JPS59133308A - Refinement for at least partially reduced iron ore - Google Patents

Refinement for at least partially reduced iron ore

Info

Publication number
JPS59133308A
JPS59133308A JP58252451A JP25245183A JPS59133308A JP S59133308 A JPS59133308 A JP S59133308A JP 58252451 A JP58252451 A JP 58252451A JP 25245183 A JP25245183 A JP 25245183A JP S59133308 A JPS59133308 A JP S59133308A
Authority
JP
Japan
Prior art keywords
gas
binder
molten
solid material
coke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58252451A
Other languages
Japanese (ja)
Inventor
アロイス・ヤヌシユ
クルト・ステイフト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine AG
Voest AG
Original Assignee
Voestalpine AG
Voest AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine AG, Voest AG filed Critical Voestalpine AG
Publication of JPS59133308A publication Critical patent/JPS59133308A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • C21B13/0013Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
    • C21B13/002Reduction of iron ores by passing through a heated column of carbon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/44Removing particles, e.g. by scrubbing, dedusting

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は溶融ガス発生炉内で少くとも部分的に還元され
た鉄鉱石、特にスポンジ鉄を製錬する方法に関するもの
である。その溶融ガス発生炉内では投入された石炭と吹
込まれた酸素を含むガスから、その還元された原料を製
錬するために必要な熱と還元ガスを発生するが、その際
還元ガスは固体分離を施されて、実質的に粉塵状の炭素
からなる固体物質は少くとも部分的に循環される。この
種の方法は例えばDE−○s2843303から知るこ
とができる。このような還元方法は粗悪なまたはコーク
ス化し難い炭素担体な特に考慮して開発されたものであ
る。これらの既知の方法の欠点は次の事実である。即ち
溶融ガス中で生じる液体の金属は比較的少量の炭素含有
量を示し、冶金学的にいえば余りに冷たいのである。ま
た硫黄含有量はこの種の溶融ガス発生炉内の温度経過に
基づき、かつより低品質な石炭を投入するために比較的
高い。この状態を改良するために、エネルギーの供給例
えば電流のプラズマバーナーへの供給によって温度を高
めるとか、あるいは予め加熱した酸素を吹込む方法が既
に提示されている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for smelting at least partially reduced iron ore, especially sponge iron, in a molten gas generating furnace. In the molten gas generating furnace, the heat and reducing gas necessary to smelt the reduced raw material are generated from the coal input and the oxygen-containing gas blown into the furnace, but at this time the reducing gas is separated into solids. The solid material consisting essentially of dust-like carbon is at least partially circulated. A method of this kind can be known, for example, from DE-○s2843303. Such reduction methods have been developed with particular consideration to poor or non-coking carbon carriers. The drawbacks of these known methods are the following facts. The liquid metal produced in the molten gas has a relatively low carbon content and is metallurgically too cold. Furthermore, the sulfur content is relatively high due to the temperature profile in such molten gas generating furnaces and due to the input of lower quality coal. In order to improve this situation, methods have already been proposed to increase the temperature by supplying energy, for example by supplying an electric current to a plasma burner, or by blowing in preheated oxygen.

既知の方法では、溶融ガス発生炉内で脱気されコークス
化した細かいまたは粉塵状の石炭が生じ、それは従来高
温サイクロン中で分離の後工程へ戻された。これらの石
炭のまたはコークスの粉塵は約90%炭素を含む品質上
価値が高いものと認められており、通常の製鉄所コーク
スと同等視されている。
In the known process, a degassed, coked, fine or dusty coal is produced in a molten gas generator, which is conventionally returned to the post-separation stage in a high-temperature cyclone. These coal or coke dusts are recognized as being of high quality, containing about 90% carbon, and are equated with normal steel mill coke.

