-02-19 Basf Aktiengesellschaft Method for removing by-products obtained when producing acrylic acid or methacrylic acids
JP2001163828A (en) * 1999-12-06 2001-06-19 Nippon Shokubai Co Ltd Method for preventing scale from adhering
US6441227B1 (en) 2000-06-23 2002-08-27 Saudi Basic Industries Corporation Two stage process for the production of unsaturated carboxylic acids by oxidation of lower unsaturated hydrocarbons
JP2003238485A (en) * 2001-12-10 2003-08-27 Nippon Shokubai Co Ltd Method and equipment for collecting (meth)acrylic acid
JP2013193970A (en) * 2012-03-16 2013-09-30 Mitsubishi Chemicals Corp Method for producing acrylic acid
JP2022125125A (en) * 2018-05-28 2022-08-26 ピアソン キャピタル エンバイロメンタル (ベイジン) リミテッド Efficient methods and compositions for recovery of products from organic acid pretreatment of plant materials

Also Published As

Publication number Publication date
JPS6241659B2 (en) 1987-09-03

Similar Documents

Publication Publication Date Title
JP5358582B2 (en) (Meth) acrylic acid recovery method and (meth) acrylic acid recovery device
US4147885A (en) Process for producing acrylic acid from propylene
JP4056429B2 (en) Method for producing (meth) acrylic acid
JP5934155B2 (en) Method for separating methacrolein from methacrylic acid in gas phase products from the partial oxidation of isobutene
JP2001213839A (en) Method for producing (meth)acrylic acid
CA2273958A1 (en) Production of aromatic carboxylic acids
JP2011105776A (en) Method for producing (meth)acrylic acid
EP1986762B1 (en) Method for reducing water in a reactor outlet gas in the oxidation process of aromatic compound
JPS5913746A (en) Preparation of acrylic acid
JP2857993B2 (en) Method for continuous production of aqueous formaldehyde solution
JPH1180077A (en) Production of methyl methacrylate
JPS5942340A (en) Preparation of acrylic acid
JPS6111211B2 (en)
JP2003176252A (en) Method of producing (meth)acrolein or (meth)acrylic acid
CN111217697A (en) Method for preparing methacrylic acid by gas phase oxidation of C4 compound
JP2002097177A (en) Method for producing isophthalonitrile
JP4050187B2 (en) (Meth) acrylic acid collection method
JPS6217580B2 (en)
JPH0345057B2 (en)
JP4195163B2 (en) Waste liquid and exhaust gas treatment method
JP2003192627A (en) Method for producing methacrolein
JP2008162956A (en) System for obtaining (meth)acrylic acid solution, and method for producing (meth)acrylic acid
JPH04118095A (en) Treatment of waste water from acrylic acid producing plant
JPS6330476A (en) Method for purifying ethylene oxide
KR840001550B1 (en) Waste water treatment in the production of methacrylic acid