JPS6141979B2 - - Google Patents
Info
- Publication number
- JPS6141979B2 JPS6141979B2 JP11060883A JP11060883A JPS6141979B2 JP S6141979 B2 JPS6141979 B2 JP S6141979B2 JP 11060883 A JP11060883 A JP 11060883A JP 11060883 A JP11060883 A JP 11060883A JP S6141979 B2 JPS6141979 B2 JP S6141979B2
- Authority
- JP
- Japan
- Prior art keywords
- cutting
- cemented carbide
- based cemented
- carbide
- solid solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052721 tungsten Inorganic materials 0.000 claims description 35
- 229910052719 titanium Inorganic materials 0.000 claims description 33
- 239000010955 niobium Substances 0.000 claims description 24
- 229910052715 tantalum Inorganic materials 0.000 claims description 22
- 239000006104 solid solution Substances 0.000 claims description 15
- 229910052758 niobium Inorganic materials 0.000 claims description 11
- 229910003468 tantalcarbide Inorganic materials 0.000 claims description 9
- 150000001247 metal acetylides Chemical class 0.000 claims description 8
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 3
- UNASZPQZIFZUSI-UHFFFAOYSA-N methylidyneniobium Chemical compound [Nb]#C UNASZPQZIFZUSI-UHFFFAOYSA-N 0.000 claims description 2
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims 1
- 239000000843 powder Substances 0.000 description 20
- 239000000956 alloy Substances 0.000 description 14
- 229910045601 alloy Inorganic materials 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 229910000831 Steel Inorganic materials 0.000 description 9
- 239000010959 steel Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- 239000000470 constituent Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910009043 WC-Co Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
Description
この発明は、高硬度および高靭性を有し、かつ
切削工具として用いた場合にすぐれた耐摩耗性お
よび定衝撃性を示す炭化タングステン(以下WC
で示す)基超硬合金に関するものである。
WC基超硬合金は、Schr〓terにより発明さ
れ、1926年には商品化された材料で、その後研究
が進み、今日ではWC−Co系超硬合金と、WC−
(Ti、W、Ta)C−Co系超硬合金が完成し、JIS
でも規格化され、切削工具用としてはP01〜
P50、M10〜40、およびK01〜40の規格がある。
しかし、これらの従来WC基超硬合金は、硬さ
および靭性の点で未だ十分満足する特性を備えて
いないものであるため、特に鋼の高速切削や、高
送り切削および高切込み切削などの重切削などに
切削工具として用いた場合には耐摩耗性不足や耐
衝撃性不足をきたし、所望のすぐれた切削特性を
確保することができないのが現状である。
そこで、本発明者等は、上述のような観点か
ら、WC基超硬合金に高硬度と高靭性を付与し、
もつて切削工具として用いた場合にすぐれた耐摩
耗性と耐衝撃性を示すWC基超硬合金を開発すべ
く研究を行なつた結果、WC基超硬合金を重量%
で、
Co:5〜15%、
TiとWの固溶炭化物〔以下(Ti、W)Cで示
す〕:5〜50%、
TiとWの固溶炭窒化物〔以下、(Ti、W)CN
で示す〕:5〜50%、
炭化タンタル(以下、TaCで示す)、炭化ニオ
ブ(以下、NbCで示す)、およびTaとNbの固溶
炭合炭化物〔以下(Ta、Nb)Cで示す〕のうち
の1種または2種以上:1〜15%、
を含有し、残りがWCと不可避不純物からなる組
成を有し、かつ硬質分散相が、WC相と、TiとW
とTaおよびNbのうちの1種または2種の固溶炭
化物〔以下、(Ti、W、Ta/Nb)Cで示す〕相
と、TiとWとTaおよびNbのうちの1種または2
種の固溶炭窒化物〔以下、(Ti、W、Ta/Nb)
CNで示す〕相との3相からなるもので構成する
と、前記の硬質分散相を構成する(Ti、W、
Ta/Nb)C相および(Ti、W、Ta/Nb)CN相
には、お互いの粒成長を抑制する作用があるの
で、これらの硬質分散相は微細に分散するように
なることから、合金の靭性、すなわち耐衝撃性が
著しく向上するようになり、さらに前記の
(Ti、W、Ta/Nb)C相には、合金を切削工具
として用いた場合、刃先の耐逃げ面摩耗性を向上
させ、かつ同じく(Ti、W、Ta/Nb)CN相に
は刃先の耐すくい面摩耗性を向上させる作用があ
るので、すぐれた切削性能を発揮するようになる
という知見を得たのである。
この発明は、上記知見にもとづいてなされたも
のであつて、以下に組成を上記の通りに限定した
理由を説明する。
(a) Co
Co成分には、合金の靭性を高めて耐衝撃性
を向上させる作用があるが、その含有量が5%
未満では所望の耐衝撃性を確保することができ
ず、一方15%を越えて含有させると、合金の硬
さが低下し、耐摩耗性を劣化するようになるこ
とから、その含有量を5〜15%と定めた。
