JPH0345057B2 - - Google Patents

Info

Publication number
JPH0345057B2
JPH0345057B2 JP13798982A JP13798982A JPH0345057B2 JP H0345057 B2 JPH0345057 B2 JP H0345057B2 JP 13798982 A JP13798982 A JP 13798982A JP 13798982 A JP13798982 A JP 13798982A JP H0345057 B2 JPH0345057 B2 JP H0345057B2
Authority
JP
Japan
Prior art keywords
water
tower
humidity control
gas
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13798982A
Other languages
Japanese (ja)
Other versions
JPS5929630A (en
Inventor
Katsumasa Yamaguchi
Tsutomu Katagiri
Tetsuei Fujikawa
Yasuyuki Sakakura
Takeshi Shibano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP13798982A priority Critical patent/JPS5929630A/en
Publication of JPS5929630A publication Critical patent/JPS5929630A/en
Publication of JPH0345057B2 publication Critical patent/JPH0345057B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は1分子中に3個以上の炭素原子を有す
るオレフインまたは不飽和アルデヒドを原料と
し、水蒸気の存在下これを接触気相酸化して対応
する不飽和カルボン酸を製造する方法に関するも
のであり、特にその際必要とされる生水蒸気およ
び冷却水の使用量を廃熱を利用することにより節
減すること、ならびに有機物を含む廃水を減量し
て後処理を容易にすることを目的とするものであ
る。 上記原料のうち主要なものは、炭素数3のプロ
ピレンおよびアクロレイン、炭素数4のイソブチ
レンおよびメタクロレインなどである。 接触気相酸化により、プロピレンまたはアクロ
レインからはアクリル酸、イソブチレンまたはメ
タクロレインからはメタクリル酸というように、
使用原料に対応する不飽和カルボン酸を生成する
反応は周知である。 以下の説明においては代表例としてプロピレン
からアクリル酸を製造する場合について述べるが
本発明がそれ以外の場合にも適用されるのはもち
ろんである。 プロピレンを接触気相酸化してアクリル酸を製
造するに当つては、転化率および選択率のすぐれ
た触媒を用いるのは当然であるが、そのほか気相
酸化反応における原料ガスの爆発範囲をせばめて
安全性を増しかつ目的製品であるアクリル酸への
選択性を高めるため、原料ガス中に多量の水蒸気
を存在させる方法が賞用されている。この方法は
プロピレンから1段で直接アクリル酸を生成させ
る場合にも、前段でプロピレンからアクロレイン
を生成させ後段でアクロレインからアクリル酸を
生成させる2段反応の場合にも有用である。水蒸
気の添加量は原料プロピレンに対しモル比で1〜
15倍程度、望ましくは2〜7倍とされており、ユ
ーテイリテイコストの中でかなりの割合を占める
ことになる。 他方生成したアクリル酸はきわめて重合性の高
い物質なので、アクリル酸の重合防止の為に反応
生成ガスを直ちに急冷する必要がある。通常、反
応生成ガスをその露点近くの温度まで冷却した後
急冷塔に導き、水と向流接触させる方法が用いら
れている。この際ガスが水で急冷されると同時に
ガス中の水蒸気は凝縮され、生成したアクリル酸
はその凝縮水中に溶解した状態で回収される。そ
してさらに次の精製工程でまず共沸蒸留またひ溶
剤抽出などの操作によりこの凝縮水から大部分の
水を除去した後さらに蒸留操作などによつて精製
して製品とする。 接触気相酸化は著しい発熱反応であり、急冷塔
ではこの反応熱の一部と、前記理由により添加し
た水蒸気及び酸化反応により生成した水蒸気の潜
熱をも併せて除去しなければならない。急冷塔の
塔底液温はアクリル酸の重合を防止する為に90℃
以下とすることが望ましいが、新しく供給される
水だけでそこまでの熱量を除去しようとすれば膨
大な水量を必要とするばかりでなく、得られた凝
縮水中のアクリル酸濃度が稀薄となりあとの精製
工程に負担をかけることになるので、通常凝縮水
を間接冷却器で冷却後急冷塔へ循環送入するとい
う方法がとられている。 上述の従来法を添付第1図により説明する。な
お添付図面においては、ポンプおよび圧縮機の記
載は省略し、液およびガスの流れは矢印で示して
ある。 第1図1,2は接触気相酸化反応器、3は急冷
塔、4は凝縮水(急冷塔塔底液)間接冷却器であ
る。必要に応じ急冷塔の中間液間接冷却器5を設
けることもある。6,7,8はそれぞれ空気(分
子状酸素含有ガス)・水蒸気・プロピレンの供給
ラインである。この3者を混合した原料ガスは反
応器1,2で接触気相酸化されてアクリル酸を含
む高温の生成ガスとなり生成ガス間接冷却器21
で該ガスの露点近くの温度まで冷却された後急冷
塔3の下部に送入される。水の供給ライン9から
急冷塔3の上部に供給された水は高温の生成ガス
と向流接触してこれを冷却すると共に、生成ガス
中のアクリル酸を吸収溶解し凝縮水排出ライン1
0から急冷塔外へ排出される。11はオフガス放
出ラインである。ライン10で排出された高温の
凝縮水の1部分はライン12から精製工程へ送ら
れるが、残りはライン13へ分岐して凝縮水間接
冷却器4で冷却され急冷塔3へ循環送入される。
この冷却器4は分岐ライン13上ではなく、メイ
ンの凝縮水排出ライン10上にあつても良い。 精製工程へ送られた凝縮液は、まず大部分の水
を除去された後、高次の精製ユニツトで低沸点・
高沸点の不純物を除去されて精製アクリル酸とな
る。大部分の水を除去する方法としては共沸蒸留
とか溶剤抽出とかいう方法がある。第1図に例示
したのは溶剤抽出法の概念図で、ライン12から
抽出塔14に送入された凝縮水はライン15から
の抽出剤と接触し、アクリル酸は抽出剤層に移行
して精製ユニツト16に送られ、ここで分離され
た抽出剤はライン15に循環使用される。 抽出塔14で分離された水層はストリツピング
塔17で溶存抽出剤を回収された後、廃水として
ライン18から排出され後処理工程に送られる。
回収抽出剤はライン19,15を経て循環使用さ
れる。ライン20は精製アクリル酸である。 ライン18からの廃水中には接触気相酸化反応
の副生成物即ちフオルムアルデヒド・酢酸・マレ
イン酸等や微量のアクリル酸を含んでいるが、こ
こに反応系への添加水蒸気・反応生成水・急冷水
が殆んど全部集まつて来るのでその水量が多く従
つて有機物濃度が低くなるので、この廃水を無害
化するための後処理として例えば水中燃焼方式を
用いる場合、助燃剤を多量に必要とするという不
都合がある。 このことは例示した溶剤抽出法の代りに、凝縮
水を共沸蒸留塔にかけてアクリル酸を塔底に回収
する場合も同様であつて、共沸剤回収塔の塔底よ
り酢酸などの酸化反応副生成物を含む水溶液が廃
水として排出される。 また高温の凝縮水を間接冷却器4で系外からの
冷却水を用いて冷却する上記の方法では、反応熱
および反応系に添加した水蒸気及び酸化反応で生
成した水蒸気の潜熱の大部分は結局間接冷却器の
冷却水に転嫁されるのでその水量はやはり膨大な
ものとなる一方、急冷塔の塔底温度を90℃以下に
保つ関係上熱交換後の冷却水温度はそれほど高く
ならない。つまり全熱エネルギー量は大きいがポ
テンシヤルが低いために有効利用することができ
ず、そのまま廃棄せざるを得なかつた。 本発明は従来法の上記のような欠点、即ち一方
では多量の水蒸気を供給し他方では熱除去のため
に多量の冷却水を必要とするというエネルギー・
バランス上の無駄および多量の廃水を発生しその
後処理のためにさらにエネルギーを消費するとい
う無駄を排除し、ユーテイリテイコストを低減す
ることを目的とするものである。 本発明の構成は、上記接触気相酸化反応による
生成ガスを冷却及び/又は水で吸収することによ
つて生じた高温の凝縮水と調湿用水とを間接熱交
換し、加熱された調湿用水に反応用の分子状酸素
含有ガスを接触させて調湿した後その調湿された
ガスを反応系へ送入すると共に、前記凝縮水から
有用成分を分離した後の残液を逆浸透膜法により
処理して得られた透過水を前記調湿用水として使
用することを特徴とする。 本発明を添付第2図によつて説明する。ただし
第1図に示した従来法と重複する部分の説明は省
略する。 反応器1,2における接触気相酸化反応による
アクリル酸を含む高温の生成ガスを生成ガス間接
冷却器21で該ガスの露点近くの温度まで冷却し
た後冷却塔3の下部に送入し、ライン9からの水
と向流接触させて生じた高温の凝縮水をライン1
0,13を経て間接熱交換器30に送りここで温
度の低い調湿用水と間接熱交換する。加熱された
調湿用水はライン22を経て調湿塔23へ送り、
ライン6′から送入される反応用の空気(分子状
酸素含有ガス)と向流接触させる。なお調湿用水
と空気との接触は必ずしも向流である必要はなく
並流でも十字流でもよい。この過程で調湿塔23
から流出する空気はその温度に対応する飽和水蒸
気圧まで調湿される。反応用の空気をこのように
して調湿した後、ライン24を経て、ライン8か
らのプロピレンとあわせて反応系に送入する。調
湿塔で空気と接触し蒸発潜熱を奪われて温度が低
下した調湿用水は調湿塔底部から抜き出し、ライ
ン22′を経て間接熱交換器30に循環して再加
熱する。25は調湿用水補給ラインであるが、必
ずしも図の位置でなくても良く、調湿用水循環系
の中の任意の位置に設ければ良い。 調湿塔で反応用空気に添加されて調湿する水蒸
気量は調湿塔から流出する空気温度と空気量とに
より変化するが、下記のように原料プロピレンに
対しモル比で数倍にもなるので、さらに外部から
の水蒸気を添加する必要はなくなる。
The present invention relates to a method for producing a corresponding unsaturated carboxylic acid by catalytic gas phase oxidation in the presence of water vapor using an olefin or unsaturated aldehyde having three or more carbon atoms in one molecule as a raw material. In particular, the purpose is to reduce the amount of raw steam and cooling water required at that time by using waste heat, and to reduce the amount of wastewater containing organic matter to facilitate post-treatment. be. The main raw materials are propylene and acrolein having 3 carbon atoms, isobutylene having 4 carbon atoms, methacrolein, and the like. Catalytic gas phase oxidation yields acrylic acid from propylene or acrolein, methacrylic acid from isobutylene or methacrolein, and so on.
