JP4069493B2 - Method for producing reduced iron - Google Patents

Method for producing reduced iron Download PDF

Info

Publication number
JP4069493B2
JP4069493B2 JP14561298A JP14561298A JP4069493B2 JP 4069493 B2 JP4069493 B2 JP 4069493B2 JP 14561298 A JP14561298 A JP 14561298A JP 14561298 A JP14561298 A JP 14561298A JP 4069493 B2 JP4069493 B2 JP 4069493B2
Authority
JP
Japan
Prior art keywords
hearth
reduced iron
iron
pellets
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14561298A
Other languages
Japanese (ja)
Other versions
JPH11335712A (en
Inventor
義孝 澤
幹治 武田
哲也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP14561298A priority Critical patent/JP4069493B2/en
Publication of JPH11335712A publication Critical patent/JPH11335712A/en
Application granted granted Critical
Publication of JP4069493B2 publication Critical patent/JP4069493B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/10Making spongy iron or liquid steel, by direct processes in hearth-type furnaces
    • C21B13/105Rotary hearth-type furnaces

Description

【0001】
【発明の属する技術分野】
この発明は炉床炉による炭材内装ペレットから還元鉄を製造する技術に関する。
【0002】
【従来の技術】
粗鋼の生産は大きく高炉−転炉法、電気炉法に分けられる。このうち、電気炉法はスクラップや還元鉄を鉄原料として、それらを電気エネルギーで加熱溶解させ、場合によっては精練し、鋼にしている。現状ではスクラップを主な原料としているが、近年、スクラップの需給の逼迫、電気炉法での高級製品の製造の流れから還元鉄の使用が増加しつつある。還元鉄を製造するプロセスのひとつとして、特開昭63-108188 号公報に開示されているように、水平方向に回転する炉床に鉄鉱石と固体還元材とからなる層を積み付け、上部より輻射伝熱によって加熱、鉄鉱石を還元し、還元鉄を製造する方法がある。一般的に鉄鉱石としてペレットが使用される。このような方法はこの方法を実施するための設備の建設費が比較的安価であること、操業トラブルが比較的少なくてすむこと等の優位な点がある。
【0003】
鉄鉱石はその産地によって差はあるが脈石成分を含んでいる。また、固体還元材の代表例である石炭、石炭チャー、コークスには灰分がある。還元操作のみを基本的に行う特開昭63-108188 号公報のような方法にあてはめると、製品の還元鉄に脈石が混入するとともに、還元材からの灰分も製品に付着し混入する。
【0004】
電気炉では脱燐および脱硫を行うために石灰を使用するが、脈石、灰分を含んだ還元鉄を電気炉に投入すると塩基度調整のための石灰使用量が多くなり、石灰のコストとともに石灰投入による電力使用量の増加が余儀なくされる傾向にあった。
【0005】
ここで、通常の炭材内装ペレットを水平に移動する炉床に積み付け、炉の上方より輻射伝熱によって鉄鉱石の還元を行う方法の概要について説明する。多くの場合、水平に移動する炉床とは図1のような回転炉床の形態を取っている。
図1(a), (b)は回転炉床炉の説明図である。この移動(回転)炉床aの上に炭材内装ペレットを積み付ける。移動(回転)炉床aは耐火物が張られた炉体cによって覆われており、また、場合によっては特開昭63-108188 号公報のように炉床表面を粒状耐火材で覆われている。炉上部にはバーナーdが設置されていてそれを熱源として、移動(回転)炉床上の鉄鉱石を還元する。