本発明の志向するところは、先立つ還元シャフトからの
熱いスポンジ鉄粒子またはペレットの溶融ガス発生炉の
熱的かつ冶金学的活性帯における滞留時間を長くするこ
とであり、さらに液状金属の浸炭を目積している。なか
んずく浸炭によって硫黄含有量の減少、ならびにケイ素
含有量およびマンガン含M量の増加が保証されるべきで
ある。
The aim of the invention is to increase the residence time of the hot sponge iron particles or pellets from the preceding reducing shaft in the thermally and metallurgically active zone of the molten gas generator, with the aim of further carburizing the liquid metal. It is accumulated. Above all, the carburization should ensure a reduction in the sulfur content and an increase in the silicon and manganese M contents.

この問題を解決するために本発明は、還元ガスから分離
された固体を少くともその一部を塊状にする、特にプ・
リケットにすること、およびこのようにして得られた成
形コークスを圧力ガス発生区域において溶融ガス発生炉
に、特に上から供給することをその本質としている。そ
の比較的高品質の脱気された、場合によっては;−クス
化した細かいあるいは粉塵状の石炭は、通例の如<12
mmよりずっと小さい粒子の大きさ持ちつつ溶融ガス発
生炉の下部にある同炉の高熱区域の中の工程に再び戻さ
れるのではなくて、その戻す前に塊状にして、特に上か
ら圧力ガス発生区域へ導入することにより、もはや形が
より大きくなりかつ機械的により良く負荷に耐えるよう
になった粒子が圧力ガス発生区域を通して沈下して、金
属浴の表面にコークス層を形成することが保証される。
In order to solve this problem, the present invention aims at turning at least a part of the solid separated from the reducing gas into agglomerates.
Its essence consists in ricketting and feeding the shaped coke thus obtained into a molten gas generating furnace in a pressure gas generating zone, in particular from above. The relatively high quality degassed, and in some cases;
Rather than being returned to the process in the hot zone of the furnace at the bottom of the molten gas generating furnace, with particle sizes much smaller than mm, it is agglomerated before being returned, especially when the gas is generated under pressure from above. The introduction into the zone ensures that the particles, which are now larger in shape and mechanically better able to withstand the loads, settle through the pressure gas generation zone and form a coke layer on the surface of the metal bath. Ru.

このコークス層はこの際蓄熱層として役立ち、従って圧
力ガス発生区域で浴融する金属はこのコークス層を通過
して沈下しなければならないので、その結果液相におい
て成形コークスとの間に交換が起り、それによってその
浴の浸炭が行なわれる。このような効果は、還元ガスか
ら分離されたもののような粉塵状の石炭の粒によっては
直接に達成されない。なぜならばこれらの粒の大きさは
最大1m78位であって、沈下およびそのような緩衝/
’!Y構成するには余りに機械的安定性に乏しいからで
ある。
This coke layer serves in this case as a heat storage layer, so that the metal bath melting in the pressure gas generation area has to sink through this coke layer, so that an exchange takes place in the liquid phase with the formed coke. , thereby carburizing the bath. Such an effect is not directly achieved by dusty coal particles such as those separated from the reducing gas. This is because the maximum size of these grains is about 1 m78, which prevents settling and such buffering/
'! This is because the mechanical stability is too poor for a Y configuration.

既知の方法においてはむしろその戻される粉塵状の石炭
は大部分ガス化されて、溶融ガス発生炉の圧力ガス発生
区域における石炭流動床の維持に役立っている。
Rather, in the known process, the returned dusty coal is largely gasified and serves to maintain a fluidized bed of coal in the pressure gas generation area of the molten gas generator.

熔融ガス発生炉中へ上から投入される成形コークスは圧
力ガス発生区域を通過する際に顕熱の大部分を吸収する
が、その熱はもちろん石炭が酸素により部分燃焼して一
酸化炭素と水素になることによって到達することのでき
る温度という理由で、例えばコークスが高炉内で吸収す
る顕熱と比較すると常に少ない。圧力ガス発生区域の下
に形成された成形コークスからできた層はしかし今や溶
融して下る金属と激しい交換をすることになり、それに
よって冶金学上の浸炭が達成されるのである。
Molded coke, which is introduced from above into the molten gas generation furnace, absorbs most of the sensible heat as it passes through the pressure gas generation area, but that heat is of course also generated by partial combustion of the coal with oxygen, resulting in carbon monoxide and hydrogen. Because of the temperature that can be reached by heating, it is always less compared to the sensible heat that coke absorbs in a blast furnace, for example. The layer of shaped coke formed below the pressure gas generation zone, however, now undergoes a vigorous exchange with the molten metal descending, so that metallurgical carburization is achieved.