Reactions that produce unsaturated carboxylic acids corresponding to the raw materials used are well known. In the following explanation, the case of producing acrylic acid from propylene will be described as a representative example, but the present invention is of course applicable to other cases as well. When producing acrylic acid by catalytic gas-phase oxidation of propylene, it is natural to use a catalyst with excellent conversion rate and selectivity, but it is also necessary to use a catalyst with excellent conversion rate and selectivity. In order to increase safety and selectivity to the target product, acrylic acid, a method in which a large amount of water vapor is present in the raw material gas has been used. This method is useful both in the case of directly producing acrylic acid from propylene in one stage, and in the case of a two-stage reaction in which acrolein is produced from propylene in the first stage and acrylic acid is produced from acrolein in the second stage. The amount of water vapor added is 1 to 1 molar ratio to the raw material propylene.
It is said to be about 15 times, preferably 2 to 7 times, and accounts for a considerable proportion of the utility cost. On the other hand, since the acrylic acid produced is a highly polymerizable substance, it is necessary to immediately quench the reaction product gas in order to prevent polymerization of the acrylic acid. Usually, a method is used in which the reaction product gas is cooled to a temperature close to its dew point, then introduced into a quenching tower and brought into countercurrent contact with water. At this time, the gas is rapidly cooled with water, and at the same time the water vapor in the gas is condensed, and the generated acrylic acid is recovered in a state dissolved in the condensed water. In the next purification step, most of the water is first removed from this condensed water by azeotropic distillation, solvent extraction, etc., and then further purified by distillation to obtain a product. Catalytic gas phase oxidation is a significantly exothermic reaction, and in the quenching tower, a part of this reaction heat must be removed together with the latent heat of the steam added for the above-mentioned reason and the steam generated by the oxidation reaction. The bottom liquid temperature of the quenching tower is 90℃ to prevent polymerization of acrylic acid.
It is desirable to keep the amount of acrylic acid below, but if you try to remove that much heat with just newly supplied water, not only will you need a huge amount of water, but the concentration of acrylic acid in the obtained condensed water will be diluted, and the remaining Since this places a burden on the purification process, the conventional method is to cool the condensed water with an indirect cooler and then circulate it to a quenching tower. The above-mentioned conventional method will be explained with reference to the attached FIG. Note that in the accompanying drawings, illustrations of the pump and compressor are omitted, and the flows of liquid and gas are indicated by arrows. 1 and 2 are contact gas phase oxidation reactors, 3 is a quenching tower, and 4 is an indirect cooler for condensed water (quenching tower bottom liquid). If necessary, an intermediate liquid indirect cooler 5 of the quenching tower may be provided. 6, 7, and 8 are supply lines for air (molecular oxygen-containing gas), water vapor, and propylene, respectively. The raw material gas, which is a mixture of these three components, undergoes catalytic gas phase oxidation in reactors 1 and 2 to become a high-temperature product gas containing acrylic acid, which is produced in the product gas indirect cooler 21.
After being cooled to a temperature close to the dew point of the gas, it is sent to the lower part of the quenching tower 3. The water supplied from the water supply line 9 to the upper part of the quenching tower 3 comes into countercurrent contact with the high temperature produced gas to cool it, absorbs and dissolves acrylic acid in the produced gas, and passes through the condensed water discharge line 1
0 to the outside of the quenching tower. 11 is an off-gas discharge line. A portion of the high-temperature condensed water discharged through line 10 is sent to the purification process through line 12, while the rest is branched to line 13, cooled by indirect condensed water cooler 4, and circulated to quench tower 3. .
This cooler 4 may be located not on the branch line 13 but on the main condensate discharge line 10. The condensate sent to the purification process first removes most of the water, and then goes to a higher-order purification unit to reduce the boiling point and
High boiling point impurities are removed to produce purified acrylic acid. Methods for removing most of the water include azeotropic distillation and solvent extraction. Figure 1 is a conceptual diagram of the solvent extraction method, in which condensed water sent from line 12 to extraction tower 14 comes into contact with the extractant from line 15, and acrylic acid is transferred to the extractant layer. The extractant separated therefrom is sent to a purification unit 16 and recycled to line 15. The aqueous layer separated in the extraction tower 14 has the dissolved extractant recovered in a stripping tower 17, and is then discharged as waste water through a line 18 and sent to a post-treatment process.
