JPS59133346A - Sintered hard alloy - Google Patents

Sintered hard alloy

Info

Publication number
JPS59133346A
JPS59133346A JP796883A JP796883A JPS59133346A JP S59133346 A JPS59133346 A JP S59133346A JP 796883 A JP796883 A JP 796883A JP 796883 A JP796883 A JP 796883A JP S59133346 A JPS59133346 A JP S59133346A
Authority
JP
Japan
Prior art keywords
alloy
carbon
phase
cutting
group metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP796883A
Other languages
Japanese (ja)
Other versions
JPS6327421B2 (en
Inventor
Tsutomu Yamamoto
勉 山本
Katsumi Uemura
植村 勝己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daijietsuto Kogyo Kk
Dijet Industrial Co Ltd
Original Assignee
Daijietsuto Kogyo Kk
Dijet Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daijietsuto Kogyo Kk, Dijet Industrial Co Ltd filed Critical Daijietsuto Kogyo Kk
Priority to JP796883A priority Critical patent/JPS59133346A/en
Publication of JPS59133346A publication Critical patent/JPS59133346A/en
Publication of JPS6327421B2 publication Critical patent/JPS6327421B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the wear resistance and welding resistance of the resulting titled alloy for cutting by incorporating Co3W3C into the structure of a sintered body contg. W, Ti, Ta, Nb substituted optionally for part of Ta, carbon and an iron group metal as a binding phase. CONSTITUTION:75-95% W is blended with 0-5% Ti, Ta and Nb substituted optionally for part of Ta, 3-8% carbon and 2-20% iron group metal such as Co as a binding phase in the form of powder. The powdery blend is mixed in a wet state by means of superhard balls in a mill rotating at high speed, and the mixture is dried and press-molded in a prescribed metallic mold. The resulting green compact is heated at a high temp. in vacuum to obtain a sintered hard alloy. At this time, a Co3W3C phase is formed by controlling only the amount of carbon to be alloyed in the alloy composition.

Description

【発明の詳細な説明】 本発明は、超硬合金に関するもので、特に矯削材切削用
の超硬質焼結合金の耐摩耗性を改善したものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cemented carbide, and in particular to an improved wear resistance of a superhard sintered alloy for cutting a material.

従来、金属を切削するための焼結された超硬合金は、タ
ングステンカーバイドをコバルトで固めたものが多く用
いられ、その合金組織は炭化物相と結合相の2相域から
なる健全組織を有するものであった。
Conventionally, sintered cemented carbide for cutting metals is often made of tungsten carbide hardened with cobalt, and the alloy structure has a sound structure consisting of two phase regions: a carbide phase and a binder phase. Met.

しかし、近年ヌテンレス鋼、ニッケル基合金またはチタ
ン合金などの難削材を切削する機会が多くなり、これら
難削材料の切削に上記した従来の超硬合金を用いると切
刃の摩耗、特に境界近傍の摩耗が生じ易く、工具の寿命
は極端に短いものであった。
However, in recent years, there have been many opportunities to cut difficult-to-cut materials such as nutless steel, nickel-based alloys, or titanium alloys, and when the conventional cemented carbide mentioned above is used to cut these difficult-to-cut materials, the cutting edge wears out, especially near the boundaries. The tool life was extremely short due to easy wear of the tool.

本発明は、上記した従来の問題点に鑑みなしたもので、
難削材料を切削しても耐摩耗性ならびに耐溶着性にすぐ
れた長寿命の切削用超硬質焼結合金を提供することを目
的とするものである。
The present invention has been made in view of the above-mentioned conventional problems.
The object of the present invention is to provide an ultra-hard sintered alloy for cutting that has excellent wear resistance and welding resistance and has a long life even when cutting difficult-to-cut materials.

本発明は、タングステン75〜95%、チタンとタンタ
ルまたはタンタルの一部をニオブに置換したもの0〜5
%とカーボンが5〜8%の成分で、かつ結合相である鉄
族金属が2〜20%含有したものからなる焼結体組織中
に003W30 を有せしめた超硬質焼結体である。
The present invention uses 75 to 95% tungsten, 0 to 5% titanium and tantalum, or 0 to 5% tantalum in which a part of tantalum is replaced with niobium.
This is an ultra-hard sintered body containing 003W30 in the sintered body structure, which contains 5 to 8% of carbon and 2 to 20% of iron group metal as a binder phase.