本発明に従うと、塊状にして加えられる成形コークスは
、特に12羽以上の大きさ、また特に5Qmm以下の大
きさの塊状にすべきである。、それによって、圧力ガス
発生区域の通過の際にかかる高い機械的荷重にもかかわ
らずその粒子は溶融ガス発生炉の下部区域へ十分塊状を
常に保って到達し、望ましい緩匈層を形成できることが
保証される。本発明に従うと、成形コークスは、溶融し
て流体になる金屑と溶融ガス発生炉の圧力ガス発生区域
との間に成形コークスの層を形成するために十分な量に
おいて溶融ガス発生炉に投入することがこの際特に優先
する。
According to the invention, the shaped coke added in agglomerates should preferably be in agglomerates with a size of at least 12 wings and especially at most 5 Qmm. , thereby ensuring that, despite the high mechanical loads imposed during passage through the pressure gas generation area, the particles always reach the lower area of the molten gas generation furnace sufficiently agglomerated to form the desired slow-swelling layer. Guaranteed. In accordance with the present invention, shaped coke is introduced into the molten gas generator in an amount sufficient to form a layer of shaped coke between the melted and fluidized metal scrap and the pressure gas generation area of the molten gas generator. In this case, priority is given to

例えば高温サイクロンによって分離された固体粒子を必
要な大きさの粒子にするためには、ブリケット化する前
にその熱い分離した固体物質に冷たい結合剤を加ると、
それは好都合である。ブリケット化工程は通常粉塵状の
石炭が生成する温度よりも低い温度において行なわれる
。そしてそれによって粉塵状石炭の熱含量を結合剤の予
熱のために完全に利用できる。このために結合剤を追加
して加熱する必要がなくなる。多くの場合、熱い分離さ
れた固体物質に熱交換器の中で結合剤を加えると好都合
であって、その際回収された熱は成形コークスヲ溶融ガ
ス発生炉へ戻す前にそのコークスの予熱または硬化にオ
U用することができる。
For example, in order to make solid particles separated by a hot cyclone into particles of the required size, a cold binder is added to the hot separated solid material before briquetting.
That's convenient. The briquetting process is usually carried out at temperatures below those at which dusty coal is produced. The heat content of the dusty coal can thereby be fully utilized for preheating the binder. This eliminates the need for additional binder and heating. It is often convenient to add a binder to the hot separated solid material in a heat exchanger, with the recovered heat used to preheat or harden the formed coke before returning it to the melter. It can be used for

簡単な方法で、硬ピツチ、瀝青および/または瀝青褐炭
を結合剤として利用することができる。
In a simple manner, hard pitch, bitumen and/or bituminous lignite can be used as binder.