The recovered extractant is recycled via lines 19 and 15. Line 20 is purified acrylic acid. The wastewater from line 18 contains by-products of the catalytic gas phase oxidation reaction, such as formaldehyde, acetic acid, maleic acid, etc., and a small amount of acrylic acid, but this contains water vapor added to the reaction system and reaction product water.・Since almost all of the quenched water is collected, the amount of water is large and the concentration of organic matter is low. Therefore, when using an underwater combustion method as a post-treatment to render this wastewater harmless, it is necessary to use a large amount of combustion improver. There is an inconvenience that it is necessary. This also applies to the case where condensed water is collected in an azeotropic distillation column to recover acrylic acid at the bottom of the column instead of the solvent extraction method shown in the example. The aqueous solution containing the product is discharged as wastewater. In addition, in the above method in which high-temperature condensed water is cooled using cooling water from outside the system in the indirect cooler 4, most of the reaction heat, the steam added to the reaction system, and the latent heat of the steam generated in the oxidation reaction end up being Since the amount of water is transferred to the cooling water of the indirect cooler, the amount of water is still enormous, but the temperature of the cooling water after heat exchange does not become so high because the bottom temperature of the quenching tower is kept below 90°C. In other words, although the total amount of heat energy is large, the potential is low, so it cannot be used effectively and has no choice but to be discarded. The present invention overcomes the above-mentioned drawbacks of the conventional methods, namely the energy consumption, which requires, on the one hand, a large amount of water vapor to be supplied and, on the other hand, a large amount of cooling water for heat removal.
The purpose is to reduce utility costs by eliminating waste in terms of balance and the waste of generating a large amount of waste water and consuming additional energy for subsequent treatment. The structure of the present invention involves indirect heat exchange between high-temperature condensed water produced by cooling and/or absorption of the gas produced by the catalytic gas phase oxidation reaction with water for humidity control, and heated humidity control water. After conditioning the humidity by contacting the water with a molecular oxygen-containing gas for reaction, the conditioned gas is fed into the reaction system, and the remaining liquid after separating useful components from the condensed water is passed through a reverse osmosis membrane. The method is characterized in that the permeated water obtained by the treatment is used as the humidity control water. The present invention will be explained with reference to the attached FIG. However, explanations of parts that overlap with the conventional method shown in FIG. 1 will be omitted. The high-temperature product gas containing acrylic acid resulting from the catalytic gas phase oxidation reaction in the reactors 1 and 2 is cooled to a temperature close to the dew point of the gas in the product gas indirect cooler 21, and then sent to the lower part of the cooling tower 3. The high temperature condensed water produced by countercurrent contact with water from line 9 is transferred to line 1.
0 and 13 to the indirect heat exchanger 30, where it exchanges indirect heat with humidity control water having a low temperature. The heated humidity control water is sent to the humidity control tower 23 via the line 22.
It is brought into countercurrent contact with reaction air (molecular oxygen-containing gas) fed from line 6'. Note that the contact between the humidity control water and the air does not necessarily have to be in countercurrent flow, and may be in cocurrent flow or cross flow. In this process, the humidity control tower 23
The air flowing out is conditioned to a saturated water vapor pressure corresponding to its temperature. After the humidity of the reaction air is adjusted in this manner, it is fed into the reaction system via line 24 together with propylene from line 8. The humidity control water, whose temperature has been lowered by contacting air in the humidity control tower and being deprived of latent heat of vaporization, is extracted from the bottom of the humidity control tower and circulated to the indirect heat exchanger 30 via line 22' to be reheated. Reference numeral 25 denotes a water supply line for humidity control, but it does not necessarily have to be located at the position shown in the figure, and may be provided at any position in the water circulation system for humidity control. The amount of water vapor added to the reaction air in the humidity control tower to control the humidity varies depending on the temperature and amount of air flowing out from the humidity control tower, but as shown below, it is several times the molar ratio to the raw material propylene. Therefore, there is no need to further add water vapor from the outside.