前々記したように従来切削用超硬合金は、通常その合金
製作時炭素量をコントロールして該合金組織中に遊離炭
素や003W30相を生じないように規正し、炭化物相
と結合相の2相域からなる健全な組織を有する超硬合金
を作るのが一般的で、その理由は遊離炭素や003W3
0相が形成されると耐摩耗性あるいは靭性が低下すると
云われているためである。
As previously mentioned, conventional cemented carbides for cutting are usually manufactured by controlling the carbon content so as not to generate free carbon or 003W30 phase in the alloy structure, and to prevent the formation of two carbide phases and a binder phase. It is common to make cemented carbide with a healthy structure consisting of phase regions, and the reason for this is that free carbon and 003W3
This is because it is said that the formation of zero phase reduces wear resistance or toughness.

ところが、本発明者等が種々の実験をおこなった結果、
超硬合金中の全炭素量を低目に設定し、該合金組織中0
03 W2O相を形成せしめた試料が切削試験の結果、
靭性を低下させることなく耐摩耗性および耐′m着性に
すぐれた超硬質焼結合金が得られることを見い出したの
である。
However, as a result of various experiments conducted by the inventors,
The total carbon content in the cemented carbide is set to a low value, and the alloy structure contains 0
03 As a result of the cutting test on the sample in which the W2O phase was formed,
It has been discovered that a superhard sintered alloy with excellent wear resistance and adhesion resistance can be obtained without reducing toughness.

次に、こ−の超硬質焼結合金を前述したような構成にし
た理由について述べる。タングステン75〜95<、チ
タンとタンタルまたはタンクμの一部をニオブに置換し
たもの0〜5%とカーボンを5〜g<の成分に対し鉄族
金属を2〜20%(いずれも重量%)としたのはP系9
M系(J I S B l+ 1’ 011 )の超硬
合金に比べて同一結合相体積において一般に合金強度お
よび熱伝導率が最もすぐれているから前々記したような
難削材料の切削に最適するためである。また合金組織中
にCo3W30相を生じせしめたのは該Co3W30相
は耐溶着性および耐摩耗性にすぐれ、かつCO3W2O
相を生じせしめることに伴い結合相中へタングステン固
溶量が増加して該結合相が固溶強化され、この合金の特
性をより良好にするものとの知見にもとづくものである
。事実、前々記した難削材料のように加工硬化し易かっ
たり、材料の熱伝導率が低いことに起因する工具の境界
摩耗の増大に対しては合金組織中の003 W2O相の
存在が好結果をもたらすことが切削試験の結果確認され
ている。
Next, the reason why this ultra-hard sintered alloy was constructed as described above will be described. Tungsten 75-95<, titanium and tantalum or tank μ partially replaced with niobium 0-5% and carbon 5-g< 2-20% iron group metal (both by weight) The person who did this was P series 9.
Compared to M series (JIS B l+ 1' 011) cemented carbide, it generally has the best alloy strength and thermal conductivity for the same binder phase volume, making it ideal for cutting difficult-to-cut materials such as those mentioned above. This is to do so. Furthermore, the reason for the formation of the Co3W30 phase in the alloy structure is that the Co3W30 phase has excellent welding resistance and wear resistance, and
This is based on the knowledge that as the phase is formed, the amount of tungsten solidly dissolved in the binder phase increases, and the binder phase is strengthened as a solid solution, thereby improving the properties of the alloy. In fact, the presence of the 003 W2O phase in the alloy structure is favorable for increasing tool boundary wear caused by difficult-to-cut materials that are easily work-hardened or have low thermal conductivity. Cutting test results have confirmed that it brings about results.

以下、この発明について具体的に説明する。This invention will be specifically explained below.

まず、製造方法はタングステンとチタンとタンタルまた
はタンタルの一部をニオブに置換したものとカーボン等
の原料粉末とCOの結合金属粉末を所望配合し、この粉
末を超硬ポーμを用いた高速回転ミル中で約148時間
湿式混合し、これを乾燥させた後所定の金型でプレス成
形して圧粉体とし、次いで10−2〜1O−31111
H9の真空中で1350〜11150℃の温度を加え約
60分間保持して本発明の超硬質合金を得るが、この場
合合金組織で合金炭素量のみをコントロールしてOo3
 W2O相を生じせしめる。
First, the manufacturing method is to mix tungsten, titanium, tantalum, or tantalum partially replaced with niobium, raw material powder such as carbon, and bonded metal powder of CO, and then rotate this powder at high speed using a carbide po-μ. The mixture was wet mixed in a mill for about 148 hours, dried, and then press-molded in a predetermined mold to form a compact, and then 10-2 to 1O-31111
The superhard alloy of the present invention is obtained by applying a temperature of 1350 to 11150°C in a vacuum of H9 and holding it for about 60 minutes.
A W2O phase is generated.

以下夾施例について述べる。Below, we will discuss some examples.