なお、図1において、eは排出装置、fは装入装置である。
炉内温度は1300℃前後にされているのが一般的であり、還元操作終了後は炉外での酸化防止、ハンドリングを容易にするために移動(回転)炉床上で冷却器によって還元鉄を冷却したのち、回収するのが普通である。
【0006】
鉱石の還元を行わせるためには炉内を高温にする必要があることから、その高温に耐えるため移動炉床の上面は耐火物が張られ、また、場合によっては特開昭63-108188 号公報のようにさらに粒状耐火材で覆われている。当然のことながら炉の安定操業を確保し、製品の製造コストを高くしないためにもこの耐火物は長期間にわたって損傷しないようにしなければならない。
【0007】
一方、脈石、灰分の混入がない還元鉄を得る方法のひとつとして還元鉄を溶融させることが考えられる。溶融させると脈石、灰分はスラグとなり溶融鉄との比重差によって分離される。
【0008】
図2(a), (b)に移動炉床上に炭材内装ペレットを直接積み付けた場合を示すように、移動炉床3の上に炭材内装ペレットを直接積み付け、溶融まで行わせる場合、およびさらに炉床が粒状耐火材で覆われている場合を考える。上面からの加熱により炭材内装ペレットの還元を行わせると、炭材内装ペレットは脈石や灰分が残るとともにペレット中の鉄鉱石と炭材との配合比によっては若干のカーボン分も残った状態になる。ここで、さらに温度を上昇させ還元鉄を溶融させると還元鉄は溶融鉄gに、脈石、灰分はスラグhになるがこの溶融過程で溶融鉄やスラグが直接移動炉床に接することになる。その際、溶融鉄g、スラグhが移動炉床a上の耐火物および粒状耐火材を侵食する。粒状耐火材で覆われている場合は比重の大きい溶融鉄が粒状耐火材の下に潜り込み移動炉床a上の耐火物を侵食する。また、移動炉床a上で溶融鉄、スラグを冷却器で冷却すると溶融鉄、スラグが移動炉床上の耐火物に接着した状態になり、炉外への排出が困難になる。
溶融によって脈石、灰分を除去することを炉外で行わせることも当然考えられるが、それは新たなキュポラのような設備を必要とすることは言うまでもない。
【0009】
【発明が解決しようとする課題】
この発明はこれらの問題を解決するものであって、鉄分を含む炭材内装ペレットを炉床に積み付け、炉床上部より輻射伝熱によってペレットの還元を行う方法において、脈石、灰分の混入がない還元鉄を得て、電気炉での処理コストを低減させること、これを達成するうえで水平に移動する炉床が損傷しないこと、円滑な操業の維持を同時に確保することともに、新たな脈石、灰分分離専用の設備投資も必要としない移動型炉床炉の操業方法を提案することを目的とする。
【0010】
【課題を解決するための手段】
この発明は上記したようにペレット状鉄鉱石を炉床上で還元する時に、脈石分、灰分の混入なしに、かつ炉床の損傷もさけることのできる方法を鋭意研究した結果得られたものである。
この発明は、
(1) 鉄分を含有する炭材内装ペレットを還元して還元鉄を製造する方法において、炉床上に粉状炭素材を置き、該粉状炭素材の上部に炭材内装ペレットを置いて炉床上部から熱供給して炭材内装ペレットを還元した後に、上記炉床上で炭材内装ペレットを還元して得た還元鉄を溶融し、溶融鉄と溶融スラグとに2分することにより、還元鉄中に含まれる脈石、灰分をスラグにして還元鉄から分離することを特徴とする還元鉄を製造する方法である。
ここで炭材内装ペレットは粉状炭素材の上に積層して2層構造とすることができる。これにより、溶融時に還元鉄、スラグが炉床に直接接触することがないため、炉床への溶融還元鉄、溶融スラグによる浸食を受けるおそれがなく、好適である。
また炭材内装ペレットを一個から複数個毎の小区画化して点在させることもできる。この場合溶融後の還元鉄、スラグは小区画毎の粒状に生成されるので、炉床からの排出が容易となり、好適である。
【0011】
【発明の実施の形態】
この発明の骨子とするところは移動炉床上で炭材内装ペレットを還元した得た還元鉄を溶融し、脈石、灰分をスラグにして分離することにある。
まず、移動炉床上に粉状炭素材の単体の層を存在させる。粉状炭素材は、操業中には揮発分以外、あまり減少しない。粉状炭素材に占める灰分は5%〜15%程度であり、粉固体還元材の単体の層をマクロ的に見ると1000℃程度の高温でも固体状態を維持する、すなわち溶融しない。よって粉固体還元材の単体の層自体が移動炉床の上面の耐火物に溶着することはない。そこでこの層を炉床の耐火物を保護する層として利用する。