【表】 即ち、プロピレン1モルを全部アクリル酸にす
るに必要な理論量の酸素は1.5モルであるから空
気量としては約7.1モルとなる。従つてそれに調
湿して同伴される水蒸気量は第1表最後の欄の数
字の7.1倍であり、プロピレン1モルに対し50℃、
60℃、70℃、80℃でそれぞれが約1.0,1.7,3.2,
6.3モルとなる。気相接触反応では通常理論量よ
りも若干多い目の空気を使用するので、必要な水
蒸気量の供給は調湿塔だけで十分可能であること
がわかる。 このように調湿塔は反応用空気に必要な水蒸気
を供給する役割を果す一方、他方から見れば間接
熱交換器30における凝縮水の冷却媒体として働
いている調湿用水の再冷塔としての役割をも果し
ていることになる。 ここで使用する間接熱交換器としては、温度差
が十分とれないので、向流型の例えばプレート熱
交・スパイラル熱交等を用いることが好ましい。 調湿塔の構造は充填塔・プレート塔・格子塔な
ど種々の形式のものを使用することができるが、
なるべく抵抗の少ないものを選んで用いるのが良
い。 原料または反応生成物が異なる場合も、また精
製法が異なる場合も、前記凝縮水から有用成分を
分離した後の残液をライン18により逆浸透膜処
理装置26に送る。その前に、必要に応じて、間
接冷却器27により残液を逆浸透膜の使用上限温
度以下にまで冷却しておく。 逆浸透膜としては例えばポリエーテル系、ポリ
ベンツイミダゾロン系、ポリアクリロニトリル系
などが用いられる。 この透過水をライン25の調湿用水補給水とし
て使用する。このようにすれば、調湿用水−反応
系添加水蒸気−凝縮水−精製系残液−透過水−調
湿用水というサイクルができ、また熱量的にも急
冷塔における添加水蒸気の凝縮熱と調湿塔におけ
る調湿用水の気化熱とがバランスするので、結果
的に系外からの水分の添加と熱の加除を削減でき
ユーテイリテイの節約と廃水量の減少という効果
をもたらす。 アクリル酸精製系からの残液を逆浸透膜処理す
ることにより殆んどの有機物を除去することがで
きる。得られた透過水中の主な有機物は酢酸とホ
ルマリンであるが、逆浸透膜処理の段数を重ねれ
ばさらに純水に近い透過水を得ることも可能であ
る。本発明者らは酢酸及びホルマリンが調湿用水
へ混入した場合のプロピレンの酸化反応及びアク
リル酸精製系への影響を検討した結果、ホルマリ
ンは酸化反応器においてその90%以上が燃焼し消
滅すること及び低濃度の酢酸は殆んど酸化触媒へ
の影響がなく酸化反応器より排出されることが判
明した。しかし本来プロピレンより副反応で生成
する酢酸に対して、調湿用水から酸化反応系へ供
給される酢酸量の比率が増加すると、アクリル酸
精製系において酢酸を除去する為に要するユーテ
イリテイが増大する欠点がある。逆浸透膜処理に
より精製された調湿用水中の酢酸濃度は1.0重量
%以下、好ましくは0.5重量%以下が最適である。 逆浸透膜処理における非透過水は廃水としてラ
イン28で無害化のための後処理工程に送るが、
有機物濃度が約10〜20重量%となり逆浸透膜処理
をしないで直接廃水処理する場合の数倍の濃度に
なつているので、無害化のため水中燃焼方式を使
用した場合、助燃剤の大幅な削減が期待できる。 以上詳述した発明に加えて、第2図におけるラ
イン29(点線)で示すように、急冷塔における
凝縮水から有用成分を分離した残液の一部または
その残液を逆浸透膜法により処理して得られた透
過水の一部を急冷塔の急冷用水として用いてもよ
い。 このようにすれば系外から系内に入る水分はな
くなることになるので、最終的に廃水として処理
しなければならないのは接触気相酸化の反応生成
水だけということになる。 なお、熱水に反応用空気を接触させることによ
り反応系に必要な水蒸気を供給しようとする思想
は特開昭51−103664号明細書に記載があるが、こ
の方法は熱水としてアクリル酸の精製工程におけ
る廃水をそのまま利用するものであり、廃水中
には高沸点の副反応生成物が凝縮されて存在して
おり空気と接触した際にそれぞれの分圧に応じて
空気に同伴して反応系に循環するので反応制御上
好ましくない影響を与え易い、利用できる熱量
は廃水の顕熱だけであるので必要な水蒸気量を得
るには必ずしも十分ではなく追加の熱源または生
蒸気の送入を必要とするなどの欠点がある。これ
はこの発明の重点が廃水の濃縮という点にあるの
で、ユーテイリテイ節約という点は二義的になつ
ているからである。 これに対し本発明は急冷塔の凝縮水と熱交換す
ることにより、間接的に反応熱の一部および反応
系に供給された水蒸気と酸化反応で生成した水蒸
気の潜熱まで利用することになるので、熱量的に
は不足がない。 実施例 1 プロピレンの空気による酸化反応によつて得ら
れた反応生成ガスを急冷塔で水で冷却して冷却凝
縮して生じたアクリル酸水溶液を、抽出剤として
酢酸イソブチルを用いて抽出し、アクリル酸を分
離回収した。抽出により分離された水層はストリ
ツピング塔で溶存している酢酸イソブチルを塔頂
に回収し、塔底液を逆浸透膜処理によつて精製し
た。逆浸透膜はポリスルホンの支持層とポリエー
テル系の超薄膜層で構成される合成複合膜で、ス
パイラルタイプのモジユール(東レ(株)製SP−
110)を用いた。温度25℃、圧力70Kg/cm2(ゲー
ジ)で逆浸透膜処理して得られた透過水をさらに
逆浸透膜処理することにより蒸気塔底液即ちアク
リル酸精製系からの残液を精製した。この結果を
第2表に示す。
[Table] That is, the theoretical amount of oxygen required to convert all 1 mole of propylene into acrylic acid is 1.5 moles, so the amount of air is approximately 7.1 moles. Therefore, the amount of water vapor entrained by the humidity control is 7.1 times the number in the last column of Table 1, and the amount of water vapor is 50℃ and 1 mole of propylene.
Approximately 1.0, 1.7, 3.2 at 60℃, 70℃, and 80℃, respectively.
It becomes 6.3 moles. Since gas phase catalytic reactions usually use a slightly larger amount of air than the theoretical amount, it is clear that a humidity control tower alone can supply the necessary amount of water vapor. In this way, while the humidity control tower plays the role of supplying the necessary water vapor to the reaction air, from the other side, it serves as a recooling tower for the humidity control water that is working as a cooling medium for the condensed water in the indirect heat exchanger 30. It will also play a role. As the indirect heat exchanger used here, since a sufficient temperature difference cannot be taken, it is preferable to use a countercurrent type heat exchanger such as a plate heat exchanger or a spiral heat exchanger. Various types of humidity control tower structures can be used, such as packed towers, plate towers, and lattice towers.
It is best to select and use one with as little resistance as possible. Even when the raw materials or reaction products are different, or when the purification methods are different, the residual liquid after separating useful components from the condensed water is sent to the reverse osmosis membrane treatment device 26 via the line 18. Before that, if necessary, the residual liquid is cooled to below the upper limit temperature for use of the reverse osmosis membrane using the indirect cooler 27. As the reverse osmosis membrane, for example, polyether-based, polybenzimidazolone-based, polyacrylonitrile-based, etc. are used. This permeated water is used as replenishment water for humidity control in the line 25. In this way, a cycle of water for humidity control - steam added to the reaction system - condensed water - residual liquid from the purification system - permeated water - water for humidity control can be created, and in terms of calorific value, the heat of condensation of the added steam in the