上記によって得た超硬質焼結合金を切刃とした径251
mのエンドミル工具を製作した。
Diameter 251 using the ultra-hard sintered alloy obtained above as a cutting edge
An end mill tool of m was manufactured.

このエンドミル工具を竪型フライス盤(う0瞑)に装着
し、切削試験をおこなった。
This end mill tool was attached to a vertical milling machine (vertical milling machine), and a cutting test was conducted.

この試験での条件は、被削材5US3011(HB18
0)を切削速度50 m/min、送り0.11mm/
rev、切込み5strg、切削時間20m−*nで試
験したものをテス)Aとし、被削材N1基合金を用いて
切削速度145 m/min 、送り0.3 mm/r
ev、、  切込み5 mm、切削時間15 minの
条件を与えて試験したものをテストB、さらに被削材T
1合金を用いて切削速度lIOm/m’xn 、送り0
.3 mm/rev。
The conditions for this test were as follows: Work material 5US3011 (HB18
0) at a cutting speed of 50 m/min, feed of 0.11 mm/
rev, depth of cut 5 strg, cutting time 20 m-*n was tested as test) A, cutting speed 145 m/min, feed 0.3 mm/r using N1 base alloy as work material.
ev, Test B was conducted under the conditions of depth of cut of 5 mm and cutting time of 15 min, and work material T was tested.
1 alloy, cutting speed lIOm/m'xn, feed 0
.. 3mm/rev.

切込み5mm、切削時間10 mi、nで試験したもの
をテストCとした。
Test C was conducted with a cutting depth of 5 mm and a cutting time of 10 mi, n.

これら試験結果は第1表に示した。なお、表中の測定値
は切刃の逃げ面摩耗(摩耗りと切込み境界近傍の最大摩
耗(摩耗■)である。また該表には各試料と共にCo3
W30相を生じさせない合金を併記し、これらの特性値
と試験結果を記し本発明合金と比較した。
The results of these tests are shown in Table 1. The measured values in the table are the flank wear of the cutting edge (wear and the maximum wear near the cutting boundary (wear)).The table also includes Co3 as well as each sample.
Alloys that do not generate the W30 phase are also listed, their characteristic values and test results are listed, and compared with the alloy of the present invention.

第1表 (摩耗幅=単位+a) 上記第1表に示したように本発明合金は比較合金に比べ
て切刃の逃げ面摩耗および境界近傍の摩耗に良好な結果
を示した。
Table 1 (Wear Width = Unit + a) As shown in Table 1 above, the alloy of the present invention showed better results in terms of flank wear of the cutting edge and wear near the boundary than the comparative alloy.

なお、特に境界部近傍の摩耗が改善され難削材料の切削
にきわめてすぐれた耐摩耗性を発揮するものである。
In addition, the wear especially near the boundary is improved and exhibits extremely excellent wear resistance when cutting difficult-to-cut materials.

手続補正書(自発) ■、小事件表示 昭和58年特許願第7968号 2、発明の名称 超硬質焼結合金 3、補正をする者 事件との関係  特許出願人 自発補正 5、補正の対象 明細書の特許請求の範囲および発明の詳細な説明の各欄 7 補正の内容 (1)特許請求の範囲を別紙の通り補正する。Procedural amendment (voluntary) ■、Small incident display 1981 Patent Application No. 7968 2. Name of the invention Super hard sintered alloy 3. Person who makes corrections Relationship to the case Patent applicant spontaneous correction 5. Subject of correction Claims and Detailed Description of the Invention in the Specification 7 Contents of amendment (1) Amend the claims as shown in the attached sheet.

(2)明細書第2頁第16〜17行目および第20行目
の 「Co3W30」を「C03W3C」と訂正する。
(2) "Co3W30" in lines 16-17 and line 20 of page 2 of the specification is corrected to "C03W3C."

(3)明細書第3頁第3行目および第8行目の[CO3
W30 jを「CO3W3C」と訂正スル。
(3) [CO3
Corrected W30 j to "CO3W3C".

(4)明細書第4頁第2行目および第3行目、第4行目
、第11行目の r C03Wa○」を[cO3W3cJと訂正する。
(4) "r C03Wa○" on page 4, line 2, line 3, line 4, and line 11 of page 4 of the specification is corrected to [cO3W3cJ.

(5)明細書第4頁第14〜17行目の「まず、製造方
法は一一一一一所望量配合し、」を「ます、製造方法は
1〜3μ?7LのWC,TiC1(Ta 、Nb)(:
、、タングステンおよび炭素などの原料粉末と1〜3μ
mのコバルト結合金属粉末を所望量配合し、」と補正す
る。
(5) On page 4 of the specification, lines 14 to 17, "First, the manufacturing method is to mix the desired amount." ,Nb)(:
, 1~3μ with raw material powder such as tungsten and carbon
m of cobalt-bonded metal powder in a desired amount.''