(b) (Ti、W)C
(Ti、W)C成分は、焼結中に(Ta、Nb)
C、TaC、およびNbCと固溶して(Ti、W、
Ta/Nb)Cを形成し、前記の通り、この
(Ti、W、Ta/Nb)Cが微細に分散すること
によつて、合金を切削工具として用いた場合に
刃先の耐逃げ面摩耗性が向上するようになる
が、その含有量が5%未満では所望の耐逃げ面
摩耗性を確保することができず、一方50%を越
えて含有させると合金の耐衝撃性が劣化するよ
うになることから、その含有量を5〜50%と定
めた。
(c) (Ti、W)CN
(Ti、W)CN成分も、焼結中に(Ta、
Nb)C、TaC、およびNbCと固溶して(Ti、
W、Ta/Nb)CNを形成し、これが合金素地中
に均一微細に分散することによつて、同様に刃
先の耐すくい面摩耗性が向上することになる
が、その含有量が5%未満では所望の効果が得
られず、一方50%を越えて含有させると、同様
に耐衝撃性が劣化するようになることから、そ
の含有量を5〜50%と定めた。
(d) (Ta、Nb)C、TaC、およびNbC
これらの成分は、上記した通り、(Ti、W)
Cおよび(Ti、W)CN中に固溶して、(Ti、
W、Ta/Nb)Cおよび(Ti、W、Ta/Nb)
CNを形成し、これら固溶炭化物および固溶炭
窒化物の粒成長を抑制し、合金の耐衝撃性を向
上させる作用があるが、その含有量が1%未満
では前記作用に所望の効果が得られず、一方15
%を越えて含有させると、耐摩耗性に劣化傾向
が現われるようになることから、その含有量を
1〜15%と定めた。
なお、この発明のWC基超硬合金は、不可避不
純物として、Mo、Cr、Fe、Ni、Al、Si、および
O2などのうちの1種または2種以上を含有する
場合があるが、その含有量が合計量で1%以下で
あれば、その特性が何ら損なわれるものではな
い。
つぎに、この発明のWC基超硬合金を実施例に
より具体的に説明する。
実施例 1
原料粉末として、平均粒径1.5μmを有するWC
粉末、いずれも完全固溶した、同1.2μmの
(Ti、W)C粉末(TiC/WC=30/70、重量
比、以下同じ)、同1.0μmの(Ti、W)・CN粉末
(TiC/TiN/WC=40/25/35)、同1.8μmの
(Ta、Nb)C粉末(TaC/NbC=90/10)、さら
に同1.2μmのCo粉末を用意し、これら原料粉末
をそれぞれ第1表に示される配合組成に配合し、
ボールミルにて48時間湿式で粉砕・混合した後、
15Kg/mm2の圧力で圧粉体にプレス成形し、ついで
この圧粉体を、10-1mmHgの真空中、温度:1480
℃に2時間保持の条件で焼結することによつて、
本発明WC基超硬合金1〜7および比較WC基超
硬合金1〜6をそれぞれ製造した。
なお、比較WC基超硬合金1〜6は、いずれも
構成成分のうちいずれかの成分含有量(第1表に
※印を付したもの)がこの発明の範囲から外れた
組成をもつものである。
つぎに、この結果得られた本発明WC基超硬合
金1〜7および比較WC基超硬合金1〜6につい
て、ロツクウエル硬さ(Aスケール)および抗折
This invention is based on tungsten carbide (hereinafter referred to as WC
This relates to the base cemented carbide (denoted by ). WC-based cemented carbide is a material invented by Schröter and commercialized in 1926. Research has progressed since then, and today there are WC-Co-based cemented carbide and WC-
(Ti, W, Ta) C-Co cemented carbide has been completed and JIS
However, it has been standardized and for cutting tools P01~
There are standards of P50, M10~40, and K01~40. However, these conventional WC-based cemented carbides still do not have sufficiently satisfactory properties in terms of hardness and toughness, so they are particularly suitable for heavy-duty cutting, such as high-speed cutting of steel, high-feed cutting, and high-depth cutting. When used as a cutting tool for cutting, etc., it results in insufficient wear resistance and insufficient impact resistance, and the current situation is that desired excellent cutting characteristics cannot be ensured. Therefore, from the above-mentioned viewpoints, the present inventors imparted high hardness and high toughness to WC-based cemented carbide,
As a result of conducting research to develop a WC-based cemented carbide that exhibits excellent wear resistance and impact resistance when used as a cutting tool, we found that WC-based cemented carbide was
Co: 5 to 15%, solid solution carbide of Ti and W [hereinafter referred to as (Ti, W)C]: 5 to 50%, solid solution carbonitride of Ti and W [hereinafter referred to as (Ti, W)] CN
]: 5 to 50%, tantalum carbide (hereinafter referred to as TaC), niobium carbide (hereinafter referred to as NbC), and solid solution carbon combination carbide of Ta and Nb [hereinafter referred to as (Ta, Nb)C] One or more of the following: 1 to 15%, the remainder is WC and unavoidable impurities, and the hard dispersed phase is a WC phase, Ti and W