quench tower and humidity control can be created. Since the heat of vaporization of the humidity control water in the tower is balanced, the addition of moisture from outside the system and the addition and removal of heat can be reduced, resulting in savings in utility and reduction in the amount of waste water. Most of the organic substances can be removed by treating the residual liquid from the acrylic acid purification system with a reverse osmosis membrane. The main organic substances in the obtained permeated water are acetic acid and formalin, but by repeating the number of reverse osmosis membrane treatments, it is possible to obtain permeated water that is even closer to pure water. The present inventors investigated the effects on the oxidation reaction of propylene and the acrylic acid purification system when acetic acid and formalin were mixed into humidity control water, and found that more than 90% of formalin was burned and disappeared in the oxidation reactor. It was also found that low concentration acetic acid was discharged from the oxidation reactor with almost no effect on the oxidation catalyst. However, if the ratio of acetic acid supplied from humidity conditioning water to the oxidation reaction system increases compared to the acetic acid produced by side reactions from propylene, the utility required to remove acetic acid in the acrylic acid purification system increases. There is. The optimal concentration of acetic acid in humidity conditioning water purified by reverse osmosis membrane treatment is 1.0% by weight or less, preferably 0.5% by weight or less. Non-permeated water in reverse osmosis membrane treatment is sent as wastewater to a post-treatment process for detoxification through line 28.
The concentration of organic matter is approximately 10 to 20% by weight, which is several times higher than when directly treating wastewater without reverse osmosis membrane treatment, so when using the underwater combustion method for detoxification, the amount of combustion improver is significantly reduced. A reduction can be expected. In addition to the invention detailed above, as shown by line 29 (dotted line) in FIG. A part of the permeated water thus obtained may be used as quenching water for a quenching tower. In this way, no water enters the system from outside the system, so that ultimately only the reaction product water of the catalytic gas phase oxidation must be treated as wastewater. The idea of supplying the necessary water vapor to the reaction system by bringing reaction air into contact with hot water is described in JP-A-51-103664, but this method uses acrylic acid as hot water. Wastewater from the purification process is used as is, and high-boiling side reaction products are condensed in the wastewater, and when they come into contact with air, they are entrained in the air and react depending on their respective partial pressures. Since it circulates through the system, it tends to have an unfavorable effect on reaction control.The available heat is only the sensible heat of the wastewater, which is not necessarily sufficient to obtain the required amount of steam, and requires the introduction of an additional heat source or live steam. There are drawbacks such as: This is because the emphasis of this invention is on the concentration of wastewater, so saving on utilities has become secondary. In contrast, in the present invention, by exchanging heat with the condensed water of the quench tower, a part of the reaction heat and the latent heat of the steam supplied to the reaction system and the steam generated by the oxidation reaction are indirectly utilized. , there is no shortage of heat. Example 1 The reaction product gas obtained by the oxidation reaction of propylene with air was cooled with water in a quenching tower, and the resulting acrylic acid aqueous solution was extracted using isobutyl acetate as an extractant. The acid was separated and recovered. The aqueous layer separated by extraction was passed through a stripping tower to collect dissolved isobutyl acetate at the top of the tower, and the bottom liquid was purified by reverse osmosis membrane treatment. The reverse osmosis membrane is a synthetic composite membrane consisting of a polysulfone support layer and an ultra-thin polyether film layer.
110) was used. The permeated water obtained by performing reverse osmosis membrane treatment at a temperature of 25° C. and a pressure of 70 Kg/cm 2 (gauge) was further subjected to reverse osmosis membrane treatment to purify the steam tower bottom liquid, that is, the residual liquid from the acrylic acid purification system. The results are shown in Table 2.