その際成形コークスの機械的安定性を改良するために結
合剤と共に酸化鉄粉、特に高炉ガス布製装置から出たも
のを塊状にする固体物質に加えることができる。このよ
うにして同時に工程の廃ガスに含まれている固体物質が
さらに回収されろ。特に好都合なことにこの方法では、
還元ガスは固体分離の後ガス洗浄を受け、そのガス洗浄
の除虫じる炭素分に富んだ泥を結合剤と共に塊状にする
固体物質へ加えるというように実施される。全体として
ここに1つの作業要領があるが、それは圧力ガス発生用
には揮発分の高い石炭がこれまでと同様に使用し得ると
いうことである。まさにこのような石炭は圧力ガス発生
に際してぴちぴち音をたて\焼ける傾向があり、それに
よって大部分が成形コークス製造用の粉塵状の比較曲馬
品質の脱気した物質になる。塊状化またはブリケット化
によってaIS製された成形コークスは高温状態の工程
に戻すことができ、それによってエネルギーバランスに
重荷ン負わすこともないし、最近のような爆発の危険も
少くなる。ブリケット化に際して、金属の添加物例えば
アルミニウム、ケイ素またはマグネシウムを簡単な方法
で共にブリケットにすることができ、それによって成形
コークスを粒の大きさ12から60朋の特に好ましい形
にして溶融ガス発生炉の中へ導入することができる。
In order to improve the mechanical stability of the shaped coke, iron oxide powder, especially from blast furnace gas fabrication plants, can be added to the solid material to be agglomerated together with a binder. In this way, at the same time, the solid substances contained in the process waste gas are further recovered. Particularly advantageously, this method
After solids separation, the reducing gas is subjected to a gas scrubbing, which is carried out by adding the repellent carbon-rich mud of the gas scrubbing together with a binder to the agglomerated solid material. Overall, there is one operating principle here, which is that high-volatile coal can still be used for pressure gas generation. Just such coal has a tendency to crackle and sizzle on the production of pressurized gases, thereby resulting in a degassed material of relatively high quality, mostly in the form of dust for forming coke production. Shaped coke produced by aIS by agglomeration or briquetting can be returned to the process at high temperatures, thereby not placing a heavy burden on the energy balance and reducing the risk of explosions as has recently been the case. During briquetting, metal additives such as aluminium, silicon or magnesium can be briquetted together in a simple manner, so that the formed coke is in a particularly preferred form with a grain size of 12 to 60 mm and then transferred to the molten gas generator. It can be introduced into.

本発明を次の工程の概要を画いた略図に従って詳細に説
明する。
The invention will now be described in detail with reference to schematic diagrams outlining the following steps.

図において、1は還元シャフト2の上へ鉱石!投入する
ためのベルトラップを表わす。分配器3を経由して還元
ガスが還元シャフト内へ導入され、その際そのための還
元ガス導管が4で示されている。還元シャフトを下降す
る鉱石は約900’Cの温度でスポンジ鉄排出用スクリ
ューコンベヤー5およびスポンジ鉄ダウンテーク6を経
由して溶融ガス発生炉7の中へ導入され、その際冷却ガ
スパラスル管8がスポンジ鉄ダウンテークのために備え
られている。
In the figure, 1 is the ore on the reduction shaft 2! Represents a belt wrap for loading. Via the distributor 3 the reducing gas is introduced into the reducing shaft, the reducing gas line for this being indicated at 4. The ore descending down the reduction shaft is introduced into the molten gas generating furnace 7 via the sponge iron discharge screw conveyor 5 and the sponge iron downtake 6 at a temperature of about 900'C, and at this time the cooling gas parallel pipe 8 is introduced into the sponge iron downtake 6. Equipped for iron downtake.

溶融ガス発生炉γ中では上部区域に石炭流動床9が維持
され、その中で導入された石炭のガス化が行なわれて、
金属の製錬のために必要なエネルギーを発生する。この
際石炭の供給は10で示された場所において行なわれる
。11にガス発生炉の出口が示されている。ガス発生炉
のガス中に12の所で冷却ガスが供給される。ガス発生
炉頭部への冷却ガス供給口が13で示されている。
In the molten gas generator γ, a coal fluidized bed 9 is maintained in the upper area, in which the coal introduced is gasified,
Generates the energy necessary for smelting metals. At this time, coal is supplied at a location indicated by 10. At 11, the outlet of the gas generating furnace is shown. Cooling gas is fed into the gas of the gas generator at 12 points. A cooling gas supply port to the head of the gas generating reactor is indicated by 13.