【0012】
一例として、図3(a), (b)および(c) にこの発明に適合する炉床上への原料積み付け状態と還元鉄を溶融したときの変化の説明図を示す。
図3において、1は炭材内装ペレット、2は粉固体還元材の層、3は移動炉床、4は脈石、灰分が分離された還元鉄であり5はスラグである。
この図3(a), (b)のように原料を積み付け、その上方より輻射伝熱によって加熱すると炭材内装ペレットは内装された炭材と粉状炭素材から発生する還元性ガスの作用により還元され、脈石を含んだ還元鉄になる。また、ペレットに内装された炭材からは灰分が残る。炭材内装ペレット中の副原料は還元鉄、灰分を溶融させる際に溶融を容易にならしめるために加えられるものであって、石灰石、蛍石、蛇紋岩、ドロマイトなどである。これらは溶融する前までに結晶水の蒸発、一部の分解反応(例えば石灰石の主成分であるCaCO3 はCaO に加熱分解されている)を起こしているものの固体を維持している。さらに加熱するとこれらは溶融を開始し、溶融鉄とスラグに分離する。このとき、水平に移動する炉床には直接には接しない形態で存在させていたため、溶融鉄、溶融スラグは図3(c) に示すように、粉状炭素材の単体の層の上に存在する。通常、溶融鉄、溶融スラグの比重は粉固体還元材単体の層よりも大きいため、溶融鉄、溶融スラグが粉固体還元材単体の層の下に潜り込むことが考えられるが、表面張力の作用によって、粉状炭素材の単体の層の上に保持されたままの状態になる。
【0013】
この状態で移動炉床上で冷却器によって溶融鉄、溶融スラグを冷却すると脈石・灰分を分離した還元鉄とスラグが粉固体還元材の単体の層の上に浮いた状態で塊になる。かくして、凝固した還元鉄、スラグは粉固体還元材の単体の層の存在によって移動炉床から離れた状態にあることから容易に炉外に排出できる。
【0014】
炭材内装ペレット中の炭材として灰分のほとんどないピッチコークスの使用も考えられる。その場合、この発明での灰分除去の概念はなくなるが鉱石の脈石を分離する作用は同じである。また、粉状炭素材の単体の層に粘結性のある石炭を使用した場合、溶融鉄、溶融スラグが形成される温度より低い温度で溶融し、コークス化するが、溶融鉄、溶融スラグが形成される温度では既に固体状態にあり、上記作用を発揮することができる。
【0015】
炭材内装ペレット1は粉固体還元材の上部表面あるいはその内部に単一のまま点在させることができるが、複数個毎に小区画化させるようにしてもよい。図4 (a)〜(c) は複数個のペレット1を小区画化させて積み付けた例を示したものであるが、この場合、溶融鉄、溶融スラグは偏在させたペレット毎に凝集しかつ、粉固体還元材の層2の上部あるいは内部に保持されることになる。この状態で移動炉床3の冷却器によって冷却されることによって脈石分離した還元鉄とスラグが粉固体還元材の層2の上に浮かんだ状態で塊になる。図4に示した例では、凝固した還元鉄やスラグは移動炉床3に接触しておらず一つ一つが小さな塊であるから炉床の浸食が避けられるだけでなく製品の排出が極めて容易になる。
【0016】
石炭チャー、コークス、一般炭、無煙炭あるいはオイルコークスの1種または2種以上の混合物は通常1〜15%程度の灰分を含んでいるが、この発明ではこれらの粉状炭素材を有利に使用できるものであり、これらを使用するとき、灰分除去の観点でこの発明を適用する意義が大きい。なお、炭材内装ペレット中の炭材と単体の層の粉状炭素材とは同種であっても異種であってもよい。
【0017】
【実施例】
実施例1
直径2.2mの炉床 (回転式) を備え、炉床上方にバーナーを配置した図5に示すような回転炉床炉 (全体を炉体で覆ったもの) を用いて以下の操業を試験的に行った。
【0018】
ここで、図5において、6は上面にアルミナ系耐火物を張った移動(回転)炉床、7はスクリュー型の排出装置、8は装入装置(炉床への原料積み付け装置)、9は炉体、10はバーナーであり、11は還元鉄を冷却して取り出すために排出口前に設置した冷却器である。
【0019】
実施例1
回転炉床炉を使用して炭材内装ペレットを図6〜図10に示すように積み付け、炉内で還元、溶融、冷却を行う操業を行った。
還元帯での炉温は1300℃に制御し、炉内での滞留時間は炉床の回転速度を調整して27〜35分となるようにした。
【0020】