【表】 第2表の結果によれば透過水における高沸点不
純物の除去率(絶対値)は酢酸が86%、マレイン
酸は98.5%に達した。また非透過水は有機物を11
重量%含み、若干の助燃剤を用いることで水中燃
焼方式により処理可能となつた。上記の透過水を
調湿用水として用いた。 第2図に示すフローに従つてプロピレンの酸化
反応を実施した。調湿塔23は常圧で、塔頂より
逆浸透膜処理装置26における透過水を毎時12.2
Kg、塔底より空気を毎時31.5Nm3供給した。塔頂
よりの調湿空気の温度を71℃に制御するため、塔
底より毎時500Kgの水を抜き出し、急冷塔の間接
熱交換器30に供給してアクリル酸水溶液と熱交
換し、調湿塔の塔頂へ循環した。循環水の温度は
76℃であつた。なお調湿塔、間接熱交換器及び関
連するラインは充分に保温し、放熱による温度低
下を防止した。調湿塔より出た調湿空気の毎時
46.5Nm3をコンプレツサーで昇圧し、毎時6.55Kg
のプロピレンと混合し、第1反応器へ供給した。
混合ガスを分析したところプロピレン7.0、水
30.0容量%であつた。第2反応器の出口ガスを
200℃に冷却後、急冷塔3の下部へ供給した。急
冷塔は、塔底温度85℃、オフガス温度35℃で操作
し、塔底液を間接熱交換器30へ供給し、66℃ま
で冷却して急冷塔の中段へ循環した。循環液量は
毎時460Kgであつた。急冷塔では、さらに反応ガ
スを冷却しアクリル酸を回収するため、急冷塔中
段より液を抜き出し中間液間接冷却器5に導き28
℃の冷却水で冷却したのち塔頂へ循環した。循環
液量は毎時360Kgで、中間液間接冷却器の出口温
度は32℃、急冷塔より排出されたオフガス温度は
35℃で、アクリル酸は実質的に含まれていなつか
た。急冷塔の塔底液は毎時24.4Kg留出し、アクリ
ル酸を40.6重量%含有していた。中間液間接冷却
器に供給された冷却水は毎時360Kgであつた。 このようにして一ケ月間連続運転を実施したが
酸化触媒への影響もなく、連続運転が可能であつ
た。 比較例 1 調湿塔を使用せず、反応器への水蒸気供給には
ゲージ圧7Kg/cm2のスチームを用いた。急冷塔の
2つの間接冷却器は28℃の冷却水によつて冷却
し、反応生成ガスを冷却凝縮してアクリル酸水溶
液を回収した。その他の条件は実施例1と同様に
実施した。 このとき急冷塔の冷却水消費量は毎時780Kgで
あり、実施例1の約2.2倍を要した。実施例1と
比較例1について、反応原料スチーム及び急冷塔
の冷却水消費量の比較を第3表に示す。工業的実
施において本発明方法の経済的優位性は明らかで
ある。
[Table] According to the results in Table 2, the removal rate (absolute value) of high boiling point impurities in permeated water reached 86% for acetic acid and 98.5% for maleic acid. In addition, non-permeable water contains 11 organic substances.
% by weight, and by using a small amount of combustion improver, it has become possible to process by underwater combustion method. The above permeated water was used as humidity control water. An oxidation reaction of propylene was carried out according to the flow shown in FIG. The humidity control tower 23 is at normal pressure, and the permeated water is passed through the reverse osmosis membrane treatment device 26 from the top of the tower at a rate of 12.2% per hour.
Kg, and air was supplied from the bottom of the tower at 31.5 Nm 3 per hour. In order to control the temperature of the humidity-controlled air from the top of the tower to 71°C, 500 kg of water is extracted from the bottom of the tower per hour and supplied to the indirect heat exchanger 30 of the quenching tower to exchange heat with the acrylic acid aqueous solution. circulated to the top of the tower. The temperature of the circulating water is
It was 76℃. The humidity control tower, indirect heat exchanger, and related lines were sufficiently kept warm to prevent temperature drop due to heat radiation. Hourly amount of humidity-controlled air coming out of the humidity-control tower
46.5Nm 3 is boosted by compressor and 6.55Kg/hour
of propylene and fed to the first reactor.
Analysis of the mixed gas revealed propylene 7.0 and water.
It was 30.0% by volume. The outlet gas of the second reactor
After cooling to 200°C, it was supplied to the lower part of the quenching tower 3. The quenching tower was operated at a bottom temperature of 85°C and an off-gas temperature of 35°C, and the bottom liquid was supplied to an indirect heat exchanger 30, cooled to 66°C, and circulated to the middle stage of the quenching tower. The amount of circulating fluid was 460 kg/hour. In the quenching tower, in order to further cool the reaction gas and recover acrylic acid, the liquid is extracted from the middle stage of the quenching tower and guided to the intermediate liquid indirect cooler 528.
After cooling with cooling water at ℃, it was circulated to the top of the tower. The amount of circulating liquid is 360Kg/hour, the outlet temperature of the intermediate liquid indirect cooler is 32℃, and the temperature of the off-gas discharged from the quenching tower is
At 35°C, there was virtually no acrylic acid present. The bottom liquid of the quenching tower was distilled at a rate of 24.4 kg per hour and contained 40.6% by weight of acrylic acid. The cooling water supplied to the intermediate liquid indirect cooler was 360 kg/hour. Continuous operation was carried out in this manner for one month, but the oxidation catalyst was not affected and continuous operation was possible. Comparative Example 1 A humidity control tower was not used, and steam at a gauge pressure of 7 Kg/cm 2 was used to supply steam to the reactor. The two indirect coolers of the quenching tower were cooled with cooling water at 28°C, and the reaction product gas was cooled and condensed to recover an aqueous acrylic acid solution. Other conditions were the same as in Example 1. At this time, the cooling water consumption of the quenching tower was 780 kg/hour, which was about 2.2 times that of Example 1. Table 3 shows a comparison of the reaction raw material steam and cooling water consumption of the quenching tower for Example 1 and Comparative Example 1. The economic advantages of the process according to the invention in industrial implementation are obvious.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来法の説明図、第2図は本発明方法
の1例を示す説明図である。 1……第1反応器、2……第2反応器、3……
急冷塔、4……凝縮水間接冷却器、5……急冷塔
中間液間接冷却器、6,6′……空気供給ライン、
7……水蒸気供給ライン、8……原料供給ライ
ン、9……急冷用水供給ライン、10……凝縮水
排出ライン、11……オフガス放出ライン、12
……精製系移送ライン、13……凝縮水循環ライ
ン、14……抽出塔、15……抽出剤循環ライ
ン、16……精製ユニツト、17……ストリツピ
ング塔、18……廃水ライン、19……回収抽出
剤循環ライン、20……製品(精製アクリル酸)、
21……生成ガス間接冷却器、22,22′……
調湿用水循環ライン、23……調湿塔、24……
調湿空気送入ライン、25……調湿用水補給ライ
ン、26……逆浸透膜処理装置、27……間接冷
却器、28……非透過水(逆浸透膜処理廃水)、
29……急冷用水循環ライン、30……間接熱交
換器。
FIG. 1 is an explanatory diagram of a conventional method, and FIG. 2 is an explanatory diagram showing an example of the method of the present invention. 1...First reactor, 2...Second reactor, 3...
Quenching tower, 4... Condensed water indirect cooler, 5... Quenching tower intermediate liquid indirect cooler, 6, 6'... Air supply line,
7...Steam supply line, 8...Raw material supply line, 9...Quick cooling water supply line, 10...Condensed water discharge line, 11...Off gas discharge line, 12
... Purification system transfer line, 13 ... Condensed water circulation line, 14 ... Extraction column, 15 ... Extractant circulation line, 16 ... Purification unit, 17 ... Stripping column, 18 ... Waste water line, 19 ... Recovery Extractant circulation line, 20...Product (purified acrylic acid),
21... Produced gas indirect cooler, 22, 22'...
Humidity control water circulation line, 23... Humidity control tower, 24...
Humidity control air supply line, 25...Humidity control water supply line, 26...Reverse osmosis membrane treatment device, 27...Indirect cooler, 28...Non-permeated water (reverse osmosis membrane treated wastewater),
29...Quick cooling water circulation line, 30...Indirect heat exchanger.