and one or two types of solid solution carbide [hereinafter referred to as (Ti, W, Ta/Nb)C] phase of Ta and Nb, and one or two of Ti, W, Ta, and Nb.
Solid solution carbonitride of seeds [hereinafter referred to as (Ti, W, Ta/Nb)]
When composed of three phases, the above-mentioned hard dispersed phase (Ti, W,
Since the Ta/Nb)C phase and the (Ti, W, Ta/Nb)CN phase have the effect of suppressing each other's grain growth, these hard dispersed phases become finely dispersed, and the alloy The toughness, or impact resistance, of the alloy has been significantly improved, and the (Ti, W, Ta/Nb) C phase has improved flank wear resistance at the cutting edge when the alloy is used as a cutting tool. They also found that the (Ti, W, Ta/Nb) CN phase has the effect of improving the rake face wear resistance of the cutting edge, resulting in excellent cutting performance. This invention has been made based on the above findings, and the reason why the composition is limited as described above will be explained below. (a) Co Co has the effect of increasing the toughness of the alloy and improving its impact resistance, but its content is 5%.
If the content is less than 15%, the desired impact resistance cannot be secured, while if the content exceeds 15%, the hardness of the alloy will decrease and the wear resistance will deteriorate. It was set at ~15%. (b) (Ti, W)C The (Ti, W)C component changes to (Ta, Nb) during sintering.
Solid solution with C, TaC, and NbC (Ti, W,
As mentioned above, finely dispersed (Ti, W, Ta/Nb)C improves the flank wear resistance of the cutting edge when the alloy is used as a cutting tool. However, if the content is less than 5%, the desired flank wear resistance cannot be secured, while if the content exceeds 50%, the impact resistance of the alloy will deteriorate. Therefore, the content was set at 5 to 50%. (c) (Ti, W) CN (Ti, W) CN components also change during sintering (Ta,
Nb)C, TaC, and NbC in solid solution (Ti,
By forming W, Ta/Nb) CN and dispersing it uniformly and finely in the alloy matrix, the rake face wear resistance of the cutting edge will similarly improve, but if the content is less than 5% However, if the content exceeds 50%, the impact resistance similarly deteriorates, so the content was set at 5 to 50%. (d) (Ta, Nb)C, TaC, and NbC These components are as described above, (Ti, W)
C and (Ti, W) in solid solution in CN, (Ti,
W, Ta/Nb) C and (Ti, W, Ta/Nb)
Forms CN, suppresses the grain growth of these solute carbides and solute carbonitrides, and has the effect of improving the impact resistance of the alloy, but if the content is less than 1%, the desired effect will not be achieved. Not obtained, while 15
If the content exceeds 1%, the wear resistance tends to deteriorate, so the content was set at 1 to 15%. The WC-based cemented carbide of this invention contains Mo, Cr, Fe, Ni, Al, Si, and unavoidable impurities.