(6)明細書第6頁第3行目の 「Co3W30」をr Co3Wa CJと訂正する。(6) Page 6, line 3 of the specification Correct “Co3W30” to r Co3Wa CJ.

2、特許請求の範囲 (1)  タングステン75〜95%、チタンとタンタ
ルまたはタンタルの一部をニオブに置換したもの0〜5
%とカーボンが3〜8%の成分で、かつ結合相である鉄
族金属が2〜20%含有したものからなる焼結体組織中
に Co3W3Cを有せしめたことを特徴とする超硬質焼結
体。
2. Claims (1) Tungsten 75-95%, titanium and tantalum, or tantalum partially replaced with niobium 0-5
% and carbon as a component and 2 to 20% of iron group metal as a binder phase. body.

Claims (1)

【特許請求の範囲】[Claims] (1)  タングステン75〜95%、チタンとタンタ
ルまたはタンタルの一部をニオブに置換したもの0〜5
%とカーボンが5〜8%の成分で、かつ結合相である鉄
族金属が2〜20%含有したものからなる焼結体組織中
にC03W30  を有せしめたことを特徴とする超硬
質焼結体。
(1) Tungsten 75-95%, titanium and tantalum, or tantalum partially replaced with niobium 0-5
% and carbon as a component and 2 to 20% of iron group metal as a binder phase. body.
JP796883A 1983-01-19 1983-01-19 Sintered hard alloy Granted JPS59133346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP796883A JPS59133346A (en) 1983-01-19 1983-01-19 Sintered hard alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP796883A JPS59133346A (en) 1983-01-19 1983-01-19 Sintered hard alloy

Publications (2)

Publication Number Publication Date
JPS59133346A true JPS59133346A (en) 1984-07-31
JPS6327421B2 JPS6327421B2 (en) 1988-06-02

Family

ID=11680257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP796883A Granted JPS59133346A (en) 1983-01-19 1983-01-19 Sintered hard alloy

Country Status (1)

Country Link
JP (1) JPS59133346A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2489583A (en) * 2011-03-28 2012-10-03 Element Six Gmbh Cemented tungsten carbide material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5284108A (en) * 1975-12-30 1977-07-13 Seiko Epson Corp Super alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5284108A (en) * 1975-12-30 1977-07-13 Seiko Epson Corp Super alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2489583A (en) * 2011-03-28 2012-10-03 Element Six Gmbh Cemented tungsten carbide material
GB2489583B (en) * 2011-03-28 2014-06-11 Element Six Gmbh Cemented carbide material
US9314847B2 (en) 2011-03-28 2016-04-19 Element Six Gmbh Cemented carbide material

Also Published As

Publication number Publication date
JPS6327421B2 (en) 1988-06-02

Similar Documents

Publication Publication Date Title
JP4569767B2 (en) Titanium carbonitride-based cermet throwaway tip that exhibits excellent wear resistance in high-speed cutting with high heat generation
US3490901A (en) Method of producing a titanium carbide-containing hard metallic composition of high toughness
TW201026858A (en) Metal powder
JPS63219547A (en) Alloy for cutting tool
JPS61195950A (en) Cermet for cutting tool having high hardness and toughness
JPS59133346A (en) Sintered hard alloy
JPS6173857A (en) Cermet for cutting tool
JPS60106938A (en) Tough cermet
JP3206972B2 (en) Fine-grain cemented carbide
JPH0450373B2 (en)
JPS6141980B2 (en)
JPS6141979B2 (en)
JP5720302B2 (en) Gear cutting tool
JPS585981B2 (en) Tough cermet containing titanium nitride
JPH0680180B2 (en) Cemented carbide and its manufacturing method
JPS609850A (en) Sintered hard alloy for cutting
JPH0471986B2 (en)
JPS60135552A (en) Hyperfine tungsten carbide-base sintered alloy
JPS60106941A (en) Tough cermet
JPS6043459A (en) Sintered hard alloy for cutting
JP3223626B2 (en) Tungsten carbide based cemented carbide cutting tool with excellent wear resistance
JPS602379B2 (en) Cubic boron nitride-based ultra-high pressure sintered material for cutting and wear-resistant tools
JPS5942067B2 (en) Tough tungsten carbide-based cemented carbide for cutting tools
JPS6396242A (en) High strength sintered alloy and its production
JPH0617532B2 (en) Cermet member for cutting tools