Claims (1)

【特許請求の範囲】[Claims] 1 水蒸気の存在下分子状酸素含有ガスにより1
分子中に3個以上の炭素原子を有するオレフイン
または不飽和アルデヒドを接触気相酸化して対応
する不飽和カルボン酸を製造する方法において、
接触気相酸化反応による生成ガスを冷却及び/又
は水で吸収することによつて生じた高温の凝縮水
と調湿用水とを間接熱交換し、加熱された調湿用
水に反応用の分子状酸素含有ガスを接触させて調
湿した後その調湿されたガスを反応系へ送入する
と共に、前記凝縮水から有用成分を分離した後の
残液を逆浸透膜法により処理して得られた透過水
を前記調湿用水として使用することを特徴とする
方法。
1 by molecular oxygen-containing gas in the presence of water vapor.
A method for producing a corresponding unsaturated carboxylic acid by catalytic gas phase oxidation of an olefin or unsaturated aldehyde having 3 or more carbon atoms in the molecule,
The high-temperature condensed water produced by cooling and/or absorbing the gas produced by the catalytic gas phase oxidation reaction with humidity control water is indirectly heat-exchanged, and the heated humidity control water is injected with molecular molecules for reaction. After conditioning the humidity by contacting oxygen-containing gas, the conditioned gas is sent to the reaction system, and the residual liquid after separating useful components from the condensed water is treated by a reverse osmosis membrane method. A method characterized in that the permeated water is used as the moisture conditioning water.
JP13798982A 1982-08-10 1982-08-10 Preparation of unsaturated aldehyde and unsaturated carboxylic acid Granted JPS5929630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13798982A JPS5929630A (en) 1982-08-10 1982-08-10 Preparation of unsaturated aldehyde and unsaturated carboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13798982A JPS5929630A (en) 1982-08-10 1982-08-10 Preparation of unsaturated aldehyde and unsaturated carboxylic acid