It may contain one or more of O 2 and the like, but as long as the total content is 1% or less, its properties will not be impaired in any way. Next, the WC-based cemented carbide of the present invention will be specifically explained using examples. Example 1 WC having an average particle size of 1.5 μm as raw material powder
(Ti, W) C powder (TiC/WC = 30/70, weight ratio, same below), 1.0 μm (Ti, W)・CN powder (TiC /TiN/WC=40/25/35), 1.8 μm (Ta, Nb)C powder (TaC/NbC=90/10), and 1.2 μm Co powder, respectively. Mixed with the composition shown in Table 1,
After wet grinding and mixing in a ball mill for 48 hours,
Press molded into a green compact at a pressure of 15Kg/mm 2 , and then this green compact in a vacuum of 10 -1 mmHg at a temperature of 1480
By sintering at ℃ for 2 hours,
Invention WC-based cemented carbide alloys 1 to 7 and comparative WC-based cemented carbide alloys 1 to 6 were manufactured, respectively. Comparative WC-based cemented carbides 1 to 6 all have compositions in which the content of any of the constituent components (marked with * in Table 1) is outside the scope of this invention. be. Next, the Rockwell hardness (A scale) and the bending resistance of the WC-based cemented carbide of the present invention 1 to 7 and comparative WC-based cemented carbide 1 to 6 obtained as a result are
【表】
力を測定すると共に、これよりSNP432の形状を
もつた切削チツプを切出し、
被削剤:SNCM−8(硬さHB240)の丸棒、
切削速度:160m/min、
送り:0.36mm/rev.、
切込み:1.5mm、
切削時間:10min、
の条件での鋼連続切削試験、および、
被削材:SNCM−8(硬さHB270)の角材、
切削速度:120m/min、
送り:0.3mm/rev.、
切込み:2mm、
切削時間:最高3min、
の条件での鋼断続切削試験を行ない、前者の鋼連
続切削試験では刃先の逃げ面摩耗幅とすくい面摩
耗深さを測定し、また後者の鋼断続切削試験では
10個の試験切刃のうちの欠損発生切刃数を測定し
た。また、比較の目的で市販のISO・P10のWC
基超硬合金(以下従来WC基超硬合金1という)
についても同一の条件で試験を行なつた。これら
の結果を第1表に合せて示した。
第1表に示される結果から、本発明WC基超硬
合金1〜7は、いずれも硬質分散相が、WC相
と、(Ti、W、Ta、Nb)C相と、(Ti、W、Ta、
Nb)CN相の3相からなり、かつ高硬度と高靭性
を有するので、切削試験では従来WC基超硬合金
1に比してすぐれた耐摩耗性および耐衝撃性を示
すのに対して、比較WC基超硬合金1〜6に見ら
れるように、構成成分のうちのいずれかの成分含
有量でもこの発明の範囲から外れると、前記の特
性のうち少なくともいずれかの特性が劣つたもの
になることが明らかである。
実施例 2
原料粉末として、平均粒径3.0μmを有するWC
粉末、同1.5μmを有する完全固溶した(Ti、
W)CN粉末(TiC/TiN/WC=25/20/55)、
同2.0μmのTaC粉末、同2.2μmのNbC粉末、お
よび同1.2μmを有する完全固溶した(Ti、W)
C粉末(TiC/WC=30/70)、さらに同1.2μm
のCo粉末を用意し、これらの原料粉末をそれぞ
れ[Table] While measuring the force, a cutting chip with the shape of SNP432 was cut from it. Work material: SNCM-8 (hardness H B 240) round bar, cutting speed: 160 m/min, feed: 0.36 Continuous steel cutting test under the following conditions: mm/rev., depth of cut: 1.5 mm, cutting time: 10 min, Work material: SNCM-8 (hardness H B 270) square material, Cutting speed: 120 m/min, An interrupted steel cutting test was conducted under the following conditions: Feed: 0.3mm/rev., Depth of Cut: 2mm, Cutting Time: Maximum 3min.In the former steel continuous cutting test, the flank wear width and rake face wear depth of the cutting edge were measured. However, in the latter steel interrupted cutting test,
The number of chipped cutting edges among the 10 test cutting edges was measured. In addition, for comparison purposes, we also provide commercially available ISO/P10 WC
Base cemented carbide (hereinafter referred to as conventional WC base cemented carbide 1)
The test was also conducted under the same conditions. These results are also shown in Table 1. From the results shown in Table 1, in all of the WC-based cemented carbides 1 to 7 of the present invention, the hard dispersed phases include a WC phase, a (Ti, W, Ta, Nb) C phase, and a (Ti, W, Ta,