導管14を経由して排出されたガス発生炉のガスは高温
サイクロン15においてその含んでいろ固体物質、特に
粉塵状の石炭を除かれ、その粉炭は導管16を経由して
溶融ガス発生炉7に下部の圧力ガス発生区域で戻される
。この元に戻って行く粉塵状の石炭の分流が熱交換器1
7に導かれ、その中へ貯槽18から結合剤が供給される
。必要な温度調姫の後石炭と結合剤の混合物はブリケッ
トゾレス19に達し、脱いて貯槽または分配器翻に入る
が、そのジャケラトラ熱交換器17からの熱によって可
熱することができる。粒の大きさ12から5QvI71
+に塊状化された材料は次に導管21を経由して浴融ガ
ス発生炉7に石炭供給口10を通って上から投入され、
重力によって圧力ガス発生区域凱を通り抜けて溶融ガス
発生炉工の下部区域に達し、そこで成形コークス層ηス
が流体浴23の上に形成される。この成形コークス層2
2は酸素吹込みの水準またはこの水準の僅か下まで拡が
っている必要があり、そこでは酸素ノズルが24で示さ
れている。
The gas from the gas generating furnace discharged via the conduit 14 is removed in a high-temperature cyclone 15 of any solid substances it may contain, especially coal in the form of dust, and the pulverized coal is sent to the molten gas generating furnace 7 via the conduit 16. It is returned in the lower pressure gas generation area. This divided flow of dusty coal returning to the source is the heat exchanger 1.
7 into which the binder is fed from a reservoir 18. After the necessary temperature adjustment, the mixture of coal and binder reaches the briquette soles 19 and passes through a storage tank or distributor, where it can be heated by the heat from its jacket heat exchanger 17. Grain size 12 to 5QvI71
The agglomerated material is then fed into the bath molten gas generating furnace 7 from above through the coal supply port 10 via the conduit 21,
The force of gravity passes through the pressure gas generation area to the lower area of the molten gas generation furnace, where a formed coke layer η is formed above the fluid bath 23. This molded coke layer 2
2 must extend to the level of oxygen blowing or slightly below this level, where the oxygen nozzle is shown at 24.

高温サイクロン15によって分離されて循環される炭素
の割合は通例投入された石炭量の約4分の1から6分の
1に相当する。
The proportion of carbon separated and recycled by the hot cyclone 15 typically corresponds to approximately one-fourth to one-sixth of the amount of coal input.

Claims (8)