表1に炭材内装ペレットに使用した鉱石の成分を示す (灰分は6〜13%程度含有) 。炭材内装ペレットに使用した副原料は石灰石を用い、粉固体還元材の層には炭材内装ペレットに使用した炭材と同じものを用いた。炭材内装ペレットは表4に示した組成になる鉱石とともに、表2に示すような炭材を使用 (100 メッシュアンダーに粉砕) し、表3に示すような配合割合にした。表3に操業結果を併せて示す。
【0021】
【表1】

Figure 0004069493
【0022】
【表2】
Figure 0004069493
【0023】
【表3】
Figure 0004069493
【0024】
なお、表3において脈石+灰分の値は、炭材内装ペレットに対する割合であってこの中には鉱石中の脈石、固体還元材の灰分の他に副原料 (石灰石) 中のCaO分も含んだものになっている。また、表3の積み付け番号 (条件1〜5) は図6〜10に対応したものとなっている。炉からの還元鉄、スラグの排出は図6に示したものでは図11に示すような粉砕機13によって粉砕したのち排出装置12によって排出し、図7〜10に示したものでは粉砕機を使用せず排出装置12を用いて排出した。
【0025】
表3において番号1〜12はこの発明に従う適合例である。何れの条件においても炉床の耐火物の損傷の発生はなく、また、製品排出の際のトラブルもなく、還元鉄が脈石、灰分から除去された状態で回収できることが確認できた。
【0026】
番号13, 14は炭材内装ペレットの積み付け法が図10に示すような要領に従ったものであって、炉床の耐火物の上に直接接した状態で炭材内装ペレットを積み付けた例 (比較例) である。脈石、灰分除去操作のために還元ペレットを溶融させたところスラグ、溶融鉄が炉床の耐火物に溶着し耐火物が浸食されその後の冷却操作でスラグ、溶融鉄が炉床の耐火物にそのまま固着してしまい排出装置による排出が不能であった。
【0027】
この発明は、移動型炉床炉での炭材内装ペレットの還元操作において、炉床上に、粉固体還元材を介して、炉床に直接接触しないように炭材内装ペレットを積むあるいは点在させたうえで、還元された還元鉄を炉床上で溶融させるものであり、この発明によれば、簡便な設備を用いながらも、設備を損傷させることなく、また、円滑な操業も確保しながら、脈石、灰分の混入がない還元鉄を製造することが可能であり、電気炉での利用に極めて有用な品質の高い還元鉄を得ることができる。
【図面の簡単な説明】
【図1】 (a), (b)は回転炉床炉の説明図である。
【図2】 (a), (b)は移動炉床上に鉄鉱石と固体還元材との混合粉を直接積み付けた場合の説明図。
【図3】 (a)〜(c) はこの発明に従う原料 (炭材内装ペレット) の積み付け状態と還元鉄を溶融したときの変化状況を示した図である。
【図4】 (a)〜(c) はこの発明に従う原料(炭材内装ペレット) の積み付け状態と還元鉄を溶融したときの変化状況を示した図である。
【図5】実施例で使用した回転炉床炉の構成を示した図である。
【図6】 (a), (b)は実施例で採用した原料の積み付け方法の説明図である(条件1:適合例)。
【図7】 (a), (b)はこの発明の実施例において採用した原料の積み付け要領の説明図である (条件2:適合例) 。
【図8】この発明の実施例において採用した原料の積み付け要領の説明図である (条件3:適合例) 。
【図9】 (a), (b)はこの発明の実施例において採用した原料の積み付け要領の説明図である (条件4:適合例) 。
【図10】この発明の実施例において採用した原料の積み付け要領の説明図である (条件5:比較例) 。
【図11】移動型炉床炉に配置した粉砕機の配置状況を示した図である。
【符号の説明】
1 炭材内装ペレット
(または粉鉄鉱石および粉副原料と粉固体還元材副原料との混合粉)
2 粉固体還元材単体の層
3 移動炉床
4 脈石、灰分が分離された還元鉄
5 スラグ
6 移動(回転)炉床
7 排出装置
8 装入装置(炉床への原料積み付け装置)
9 炉体
10 バーナー
11 冷却器
12 排出装置
13 粉砕機
a 炉床
b 固体還元材の層
c 炉体
d バーナー
e 排出装置
f 装入装置
g 溶融鉄
h スラグ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for producing reduced iron from carbonaceous material-containing pellets using a hearth furnace.
