JPS59134563A - Production process of collector for electrode - Google Patents

Production process of collector for electrode

Info

Publication number
JPS59134563A
JPS59134563A JP58009507A JP950783A JPS59134563A JP S59134563 A JPS59134563 A JP S59134563A JP 58009507 A JP58009507 A JP 58009507A JP 950783 A JP950783 A JP 950783A JP S59134563 A JPS59134563 A JP S59134563A
Authority
JP
Japan
Prior art keywords
current collector
substrate
sheet
electrode
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58009507A
Other languages
Japanese (ja)
Inventor
Katsuhiro Takahashi
勝弘 高橋
Hiromichi Ogawa
小川 博通
Sadao Fukuda
貞夫 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58009507A priority Critical patent/JPS59134563A/en
Publication of JPS59134563A publication Critical patent/JPS59134563A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/82Multi-step processes for manufacturing carriers for lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain the captioned collector which is excellent in ruggedness, for adhering to active material by thermal-spraying metal, alloy, or compound thereof upon a sheet-like substrate. CONSTITUTION:A polypropylene sheet is used as a sheet-like substrate 1. With regard to the quality, the material for use herein may be the other one such as polyvinyl chloride, polyester or the like, and also paper (pulp) may be used. Next, a plasma spraying process is used as thermal spraying. Powder made of 0.05wt% of calcium, 0.5wt% of tin, and the rest of lead alloy powder ranging 1-10mum in size whose almost principal ingredient is lead is used as said spraying particles. Resin sheet 1 provided with the obtained sprayed layer 2 is processed into a collector shape 3 for electrode. Heating is not always necessary for punch processing, but it is desired for expand processing.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、−次電池、二次電池、燃料電池、電解用電極
やセンサーなど電気化学的デバイスに広く活用できる電
極の集電体の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to improvements in current collectors for electrodes that can be widely used in electrochemical devices such as secondary batteries, secondary batteries, fuel cells, electrolytic electrodes, and sensors. It is.

従来例の構成とその問題点 電池など電気化学的デバイスでは、電極に集電と多孔体
形状の保持を兼ねて金属や合金の網、穿孔板、エキスバ
ンドメタル、鋳造格子などが用いられるのが普通である
。とくに最近、いずれのデバイスも軽量化が要求される
傾向にあり、上記集電と補強の役割分担が見直されて、
集電能力が過・剰となる部分をプラスチックスに代替し
た複合集電体が考案された。しかし、実際に樹脂と金属
とを複合した集電体を製造してみると、金属と樹脂の接
合には限界があって、たとえばインサート成形しても長
期の使用では分離し、金属が樹脂から遊離して断線など
の問題を生じることが認められた。
Conventional configurations and their problems In electrochemical devices such as batteries, metal or alloy nets, perforated plates, expanded metal, cast grids, etc. are used for electrodes to collect current and maintain the porous shape. It's normal. Particularly recently, there has been a trend for all devices to be lighter, and the division of roles between current collection and reinforcement has been reconsidered.
A composite current collector was devised in which parts with excess or surplus current collecting capacity were replaced with plastic. However, when we actually manufacture a current collector made of a composite of resin and metal, we find that there are limits to the bonding of the metal and resin, and even with insert molding, for example, they will separate after long-term use, and the metal will separate from the resin. It was recognized that the wires could become loose and cause problems such as wire breakage.

発明の目的 本発明は、上記の問題を解決し、長期に亘り金属と樹脂
部を密着させて、互いの長所を相互に生かした軽量な集
電体を得ることを目的とする。本発明はまた。集電部を
担当する金属部分を多孔質に形成して活物質との接合に
適した凹凸性に優れた構造を可能とし、さらには最終的
に樹脂部を使用せず構造保持機能もこの金属部に分担さ
せる場合にも有効な集電体を得ることを目的とする。
OBJECTS OF THE INVENTION The object of the present invention is to solve the above-mentioned problems and obtain a lightweight current collector in which the metal and resin portions are kept in close contact with each other for a long period of time, thereby making the best use of each other's strengths. The present invention also includes: By making the metal part responsible for the current collection part porous, it is possible to create a structure with excellent unevenness suitable for bonding with the active material, and in the end, this metal also has the ability to maintain the structure without using a resin part. The purpose of the present invention is to obtain a current collector that is effective even when the current collector is distributed to different departments.