It consists of three phases: Nb)CN phase, and has high hardness and toughness, so it shows superior wear resistance and impact resistance in cutting tests compared to conventional WC-based cemented carbide 1. As seen in Comparative WC-based cemented carbide alloys 1 to 6, if the content of any of the constituent components falls outside the scope of the present invention, at least one of the above-mentioned properties becomes inferior. It is clear that Example 2 WC having an average particle size of 3.0 μm as raw material powder
Powder, completely solid solution with the same 1.5 μm (Ti,
W) CN powder (TiC/TiN/WC=25/20/55),
TaC powder with a diameter of 2.0μm, NbC powder with a diameter of 2.2μm, and a complete solid solution with a diameter of 1.2μm (Ti, W)
C powder (TiC/WC=30/70), further 1.2 μm
Co powder is prepared, and each of these raw material powders is
【表】
第2表に示される配合組成に配合した後、実施
例1におけると同一の条件で粉砕・混合して圧粉
体に成形し、ついでこの圧粉体を、1mmHgの窒
素雰囲気中、温度:1430℃に1.5時間保持の条件
で焼結することによつて本発明WC基超硬合金8
〜12および比較WC基超硬合金7〜9をそれぞれ
製造した。
つぎに、この結果の本発明WC基超硬合金8〜
12および比較WC基超硬合金7〜9について、鋼
連続切削試験の条件を、
被削材:SNCM−8(硬さHB240)の丸棒、
切削速度:120m/min、
送り:0.36mm/rev.、
切込み:2.0mm、
切削時間:10min、
とし、さらに鋼断続切削試験の条件を、
被削材:SNCM−8(硬さHB270)の角材、
切削速度:100m/min、
送り:0.335mm/rev.、
切込み:2mm、
切削時間:最高3min、
とする以外は、実施例1におけると同一の条件で
諸特性を測定した。また、比較の目的で、従来
WC基超硬合金2として市販のISO・P20を用意
した。これらの測定結果を第2表に示した。
実施例2においても実施例1におけると同様の
結果を示し、本発明WC基超硬合金8〜12は、構
成成分のうちのいずれかの成分含有量(第2表に
※印を付したもの)がこの発明の範囲から外れた
比較WC超硬合金7〜9、および従来WC基超硬
合金2に比して、すぐれた耐衝撃性を示し、かつ
従来WC基超硬合金2に比してすぐれた耐摩耗性
をもつことが明らかである。
実施例 3
原料粉末として、平均粒径5.0μmを有するWC
粉末、および同1.5μmを有する完全固溶した
(Ta、Nb)C粉末(TaC/NbC=60/40)、さら
に実施例2で用いたと同じ(Ti、W)C粉末、
(Ti、W)CN粉末、およびCo粉末を用意し、こ
れら原料粉末を第3表に示される配合組成に配合
し、[Table] After blending into the composition shown in Table 2, it was crushed and mixed under the same conditions as in Example 1 to form a green compact, and then this green compact was heated in a 1 mmHg nitrogen atmosphere. By sintering at a temperature of 1430°C for 1.5 hours, the WC-based cemented carbide of the present invention 8
-12 and Comparative WC-based cemented carbides 7-9 were produced, respectively. Next, the resulting WC-based cemented carbide of the present invention 8~
12 and comparative WC-based cemented carbide 7 to 9, the conditions of the steel continuous cutting test were as follows: Work material: SNCM-8 (hardness H B 240) round bar, cutting speed: 120 m/min, feed: 0.36 mm /rev., depth of cut: 2.0 mm, cutting time: 10 min, and the conditions for the steel interrupted cutting test are as follows: Work material: SNCM-8 (hardness H B 270) square material, cutting speed: 100 m/min, feed Various properties were measured under the same conditions as in Example 1, except that: 0.335 mm/rev., depth of cut: 2 mm, and cutting time: max. 3 min. Also, for comparison purposes,
Commercially available ISO/P20 was prepared as WC-based cemented carbide 2. The results of these measurements are shown in Table 2. Example 2 also showed the same results as in Example 1, and the WC-based cemented carbide of the present invention 8 to 12 had a high content of any of the constituent components (those marked with * in Table 2). ) shows superior impact resistance compared to comparative WC cemented carbide 7 to 9 which are outside the scope of this invention, and conventional WC-based cemented carbide 2, and shows superior impact resistance compared to conventional WC-based cemented carbide 2. It is clear that the material has excellent wear resistance. Example 3 WC having an average particle size of 5.0 μm as raw material powder