【特許請求の範囲】[Claims] (1)溶融ガス発生炉において少くとも部分的に還元さ
れた鉄鉱石特にスポンジ鉄を製錬するに際し、その還元
された原料を製錬するために必要な熱と還元ガスを投入
された石炭と吹込まれた酸素を含むガスから発生させ、
その際還元ガスに固体分離を施し、実質的に粉塵状の炭
素からなる固体物質の少くとも一部を循環させる製錬方
法において、還元ガスから分離された固体物質の少くと
も一部を塊状にし、特にブリケットにし、このようにし
て得られた成形コークスを圧力ガス発生の区域において
溶融ガス発生炉に、特に上から供給することを特徴とす
る少くとも部分的に還元された鉄鉱石、特にスポンジ鉄
を製錬する方法。
(1) When smelting at least partially reduced iron ore, especially sponge iron, in a molten gas generating furnace, the heat and reducing gas necessary to smelt the reduced raw material are added to the coal. Generated from gas containing oxygen blown into it,
At this time, in a smelting method in which the reducing gas is subjected to solid separation and at least a part of the solid material consisting of substantially dusty carbon is circulated, at least a part of the solid material separated from the reducing gas is made into a lump. , in particular at least partially reduced iron ore, in particular sponge, characterized in that it is briquetteted and the shaped coke thus obtained is fed into a molten gas generator in the area of pressure gas generation, in particular from above. How to smelt iron.
(2)還元ガスから分離された固体物質を12朋以上、
特に50間以下の粒の大きさに塊状にすることを特徴と
する特許請求の範囲第1項記載の方法。
(2) 12 or more solid substances separated from the reducing gas;
2. A method according to claim 1, characterized in that the method is characterized in that it is agglomerated to a particle size of less than 50 centimeters.
(3)成形コークスを、溶融して流体になる金属と溶融
ガス発生炉の圧力ガス発生区域との間に成形コークスの
層を形成するために十分な量において溶融ガス発生炉中
に投入することを特徴とする特許請求の範囲第1項また
は第2項記載の方法。
(3) Charge formed coke into the molten gas generating furnace in an amount sufficient to form a layer of formed coke between the molten metal and the pressure gas generating area of the molten gas generating furnace. A method according to claim 1 or 2, characterized in that:
(4)熱い分離された固体物質に冷たい結合剤を混合す
ることを特徴とする特許請求の範囲第1項より第6項ま
でに記載の方法。
(4) A method according to claims 1 to 6, characterized in that the hot separated solid material is mixed with a cold binder.
(5)熱い分離された固体物質を熱交換器内で結合剤と
混合し、その際回収される熱を成形コークスを溶融ガス
発生炉へ戻す前の予熱あるいは硬化に利用することを特
徴とする特許請求の範囲第1項より第4項までに記載の
方法。
(5) The hot separated solid material is mixed with a binder in a heat exchanger, the heat recovered being used for preheating or hardening of the shaped coke before it is returned to the molten gas generator. A method according to claims 1 to 4.
(6)結合剤として硬ピツチ、瀝青および/または瀝青
褐炭を利用することを特徴とする特許請求の範囲第1項
より第5項までに記載の方法。
(6) The method according to claims 1 to 5, characterized in that hard pitch, bitumen and/or bituminous lignite are used as the binder.
(7)結合剤と共に酸化鉄の粉、特に高炉ガス精製装置
から出たものを塊状にする固体物質に加えることを特徴
とする特許請求の範囲第1項より第6項までに記載の方
法。
7. Process according to claims 1 to 6, characterized in that iron oxide powder, in particular from a blast furnace gas purification plant, is added together with a binder to the solid material to be agglomerated.
(8)還元ガスを固体分離の後にガス洗浄を受けさせ、
そのガス洗浄の際に生じる炭素分に富んだ泥を結合剤と
共に塊状にする固体物質に加えることを特徴とする特許
請求の範囲第1項より第7項までに記載の方法。
(8) subjecting the reducing gas to gas cleaning after solid separation;
8. Process according to claims 1 to 7, characterized in that the carbon-rich mud produced during the gas scrubbing is added together with a binder to the solid material to be agglomerated.
JP58252451A 1983-01-03 1983-12-28 Refinement for at least partially reduced iron ore Pending JPS59133308A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT9/83 1983-01-03
AT0000983A AT376241B (en) 1983-01-03 1983-01-03 METHOD FOR MELTING AT LEAST PARTLY REDUCED IRON ORE

Publications (1)

Publication Number Publication Date
JPS59133308A true JPS59133308A (en) 1984-07-31

Family

ID=3479154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58252451A Pending JPS59133308A (en) 1983-01-03 1983-12-28 Refinement for at least partially reduced iron ore

Country Status (4)

Country Link
JP (1) JPS59133308A (en)
AT (1) AT376241B (en)
DE (1) DE3345106A1 (en)
SE (1) SE8307241L (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0840756A (en) * 1994-04-11 1996-02-13 Voest Alpine Ind Anlagenbau Gmbh Preparation of iron melt
CN103261447A (en) * 2010-12-15 2013-08-21 米德雷克斯技术公司 Method and system for producing direct reduced iron and/or hot metal using brown coal