発明の構成 上記目的を達成する本発明の方法は、シート状の基体の
片面または両面β属、合金またはこれらの化合物を熱溶
射する工程と、上記溶射層を形成した基体を多孔状に機
械加工する工程を有することを特徴とする。
Structure of the Invention The method of the present invention to achieve the above-mentioned object comprises the steps of thermally spraying a β group, an alloy, or a compound thereof on one or both sides of a sheet-like substrate, and machining the substrate on which the above-mentioned sprayed layer is formed into a porous shape. It is characterized by having a step of.

この熱溶射法を採用する利点は、金属層をまず元のシー
ト上に溶融状態で高速で衝突させるために、樹脂や繊維
のシート中に十分埋まり、その後に溶射で積み上げる金
属部をしっかりと基体と結合できることである。このた
め、その後の如何なる加工を加えても剥離する危険は少
ない。
The advantage of using this thermal spraying method is that the metal layer is first impinged onto the original sheet in a molten state at high speed, so that it is sufficiently embedded in the resin or fiber sheet, and then the metal parts to be deposited by thermal spraying are firmly attached to the base. It is possible to combine with Therefore, there is little risk of peeling off no matter what processing is applied afterwards.

熱溶射には溶融メタルを炎と共に噴射するサーモスプレ
一方式も適用できるが、プラズマ溶射法は、15000
’Cにも達する高温が得られ、材料の多用性があること
、約数百m/ s e c 4での範囲で火炎に関係な
く粒子の速度が調節できること、還元雰囲気が採用でき
ることなどの利点がある。
For thermal spraying, a thermospray method that sprays molten metal with flame can also be applied, but plasma spraying
Advantages include the ability to obtain high temperatures reaching up to 'C, the versatility of materials, the ability to adjust the velocity of particles regardless of the flame in the range of approximately several hundred m/sec4, and the ability to use a reducing atmosphere. There is.

シート状基体は、最終の加工で除去する場合には除去し
やすい材料を使用すれば良い。しかし先に述べた補強の
ための構造材とするためには、耐電解液性の繊維や布、
プラスチックス(合成樹脂)が使用できる。なかでもポ
リプロピレン、ポリエチレン、ポリエステル、ポリアク
リロニトリル、それらの誘導体など熱可塑性材料を用い
ると、っぎの加工の時点において適度な温度(用いる樹
脂の軟化点以上)を選ぶことにより、加工の自由度を大
幅に向上することができる。さらには、所望の形に高温
で整えたまま、冷却すれば、無理なく任意の形状が得ら
れる。捷た、さらに軽量化のためには、織布や低発泡樹
脂を使用すると良い。
When the sheet-like substrate is to be removed in the final processing, a material that is easy to remove may be used. However, in order to use it as a structural material for reinforcement as mentioned above, it is necessary to use electrolyte-resistant fibers and cloth.
Plastics (synthetic resins) can be used. In particular, when thermoplastic materials such as polypropylene, polyethylene, polyester, polyacrylonitrile, and their derivatives are used, the flexibility of processing can be greatly increased by selecting an appropriate temperature (above the softening point of the resin used) at the time of processing. can be improved. Furthermore, if the desired shape is prepared at high temperature and then cooled, any shape can be easily obtained. For further weight reduction, it is recommended to use woven fabric or low-foam resin.

ついで機械加工を行う場合には、最も本発明の効果が広
範囲に利用できるのは打抜き加工による網状化である。
When machining is then performed, the effect of the present invention can be most widely utilized by forming a reticulate shape by punching.

この場合にはシートとの併合部がサーモスプレーのよう
にやや弱くても適用できる。
In this case, it can be applied even if the merged portion with the sheet is somewhat weak like a thermospray.

これに対して、エキスバンド加工を希望するならば、プ
ラズス溶射のような溶射温度の高いものを選ぶのが良い
On the other hand, if you wish to perform extended band processing, it is better to choose a method with a high thermal spraying temperature, such as plasma spraying.

このようにして得られた溶射部は、凹凸もはげしく、調
節次第では数てまでも層を積み上げることができる。
The sprayed area thus obtained is highly uneven, and depending on the adjustment, an unlimited number of layers can be built up.