powder, and a completely solid-dissolved (Ta, Nb)C powder (TaC/NbC=60/40) having the same 1.5 μm, and the same (Ti, W)C powder as used in Example 2,
(Ti, W) CN powder and Co powder are prepared, and these raw material powders are blended into the composition shown in Table 3,
【表】
ついで、焼結条件を、3mmHgの窒素雰囲気中、
温度:1400℃に1時間保持する以外は、実施例1
におけると同一の条件にて、本発明WC基超硬合
金13〜17および比較WC基超硬合金10〜12をそれ
ぞれ製造した。
つぎに、上記本発明WC基超硬合金13〜17、お
よび構成成分のうちいずれかの成分含有量(第3
表に※印を付したもの)がこの発明の範囲から外
れた組成を有する比較WC基超硬合金10〜12につ
いて、同様に、鋼連続切削試験条件を、
被削材:SNCM−8(硬さHB240)の丸棒、
切削速度:100m/min、
送り:0.45mm/rev.、
切込み:3.0mm、
切削時間:10min、
とし、また鋼断続切削試験条件を、
被削材:SNCM−8(硬さHB270)の角材、
切削速度:80m/min、
送り:0.425mm/rev.、
切込み:3.0mm、
切削時間:最高3.0min、
とする以外は、実施例1におけると同一の条件で
諸特性を測定した。また、比較の目的で、従来
WC基超硬合金3として市販のISO・P30を用意
した。これらの測定結果を第3表に示した。
実施例3においても実施例1および2における
と同様の結果を示し、本発明WC基超硬合金13〜
17は耐摩耗性および耐衝撃性のいずれにおいても
すぐれた結果を示すのに対して、比較WC基超硬
合金10〜12および従来WC基超硬合金3は、これ
らの特性のうち少なくともいずれかの特性が劣つ
たものになつている。
上述のように、この発明のWC基超硬合金は、
高硬度および高靭性を具備し、かつ切削工具とし
て用いた場合にはすぐれた耐摩耗性および耐衝撃
性を示し、長期に亘つてすぐれた切削性能を発揮
するのである。[Table] Next, the sintering conditions were set in a nitrogen atmosphere of 3 mmHg.
Temperature: Example 1 except that it was held at 1400°C for 1 hour.
Invention WC-based cemented carbide alloys 13 to 17 and comparative WC-based cemented carbide alloys 10 to 12 were produced under the same conditions as in Example 1. Next, the content of any one of the above-mentioned WC-based cemented carbides of the present invention 13 to 17 and the constituent components (third
For comparative WC-based cemented carbides 10 to 12 whose compositions (marked with * in the table) are outside the scope of this invention, the steel continuous cutting test conditions were similarly applied to the following: Work material: SNCM-8 (hard) A round bar of size H B 240), cutting speed: 100 m/min, feed: 0.45 mm/rev., depth of cut: 3.0 mm, cutting time: 10 min, and the steel interrupted cutting test conditions were as follows: Work material: SNCM− Same as in Example 1 except that square material of 8 (hardness H B 270), cutting speed: 80 m/min, feed: 0.425 mm/rev., depth of cut: 3.0 mm, cutting time: max. 3.0 min. Various characteristics were measured under these conditions. Also, for comparison purposes,
Commercially available ISO/P30 was prepared as WC-based cemented carbide 3. The results of these measurements are shown in Table 3. Example 3 also showed the same results as Examples 1 and 2, and the present invention WC-based cemented carbide 13~
Comparative WC-based cemented carbide 17 shows excellent results in both wear resistance and impact resistance, whereas comparative WC-based cemented carbide 10 to 12 and conventional WC-based cemented carbide 3 show excellent results in both wear resistance and impact resistance. characteristics have become inferior. As mentioned above, the WC-based cemented carbide of this invention is
It has high hardness and toughness, and when used as a cutting tool, it exhibits excellent wear resistance and impact resistance, and exhibits excellent cutting performance over a long period of time.