Publications (2)

Publication Number Publication Date
JPS5929630A JPS5929630A (en) 1984-02-16
JPH0345057B2 true JPH0345057B2 (en) 1991-07-09

Family

ID=15211453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13798982A Granted JPS5929630A (en) 1982-08-10 1982-08-10 Preparation of unsaturated aldehyde and unsaturated carboxylic acid

Country Status (1)

Country Link
JP (1) JPS5929630A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2624571B2 (en) * 1989-12-02 1997-06-25 株式会社日本触媒 Method for treating methacrylic acid production plant wastewater
JP2624572B2 (en) * 1989-12-02 1997-06-25 株式会社日本触媒 Acrylic acid production plant wastewater treatment method
JP2007176951A (en) * 2007-02-26 2007-07-12 Nippon Shokubai Co Ltd Method for producing (meth)acrylic acid

Also Published As

Publication number Publication date
JPS5929630A (en) 1984-02-16

Similar Documents

Publication Publication Date Title
SU831076A3 (en) Method of ethylene oxide extraction from gas flow
US7511172B2 (en) Method for production of (meth)acrylic acid
JP2859419B2 (en) Separation method of vinyl acetate
JP4732366B2 (en) Method for producing (meth) acrylic acid
TWI263635B (en) Method for producing (meth)acrylic acid
JP5336198B2 (en) Method for reducing water from reactor outlet gas in oxidation treatment of aromatic compounds
JPS6225651B2 (en)
JP2857993B2 (en) Method for continuous production of aqueous formaldehyde solution
JPH0345057B2 (en)
JPH0138775B2 (en)
CN105435584B (en) Method and device for treating secondary components obtained in the production of acrolein and/or (meth) acrylic acid
JPS6312458B2 (en)
JP3832868B2 (en) Acrylic acid purification method
JP4948158B2 (en) System for obtaining (meth) acrylic acid solution and method for producing (meth) acrylic acid
JPS6111211B2 (en)
JPH0345056B2 (en)
JPS5913746A (en) Preparation of acrylic acid
JPS6317873A (en) Method for recovering ethylene oxide
TW201323399A (en) Process for preparation of methacrylic acid and methacrylic acid esters
JPS5942340A (en) Preparation of acrylic acid
TWI701234B (en) Method for producing acetic acid
KR102600551B1 (en) Method for producing acetic acid
JPS5993028A (en) Recovery of methacrylic acid
RU2032613C1 (en) Unit for manufacturing concentrated nitrogen peroxide
KR20060122448A (en) Reflux method of the organic materials in the manufacturing of terephtalic acid