一方、溶射材料が酸化物その他ハロゲン化物や硝酸化物
などの塩の形であり溶射雰囲気が空気中であると、溶射
層は酸化物の形で保たれている場合がある。その場合は
、加工前、加工後いずれの時点でも良いが、極板端子部
に導通するように、一部還元しておくと良い。還元の方
法は化学的な還元でも良いが、常温では導体を溶射層の
一部に圧接して電解還元するのが最も簡単である。
On the other hand, if the sprayed material is in the form of an oxide, a halide, or a salt such as nitrate, and the spraying atmosphere is air, the sprayed layer may remain in the form of an oxide. In that case, it may be done either before or after processing, but it is better to partially reduce it so that it is electrically conductive to the terminal portion of the electrode plate. Although chemical reduction may be used as the reduction method, the simplest method at room temperature is to press a conductor against a part of the sprayed layer and perform electrolytic reduction.

実施例の説明 以下、本発明の詳細な説明する。なお、使用する系の液
性によって当然使用する材料は選択しなければならない
が、本発明の特徴は一例を法て説明できるので、ここで
は鉛蓄電池用電極の集電体について示すことにする。
DESCRIPTION OF EMBODIMENTS The present invention will now be described in detail. Note that the material to be used must of course be selected depending on the liquid properties of the system used, but since the characteristics of the present invention can be explained using an example, a current collector for an electrode for a lead-acid battery will be shown here.

捷ず、シート状基材として厚さ1mm、幅120諭の長
尺のポリプロピレンシートを用いた。材質はポリ塩化ビ
ニル、ポリエステルなどの他の材質も可能であり、また
紙(パルプ)を用いても良い。
A long polypropylene sheet with a thickness of 1 mm and a width of 120 mm was used as a sheet-like base material without being twisted. Other materials such as polyvinyl chloride and polyester may be used as the material, and paper (pulp) may also be used.

つぎに熱溶射には先に述べた理由でプラズマ溶射法を用
いた。溶射粒にはカルシウムを0.055重量%スズを
0.5重量%、残部をほとんどが鉛で占める鉛合金の1
〜1oμmに分布する粉末を用いた。
Next, for the thermal spraying, plasma spraying was used for the reasons mentioned above. The sprayed grains contain 0.055% calcium by weight, 0.5% tin by weight, and 1 of a lead alloy in which the remainder is mostly lead.
A powder with a particle size distribution of ~10 μm was used.

この溶射粒には任意の素材や組成が選択でき、捷た溶射
層を異種の合金で重ねられる点もプラズマ溶射法を用い
る利点である。もちろん純鉛のような純金属を溶射粒に
選ぶこともできるし、寸た酸化鉛やハロゲン化鉛のよう
な金属の化合物を用いると、酸化雰囲気では表面に酸化
物の多い金属粒として溶射層を形成する。
An advantage of using the plasma spray method is that any material or composition can be selected for the sprayed particles, and the broken sprayed layer can be layered with different types of alloys. Of course, pure metal such as pure lead can be selected as the sprayed particles, but if small metal compounds such as lead oxide or lead halide are used, in an oxidizing atmosphere, the sprayed layer will form metal particles with a large amount of oxide on the surface. form.

ここではプラズマ層を100〜200 m/s e c
の速度で溶射し、約0.5配の厚さの溶射層を得た。
Here, the plasma layer is 100 to 200 m/sec
Thermal spraying was carried out at a speed of about 0.5 mm to obtain a sprayed layer with a thickness of about 0.5 mm.

溶射層はここではかなりの導電性を示したが、酸化物が
多い条件下で導電性がない場合には、鉛板等を圧接し希
硫酸中で陰分極すれば導体化できる。
The sprayed layer here showed considerable electrical conductivity, but if it is not electrically conductive under conditions where there are many oxides, it can be made conductive by pressure-welding a lead plate or the like and cathodically polarizing it in dilute sulfuric acid.

得られた溶射層を備える樹脂シートを第1図に示す。1
はシート状基材、2は溶射層で細かい粒子の積み重なっ
た粗な表面を有している。
The resin sheet provided with the obtained thermal sprayed layer is shown in FIG. 1
2 is a sheet-like base material, and 2 is a thermally sprayed layer having a rough surface on which fine particles are piled up.