Claims (1)
固溶炭化物のうちの1種または2種以上:1〜15
%、 炭化タングステンおよび不可避不純物:残り、 からなる組成(以上重量%)を有し、かつ硬質分
散相が、炭化タングステン相と、TiとWとTaお
よびNbのうちの1種または2種の固溶炭化物相
と、TiとWとTaおよびNbのうちの1種または2
種の固溶炭窒化物相との3相からなることを特徴
とする切削工具用炭化タングステン基超硬合金。[Claims] 1 Co: 5 to 15%, solid solution carbide of Ti and W: 5 to 50%, solid solution carbonitride of Ti and W: 5 to 50%, tantalum carbide, niobium carbide, and Ta and one or more types of solid solution carbides of Nb: 1 to 15
%, tungsten carbide and unavoidable impurities: the remainder, and the hard dispersed phase has a tungsten carbide phase and one or two solids selected from Ti, W, Ta, and Nb. Molten carbide phase, and one or two of Ti, W, Ta, and Nb
A tungsten carbide-based cemented carbide for cutting tools, characterized by comprising three phases including a solid solution carbonitride phase and a solid solution carbonitride phase.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11060883A JPS602646A (en) | 1983-06-20 | 1983-06-20 | Tungsten carbide-base sintered hard alloy for cutting tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11060883A JPS602646A (en) | 1983-06-20 | 1983-06-20 | Tungsten carbide-base sintered hard alloy for cutting tool |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS602646A JPS602646A (en) | 1985-01-08 |
JPS6141979B2 true JPS6141979B2 (en) | 1986-09-18 |
Family
ID=14540141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11060883A Granted JPS602646A (en) | 1983-06-20 | 1983-06-20 | Tungsten carbide-base sintered hard alloy for cutting tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS602646A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE149580T1 (en) * | 1993-03-23 | 1997-03-15 | Widia Gmbh | CERMET AND METHOD FOR PRODUCING IT |
US5747426A (en) * | 1995-06-07 | 1998-05-05 | Commonwealth Research Corporation | High performance magnetic bearing systems using high temperature superconductors |
SE525745C2 (en) | 2002-11-19 | 2005-04-19 | Sandvik Ab | Ti (C- (Ti, Nb, W) (C, N) -Co alloy for lathe cutting applications for fine machining and medium machining |
CN112853187B (en) * | 2021-01-07 | 2022-02-01 | 中南大学 | Weak core ring structure fine-grain homogeneous TiCN-based metal ceramic and preparation method thereof |
CN115305403A (en) * | 2022-08-18 | 2022-11-08 | 中南大学 | Super-strong superhard hard alloy with high fracture toughness and preparation method thereof |
-
1983
- 1983-06-20 JP JP11060883A patent/JPS602646A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS602646A (en) | 1985-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6339649B2 (en) | ||
US4514224A (en) | Tough carbide base cermet | |
JPS634895B2 (en) | ||
JP3331220B2 (en) | Materials for shaft cutting tools | |
JPS6141979B2 (en) | ||
JPS6141980B2 (en) | ||
JPS633017B2 (en) | ||
JPS6256943B2 (en) | ||
JP2668962B2 (en) | End mill made of tungsten carbide based cemented carbide with excellent fracture resistance | |
JP4553382B2 (en) | Titanium carbonitride-based cermet throwaway tip that exhibits excellent wear resistance in high-speed cutting with high heat generation | |
JP4553381B2 (en) | Titanium carbonitride-based cermet throwaway tip that exhibits excellent wear resistance in high-speed cutting with high heat generation | |
JPS6067638A (en) | Cermet for cutting tool and hot processing tool | |
JP2668977B2 (en) | Cutting tool made of tungsten carbide based cemented carbide with excellent fracture resistance | |
JPS5852552B2 (en) | Tough cermet for cutting tools | |
JPS6279904A (en) | Cermet cutting tip | |
JP2536536B2 (en) | Cermet cutting tip | |
JPS61295352A (en) | Cermet for cutting tool | |
JPS61266550A (en) | Sintered hard alloy of high toughness | |
JPS6245293B2 (en) | ||
JPS5839904B2 (en) | Tough cermet containing oxygen | |
JPS634896B2 (en) | ||
JPS599613B2 (en) | Tough cermet containing oxygen | |
JPS5942067B2 (en) | Tough tungsten carbide-based cemented carbide for cutting tools | |
JPS607019B2 (en) | High toughness cermet for cutting tools | |
JPS629551B2 (en) |