[0002]
[Prior art]
Crude steel production is broadly divided into the blast furnace-converter method and the electric furnace method. Among these, the electric furnace method uses scrap and reduced iron as iron raw materials, heats and melts them with electric energy, and in some cases refines them into steel. At present, scrap is the main raw material, but in recent years, the use of reduced iron is increasing due to the tight supply and demand of scrap and the flow of manufacturing high-grade products using the electric furnace method. As one of the processes for producing reduced iron, as disclosed in JP-A-63-108188, a layer consisting of iron ore and a solid reducing material is stacked on a horizontally rotating hearth, from above. There is a method of producing reduced iron by heating by radiant heat transfer, reducing iron ore. Generally, pellets are used as iron ore. Such a method is advantageous in that the construction cost of the equipment for carrying out this method is relatively low, and operation troubles are relatively small.
[0003]
Iron ore contains gangue components, although there are differences depending on the place of production. In addition, coal, coal char, and coke, which are representative examples of solid reducing materials, have ash. When applied to a method such as Japanese Patent Application Laid-Open No. 63-108188 that basically performs only the reduction operation, gangue is mixed into the reduced iron of the product, and ash from the reducing material is also attached to the product and mixed therein.
[0004]
In an electric furnace, lime is used for dephosphorization and desulfurization. However, if reduced iron containing gangue and ash is added to the electric furnace, the amount of lime used to adjust the basicity increases, and the lime costs are increased. There was a tendency to increase the amount of power used by the input.
[0005]
Here, an outline of a method for stacking ordinary carbonaceous material-containing pellets on a horizontally moving hearth and reducing iron ore by radiant heat transfer from above the furnace will be described. In many cases, the horizontally moving hearth takes the form of a rotary hearth as shown in FIG.
1 (a) and 1 (b) are explanatory views of a rotary hearth furnace. Charcoal-containing pellets are stacked on the moving (rotating) hearth a. The moving (rotating) hearth a is covered with a furnace body c to which a refractory is stretched, and in some cases, the surface of the hearth is covered with a granular refractory material as disclosed in JP-A-63-108188. Yes. A burner d is installed in the upper part of the furnace, and it is used as a heat source to reduce iron ore on the moving (rotating) hearth.
In FIG. 1, e is a discharge device, and f is a charging device.
The temperature inside the furnace is generally around 1300 ° C, and after the reduction operation is completed, reduced iron is transferred by a cooler on the moving (rotating) hearth to facilitate oxidation prevention and handling outside the furnace. It is common to recover after cooling.
[0006]
In order to reduce the ore, the furnace needs to be heated to a high temperature, so that the upper surface of the moving hearth is covered with a refractory to withstand the high temperature, and in some cases, Japanese Patent Laid-Open No. 63-108188. It is further covered with a granular refractory material as disclosed in the publication. As a matter of course, this refractory must not be damaged over a long period of time in order to ensure stable operation of the furnace and not to increase the production cost of the product.
[0007]
On the other hand, it is conceivable to melt reduced iron as one method for obtaining reduced iron free from gangue and ash. When melted, the gangue and ash become slag and are separated by the difference in specific gravity from the molten iron.
[0008]
As shown in Fig. 2 (a) and (b), the case where coal-internal pellets are directly stacked on the moving hearth, and the coal-internal pellets are directly stacked on the mobile hearth 3 until melting is performed. Suppose that the hearth is covered with granular refractory material. When carbonized pellets are reduced by heating from the top, gangue and ash remain in the pellets, and some carbon remains depending on the mixing ratio of iron ore and pellets in the pellets. become. Here, when the temperature is further raised and the reduced iron is melted, the reduced iron becomes molten iron g, and the gangue and ash become slag h. In this melting process, the molten iron and slag come into direct contact with the moving hearth. . At that time, the molten iron g and the slag h erode the refractory and the granular refractory material on the moving hearth a. When covered with the granular refractory material, the molten iron having a large specific gravity enters under the granular refractory material and erodes the refractory on the moving hearth a. Further, when the molten iron and slag are cooled on the moving hearth a with a cooler, the molten iron and slag are adhered to the refractory on the moving hearth, making it difficult to discharge out of the furnace.