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD226157A3 (en) * 1983-06-01 1985-08-14 Bandstahlkombinat Matern Veb METHOD FOR PRODUCING LIQUID RAW STEEL AND REDUCTION GAS IN A SEPARATOR REFRIGERATOR
DE3438487A1 (en) * 1984-10-17 1986-04-24 Korf Engineering GmbH, 4000 Düsseldorf METHOD FOR THE PRODUCTION OF RAW IRON
AT381116B (en) * 1984-11-15 1986-08-25 Voest Alpine Ag METHOD FOR THE PRODUCTION OF LIQUID PIPE IRON OR STEEL PRE-PRODUCTS AND DEVICE FOR IMPLEMENTING THE METHOD
SU1479006A3 (en) * 1984-11-26 1989-05-07 Фоест-Альпине (Фирма) Method of producing molten iron or steel products and reducing gas in melting gasifier
AT382390B (en) * 1985-03-21 1987-02-25 Voest Alpine Ind Anlagen METHOD FOR THE PRODUCTION OF LIQUID PIPE IRON OR STEEL PRE-PRODUCTS
KR950005786B1 (en) * 1987-06-30 1995-05-31 가와사끼 세이데쓰 가부시끼가이샤 Method for producing molten metal from powder state ore
DE3731851A1 (en) * 1987-09-22 1989-04-06 Voest Alpine Ind Anlagen Process for producing a metal melt
DE3737262A1 (en) * 1987-11-03 1989-05-24 Voest Alpine Ind Anlagen METHOD FOR PRE-TREATING A PIECE OF CARBON CARRIER
AT392289B (en) * 1988-04-08 1991-02-25 Voest Alpine Stahl Donawitz METHOD FOR UTILIZING ZINC-CONTAINED DUST AND SLUDGE
AT394201B (en) * 1989-02-16 1992-02-25 Voest Alpine Ind Anlagen METHOD FOR GENERATING COMBUSTIBLE GASES IN A MELT-UP CARBURETTOR
AT403055B (en) * 1993-05-07 1997-11-25 Voest Alpine Ind Anlagen METHOD FOR RECYCLING IRONIC WASTE OR RESIDUES
AT405186B (en) * 1994-10-17 1999-06-25 Voest Alpine Ind Anlagen INSTALLATION AND METHOD FOR THE PRODUCTION OF RAW IRON AND / OR IRON SPONGE
AT405187B (en) * 1994-12-01 1999-06-25 Voest Alpine Ind Anlagen METHOD FOR THE PRODUCTION OF IRON SPONGE AND SYSTEM FOR IMPLEMENTING THE METHOD
KR100226897B1 (en) * 1994-12-26 1999-10-15 이구택 Agglomerate method of pre-reduction fine ore for molten pig iron
SK283427B6 (en) 1995-01-24 2003-07-01 Voest-Alpine Industrieanlagenbau Gmbh Method of utilising dusts produced during the reduction of iron ore and device for performing of such method
AT405294B (en) * 1995-04-24 1999-06-25 Voest Alpine Ind Anlagen METHOD FOR RECYCLING FERROUS CABINET RESIDUES AND PLANT FOR IMPLEMENTING THE METHOD
AT405524B (en) 1996-03-05 1999-09-27 Voest Alpine Ind Anlagen METHOD FOR PRODUCING LIQUID PIPE IRON OR LIQUID STEEL PRE-PRODUCTS AND METAL SPONGE
AT404598B (en) 1997-04-16 1998-12-28 Voest Alpine Ind Anlagen METHOD AND INSTALLATION FOR THE PRODUCTION OF LIQUID PIG IRON OR LIQUID STEEL PRE-PRODUCTS
AT405054B (en) 1997-06-18 1999-05-25 Voest Alpine Ind Anlagen METHOD AND PLANT FOR PRODUCING AN IRON MEL WITH THE USE OF IRON-CONTAINING RESIDUAL MATERIALS
AT407053B (en) 1997-07-04 2000-12-27 Voest Alpine Ind Anlagen METHOD AND SYSTEM FOR THE PRODUCTION OF A METAL MELT IN A MELTING-UP CARBURETOR USING FINE COAL
USRE39536E1 (en) * 1997-07-04 2007-04-03 Deutsche Voest-Alpine Industrieanlagenbau Gmbh Method and plant utilizing fine coal in a melter gasifier
AT406272B (en) 1997-11-10 2000-03-27 Voest Alpine Ind Anlagen METHOD FOR PRODUCING DIRECTLY REDUCED IRON, LIQUID PIPE IRON AND STEEL, AND SYSTEM FOR IMPLEMENTING THE METHOD
AT407161B (en) * 1998-11-27 2001-01-25 Voest Alpine Ind Anlagen METHOD FOR PRODUCING LIQUID PIG IRON
AT505227B1 (en) 2007-05-09 2012-07-15 Siemens Vai Metals Tech Gmbh PROCESS FOR THE MANUFACTURE OF FORMINGS