このシート全体をつぎに電極用集電体の形状に加工する
。第2図は金型で打ち抜かれた格子3を示す。ここでは
ポリプロピレンの軟化領域である130〜150°Cに
シートを保ち、抜き作業を行なった。打ち抜き加工では
必ずしも加熱は必要ではないが、エキスバンド加工の場
合には加熱するのが望捷しい。なぜならば、加工の際に
シート材と溶射層の間に剥離が生じることがあるからで
ある。加工後は所定の型に保持し、一旦130〜1ts
o”Cに昇温してから冷却すると型くずれのない集電体
が得られる。
This entire sheet is then processed into the shape of a current collector for an electrode. FIG. 2 shows the grid 3 punched out with a die. Here, the sheet was kept at 130 to 150°C, which is the softening range of polypropylene, and the punching operation was performed. Heating is not necessarily necessary in punching, but heating is desirable in expanding. This is because peeling may occur between the sheet material and the sprayed layer during processing. After processing, hold it in the specified mold and heat it for 130~1ts.
If the temperature is raised to 0''C and then cooled, a current collector that does not lose its shape can be obtained.

最後に上記で得られた集電体を用い、これに鉛粉と希硫
酸を主体とするペーストを塗着し、乾燥して140X1
15mmの面積を持つ電極をつくった。これを正負極に
用いた電池をA1正極のみに適用し他を従来法による鋳
造格子を用いた電池をB1その逆の場合をCとして各々
公称30Ahの電池を構成した。なお比較例として従来
の鋳造格子を両極に用いた電池をDとする。
Finally, using the current collector obtained above, apply a paste mainly composed of lead powder and dilute sulfuric acid to it, dry it, and
Electrodes with an area of 15 mm were made. A battery in which this was used for the positive and negative electrodes was designated as A1, a battery in which only the positive electrode was used, B1 was a battery in which a conventional cast grid was used for the other electrodes, and C was the reverse case.Batteries each having a nominal capacity of 30 Ah were constructed. As a comparative example, a battery using conventional cast grids for both electrodes is designated as D.

ここで格子合金の重量は、正極用で本発明のものが従来
法の%、負極では従来法の約%に軽量化されている。
Here, the weight of the lattice alloy for the positive electrode of the present invention is reduced by % of the conventional method, and for the negative electrode, it is reduced to about % of the conventional method.

第3図は上記の構成による電池を各種放電率で放電した
場合の放電容量の例を示す。ここに示されたように、低
率放電の領域では比較例りに比べて正負極共に鉛量を減
量した電池Aでも遜色はない。さらに高率になると若干
容量が低下するが、これは負極のみに本発明を適用した
電池Cと電池りとは大差がなく、正極側にのみ本発明を
適用した電池BがAと同様の挙動を示すことから、主に
正極の鉛量が格子の導電性に対する寄与率が犬であるこ
とを示しているのであり、また見方を変えれば、負極側
ではまだ減量の余地があることを示している。
FIG. 3 shows examples of discharge capacity when the battery having the above configuration is discharged at various discharge rates. As shown here, in the region of low rate discharge, even Battery A, which has a reduced amount of lead in both the positive and negative electrodes, is comparable to the comparative example. When the ratio is further increased, the capacity decreases slightly, but this is not much different between Battery C, in which the present invention is applied only to the negative electrode, and Battery B, in which the present invention is applied only to the positive electrode. This shows that the amount of lead in the positive electrode mainly contributes to the conductivity of the grid, and from a different perspective, it also shows that there is still room for reduction on the negative electrode side. There is.

実際の製造にあたっては、鋳造で0.5箇の厚さの格子
を得ることは工業的には不利であるが、本発明によれば
、上記のようにたやすく軽量化をはかることができる。
In actual manufacturing, it is industrially disadvantageous to obtain a grid with a thickness of 0.5 points by casting, but according to the present invention, the weight can be easily reduced as described above.

また、本発明によって得られる凹凸のはげしい表面を有
する構造の集電体では、活物質多孔体との結着力に優れ
、ペーストを塗着乾燥した後の落下テストでも、格子上
に多くの付着物を得ており、寿命にも良いことがわかっ
た。
In addition, the current collector having a structure with a highly uneven surface obtained by the present invention has excellent binding strength with the active material porous body, and even in a drop test after applying and drying the paste, many deposits were observed on the grid. It was found that it is good for lifespan.