Naturally, the removal of gangue and ash by melting can be performed outside the furnace, but it goes without saying that it requires a new cupola-like facility.
[0009]
[Problems to be solved by the invention]
The present invention solves these problems, in which a coal-containing pellet containing iron is stacked on the hearth, and the pellet is reduced by radiant heat transfer from the upper part of the hearth. In order to achieve this, reducing the processing cost in the electric furnace, ensuring that the horizontally moving hearth is not damaged, and maintaining smooth operation at the same time, The purpose of this project is to propose a method for operating a mobile hearth furnace that does not require capital investment dedicated to gangue and ash separation.
[0010]
[Means for Solving the Problems]
This invention was obtained as a result of diligent research on a method capable of preventing damage to the hearth without mixing gangue and ash when pelletized iron ore is reduced on the hearth as described above. is there.
This invention
(1) In the method for producing reduced iron by reducing carbonaceous material-containing pellets containing iron, a powdered carbon material is placed on the hearth, and a carbonaceous material-containing pellet is placed on top of the powdered carbon material. After reducing the carbon material-containing pellets by supplying heat from the section, the reduced iron obtained by reducing the carbon material-containing pellets on the hearth is melted and divided into molten iron and molten slag for 2 minutes. gangue contained in a process for producing reduced iron and separating the ash from reduced iron in the slag.
Here, the carbon material-containing pellets can be laminated on the powdery carbon material to form a two-layer structure. Accordingly, since the reduced iron and slag do not come into direct contact with the hearth during melting, there is no risk of erosion by the molten reduced iron and molten slag on the hearth, which is preferable.
Moreover, the carbonaceous material-incorporated pellets can be made to be divided into small pieces every one to a plurality. In this case, since the reduced iron and slag after melting are produced in a granular form for each small section, it is easy to discharge from the hearth, which is preferable.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The main point of the present invention is to melt the reduced iron obtained by reducing the carbonaceous material-incorporated pellets on the moving hearth and separate the gangue and ash into slag.
First, a single layer of powdered carbon material is present on the moving hearth. The powdered carbon material does not decrease much during operation except for volatile matter. The ash content in the powdery carbon material is about 5% to 15%. When the single layer of the powdered solid reducing material is viewed macroscopically, it maintains a solid state even at a high temperature of about 1000 ° C., that is, does not melt. Therefore, the single layer of the powdered solid reducing material itself does not weld to the refractory on the upper surface of the moving hearth. Therefore, this layer is used as a layer for protecting the refractory of the hearth.
[0012]
As an example, FIGS. 3 (a), 3 (b) and 3 (c) are explanatory views of the state of raw material loading on a hearth suitable for the present invention and the change when reduced iron is melted.
In FIG. 3, 1 is a charcoal-containing pellet, 2 is a layer of powdered solid reducing material, 3 is a moving hearth, 4 is gangue, reduced iron from which ash is separated, and 5 is slag.
When raw materials are stacked as shown in Fig. 3 (a) and (b) and heated from above by radiant heat transfer, the carbonaceous internal pellets act as reducing gas generated from the internal carbonaceous and powdered carbon materials. Is reduced to iron with reduced gangue. In addition, ash remains from the charcoal contained in the pellets. The auxiliary materials in the carbonaceous material-incorporated pellets are added to make the melting easier when melting reduced iron and ash, and include limestone, fluorite, serpentine, and dolomite. These remain solid even though they have undergone evaporation of crystal water and some decomposition reactions (for example, CaCO 3, which is the main component of limestone, is thermally decomposed into CaO 2) before melting. When heated further, they begin to melt and separate into molten iron and slag. At this time, the molten iron and molten slag were present on a single layer of powdered carbon material, as shown in FIG. Exists. Usually, the specific gravity of molten iron and molten slag is larger than that of the layer of powdered solid reducing material alone, so it is conceivable that molten iron and molten slag will sink under the layer of powdered solid reducing material alone. The powder carbon material remains held on the single layer.