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3038795A (en) * 1958-06-07 1962-06-12 Rummel Roman Process for smelting and reducing powdered or finely divided ores
DE2843303C2 (en) * 1978-10-04 1982-12-16 Korf-Stahl Ag, 7570 Baden-Baden Process and plant for the production of liquid pig iron and reducing gas in a melter gasifier
MX153453A (en) * 1979-07-16 1986-10-16 Mindres Int Bv IMPROVEMENTS IN METHOD AND APPARATUS FOR THE PRODUCTION OF CAST CAST IRON

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0840756A (en) * 1994-04-11 1996-02-13 Voest Alpine Ind Anlagenbau Gmbh Preparation of iron melt
CN103261447A (en) * 2010-12-15 2013-08-21 米德雷克斯技术公司 Method and system for producing direct reduced iron and/or hot metal using brown coal
JP2014504335A (en) * 2010-12-15 2014-02-20 ミドレックス テクノロジーズ,インコーポレイテッド Method and system for producing reduced iron and / or hot metal directly using lignite

Also Published As

Publication number Publication date
DE3345106A1 (en) 1984-07-12
DE3345106C2 (en) 1987-02-05
SE8307241D0 (en) 1983-12-30
AT376241B (en) 1984-10-25
SE8307241L (en) 1984-07-04
ATA983A (en) 1984-03-15

Similar Documents

Publication Publication Date Title
JPS59133308A (en) Refinement for at least partially reduced iron ore
US4806158A (en) Process of reducing fine-grained iron-containing material by means of solid carbonaceous reducing agents
US8088195B2 (en) Method for manufacturing titanium oxide-containing slag
US5630862A (en) Method of providing fuel for an iron making process
US5470375A (en) Method of processing waste material containing non ferrous metal oxides
US4946498A (en) Process for the production of steel from fine ore hot briquetted after fluidized bed reduction
KR101128939B1 (en) An apparatus for manufacturing a molten iron directly using fine or lump coals and fine iron ores, the method thereof, the integrated steel mill using the same and the method thereof
US3936296A (en) Integrated fluidized reduction and melting of iron ores
JP4295544B2 (en) Method for producing reformed coal for metallurgy, and method for producing slag containing reduced metal and non-ferrous metal oxide using reformed coal for metallurgy
US5259864A (en) Method of disposing of environmentally undesirable material and providing fuel for an iron making process e.g. petroleum coke
KR101284532B1 (en) Production of sintered ore
JP2001506315A (en) Direct reduction of metal oxide nodules
CA1244656A (en) Processes and appparatus for the smelting reduction of smeltable materials
CA2294272C (en) Method for using coal fines in a melt-down gasifier
JP4069493B2 (en) Method for producing reduced iron
US3985544A (en) Method for simultaneous combined production of electrical energy and crude iron
US5259865A (en) Very low slag iron making process
KR100276344B1 (en) Smelting reduction process
US4756748A (en) Processes for the smelting reduction of smeltable materials
US5380352A (en) Method of using rubber tires in an iron making process
US3420656A (en) Process for forming hard oxide pellets and product thereof
US5558696A (en) Method of direct steel making from liquid iron
JPH07228910A (en) Method and equipment for manufacturing iron
JPH079015B2 (en) Smelting reduction method for iron ore
US5320676A (en) Low slag iron making process with injecting coolant