発明の効果 以上のように本発明によれば、軽量で特性の優れた電極
を与える集電体を得ることができる。
Effects of the Invention As described above, according to the present invention, it is possible to obtain a current collector that is lightweight and provides an electrode with excellent characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例における溶射層を備えたシート
状基材の一部を断面にした斜視図、第2図は上記基材を
打抜き加工して得られた格子状集電体の斜視図、第3図
は各種集電体を用いた鉛電池の各種放電率における放電
容量の比較を示す。 1・・・・・・シート状基材、2・・・・・・溶射層、
3・・・・・・打抜き格子状集電体。
FIG. 1 is a perspective view showing a partial cross section of a sheet-like base material provided with a sprayed layer in an example of the present invention, and FIG. 2 is a lattice-like current collector obtained by punching the above-mentioned base material. The perspective view and FIG. 3 show a comparison of discharge capacities at various discharge rates of lead batteries using various current collectors. 1...Sheet-like base material, 2...Thermal spray layer,
3...Punched grid current collector.

Claims (1)

【特許請求の範囲】[Claims] (1)化学的に安定で軽量な基板の片面または両面に金
属、合金またはそれらの化合物を熱溶射したのち、機械
加工によp多孔性にすることを特徴とする電極用集電体
の製造法。 (坤 熱溶射法が、プラズマ溶射法である特許請求の範
囲第1項記載の電極用集電体の製造法。 (1基板が耐電解液性でかつ耐酸化性の合成樹脂ンート
である特許請求の範囲第1項または第2項記載の電極用
集電体の製造法。 (→ 基板が耐電解液性でかつ耐酸化性の不織布または
低発泡樹脂シートである特許請求の範囲第1項またけ第
2項記載の電極用集電体の製造法。 (四 基板が熱可塑性であり、かつ機械加工が基板の軟
化温度以上で行われる特許請求の範囲第1項記載の電極
用集電体の製造法。 (@ 溶射工程後の任意の段階で溶射層の一部を還元す
る工程を含む特許請求の範囲第1項に記載の電極用集電
体Mの製造法。
(1) Manufacture of a current collector for an electrode, which is characterized by thermally spraying a metal, alloy, or a compound thereof on one or both sides of a chemically stable and lightweight substrate, and then machining the substrate to make it p-porous. Law. (Kon) A method for manufacturing an electrode current collector according to claim 1, wherein the thermal spraying method is a plasma spraying method. A method for producing a current collector for an electrode according to claim 1 or 2. (→Claim 1, wherein the substrate is an electrolyte-resistant and oxidation-resistant nonwoven fabric or a low-foam resin sheet. A method for producing a current collector for an electrode according to claim 2. (4. The current collector for an electrode according to claim 1, wherein the substrate is thermoplastic and the machining is performed at a temperature equal to or higher than the softening temperature of the substrate. (@ The method for producing a current collector M for an electrode according to claim 1, which includes a step of reducing a part of the sprayed layer at an arbitrary stage after the spraying step.
JP58009507A 1983-01-24 1983-01-24 Production process of collector for electrode Pending JPS59134563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58009507A JPS59134563A (en) 1983-01-24 1983-01-24 Production process of collector for electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58009507A JPS59134563A (en) 1983-01-24 1983-01-24 Production process of collector for electrode

Publications (1)

Publication Number Publication Date
JPS59134563A true JPS59134563A (en) 1984-08-02

Family

ID=11722154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58009507A Pending JPS59134563A (en) 1983-01-24 1983-01-24 Production process of collector for electrode

Country Status (1)

Country Link
JP (1) JPS59134563A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01302668A (en) * 1988-05-30 1989-12-06 Hitachi Chem Co Ltd Electrode for alkaline storage battery
JPH0757717A (en) * 1993-08-06 1995-03-03 Katayama Tokushu Kogyo Kk Metallic material plate, negative terminal plate made of the metallic material plate, and manufacture of the terminal plate
KR100432765B1 (en) * 2001-12-12 2004-05-24 한국타이어 주식회사 Plate for lead storage battery and lead storage battery containing the same
US6921611B2 (en) 1999-07-09 2005-07-26 Johnson Controls Technology Company Method of making a battery
US6953641B2 (en) 2001-01-05 2005-10-11 Johnson Controls Technology Company Battery grid
US9748578B2 (en) 2010-04-14 2017-08-29 Johnson Controls Technology Company Battery and battery plate assembly
US10418637B2 (en) 2013-10-23 2019-09-17 Johnson Controls Autobatterie Gmbh & Co. Kgaa Grid arrangement for plate-shaped battery electrode and accumulator
US10840515B2 (en) 2013-10-08 2020-11-17 Clarios Germany Gmbh & Co. Kgaa Grid assembly for a plate-shaped battery electrode of an electrochemical accumulator battery
US10892491B2 (en) 2011-11-03 2021-01-12 CPS Technology Holdings LLP Battery grid with varied corrosion resistance

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01302668A (en) * 1988-05-30 1989-12-06 Hitachi Chem Co Ltd Electrode for alkaline storage battery
JPH0757717A (en) * 1993-08-06 1995-03-03 Katayama Tokushu Kogyo Kk Metallic material plate, negative terminal plate made of the metallic material plate, and manufacture of the terminal plate
US7799463B2 (en) 1999-07-09 2010-09-21 Johnson Controls Technology Company Method of producing battery plates
US8034488B2 (en) 1999-07-09 2011-10-11 Johnson Controls Technology Company Battery grid
US6921611B2 (en) 1999-07-09 2005-07-26 Johnson Controls Technology Company Method of making a battery
US6953641B2 (en) 2001-01-05 2005-10-11 Johnson Controls Technology Company Battery grid
US7763084B2 (en) 2001-01-05 2010-07-27 Johnson Controls Technology Company Method for making battery plates
US7398581B2 (en) 2001-01-05 2008-07-15 Johnson Controls Technology Company Method for making battery plates
KR100432765B1 (en) * 2001-12-12 2004-05-24 한국타이어 주식회사 Plate for lead storage battery and lead storage battery containing the same
US9748578B2 (en) 2010-04-14 2017-08-29 Johnson Controls Technology Company Battery and battery plate assembly
US10985380B2 (en) 2010-04-14 2021-04-20 Cps Technology Holdings Llc Battery and battery plate assembly with highly absorbent separator
US11824204B2 (en) 2010-04-14 2023-11-21 Cps Technology Holdings Llc Battery and battery plate assembly with absorbent separator
US10892491B2 (en) 2011-11-03 2021-01-12 CPS Technology Holdings LLP Battery grid with varied corrosion resistance
US11539051B2 (en) 2011-11-03 2022-12-27 Cps Technology Holdings Llc Battery grid with varied corrosion resistance
US10840515B2 (en) 2013-10-08 2020-11-17 Clarios Germany Gmbh & Co. Kgaa Grid assembly for a plate-shaped battery electrode of an electrochemical accumulator battery
US11611082B2 (en) 2013-10-08 2023-03-21 Clarios Germany Gmbh & Co. Kg Grid assembly for a plate-shaped battery electrode of an electrochemical accumulator battery
US10418637B2 (en) 2013-10-23 2019-09-17 Johnson Controls Autobatterie Gmbh & Co. Kgaa Grid arrangement for plate-shaped battery electrode and accumulator

Similar Documents

Publication Publication Date Title
US3486940A (en) Storage battery having a positive electrode comprising a supporting base of titanium nitride having a surface film of non-polarizing material
US5965298A (en) Electrode plate for battery and process for producing the same
CA2726308C (en) Multiply-conductive matrix for battery current collectors
US3266936A (en) Electrode supports and method for their production
EP0750358B1 (en) Non-sintered type nickel electrode and method of producing the same
US4237205A (en) Pocket grid for alkaline battery plates
JPS59134563A (en) Production process of collector for electrode
US5839049A (en) Method for varying the density of plated foam
US4816357A (en) Intensification of ion exchange in lithium batteries
US6099991A (en) Electrode for alkaline storage batteries and process for producing the same
JPH11312517A (en) Manufacture of battery electrode
JPS63279568A (en) Lead storage battery
KR100250381B1 (en) The method to support active material of plate for lead acid battery and its applied battery
JP3781058B2 (en) Battery electrode substrate and manufacturing method thereof
JPS61263047A (en) Nickel electrode for alkaline battery
JPH01302668A (en) Electrode for alkaline storage battery
JPS6255270B2 (en)
JPS5880269A (en) Manufacture of electrode for battery
CN115810759A (en) Flexible composite current collector, preparation method thereof, pole piece and battery
JPH06128787A (en) Porous nickel electrode and production thereof
JPS6336941Y2 (en)
JPH02244555A (en) Zinc electrode for alkaline storage battery
CN111193030A (en) Three-dimensional porous aluminum strip, preparation method and anode
JPH03222260A (en) Paste-type nickel positive electrode
JPH09161807A (en) Electrode base for lithium ion battery