[0013]
In this state, when the molten iron and molten slag are cooled by a cooler on the moving hearth, the reduced iron and slag separated from gangue and ash become a lump in a state of floating on a single layer of the powdered solid reducing material. Thus, the solidified reduced iron and slag can be easily discharged out of the furnace because they are separated from the moving hearth by the presence of a single layer of powdered solid reducing material.
[0014]
The use of pitch coke with almost no ash as the charcoal in the charcoal interior pellets is also conceivable. In that case, the concept of ash removal in the present invention is eliminated, but the action of separating ore gangue is the same. In addition, when coal with caking properties is used for a single layer of powdered carbon material, it melts at a temperature lower than the temperature at which molten iron and molten slag are formed and cokes, but molten iron and molten slag are At the temperature to be formed, it is already in a solid state and can exert the above-mentioned action.
[0015]
The carbonaceous material-incorporated pellets 1 can be scattered as a single unit on the upper surface of the powdered solid reducing material or inside thereof, but may be divided into a plurality of small sections. FIGS. 4 (a) to 4 (c) show an example in which a plurality of pellets 1 are subdivided and stacked. In this case, molten iron and molten slag are agglomerated for each unevenly distributed pellet. And it is hold | maintained on the upper part or the inside of the layer 2 of a powder solid reducing material. In this state, the reduced iron and slag separated by the gangue by being cooled by the cooler of the moving hearth 3 are agglomerated in a state of floating on the layer 2 of the powdered solid reducing material. In the example shown in FIG. 4, the solidified reduced iron and slag are not in contact with the moving hearth 3 and each one is a small lump, so not only the hearth erosion can be avoided but also the discharge of the product is extremely easy. become.
[0016]
A mixture of one or more of coal char, coke, steam coal, anthracite coal or oil coke usually contains about 1 to 15% ash, but in the present invention, these powdery carbon materials can be used advantageously. Therefore, when these are used, it is significant to apply the present invention from the viewpoint of removing ash. Note that the carbon material in the carbon material-containing pellet and the powdery carbon material in a single layer may be the same or different.
[0017]
【Example】
Example 1
A rotary hearth furnace (with the entire body covered with a furnace) as shown in Fig. 5 equipped with a 2.2m diameter hearth (rotary type) and a burner placed above the hearth was experimentally tested. Went to.
[0018]
Here, in FIG. 5, 6 is a moving (rotating) hearth with alumina-based refractory on the upper surface, 7 is a screw-type discharging device, 8 is a charging device (raw material stacking device on the hearth), 9 Is a furnace body, 10 is a burner, and 11 is a cooler installed in front of the outlet for cooling and taking out reduced iron.
[0019]
Example 1
Using a rotary hearth furnace, the carbonaceous material-incorporated pellets were stacked as shown in FIGS. 6 to 10, and operations for reduction, melting, and cooling were performed in the furnace.
The furnace temperature in the reduction zone was controlled to 1300 ° C, and the residence time in the furnace was adjusted to 27 to 35 minutes by adjusting the rotation speed of the hearth.
[0020]
Table 1 shows the components of ore used for the carbonaceous material interior pellets (ash content is about 6-13%). The auxiliary material used for the charcoal interior pellets was limestone, and the same material as the charcoal used for the charcoal interior pellets was used for the layer of the powdered solid reducing material. The charcoal-containing pellets were mixed with ores having the compositions shown in Table 4 and the charcoal materials shown in Table 2 (pulverized to 100 mesh under) and blended in the proportions shown in Table 3. Table 3 also shows the operation results.
[0021]
[Table 1]
Figure 0004069493
[0022]
[Table 2]
Figure 0004069493
[0023]
[Table 3]
Figure 0004069493
[0024]
In Table 3, the value of gangue + ash is the ratio with respect to the pellets inside the carbonaceous material, and this includes not only gangue in the ore and ash in the solid reducing material, but also CaO in the auxiliary material (limestone). It is included. Moreover, the stacking numbers (conditions 1 to 5) in Table 3 correspond to those shown in FIGS. The reduced iron and slag discharged from the furnace is discharged by the discharger 12 after being pulverized by the pulverizer 13 as shown in FIG. 11 in the case shown in FIG. 11, and the pulverizer is used in those shown in FIGS. Without discharging, the discharging device 12 was used.
[0025]
In Table 3, numbers 1 to 12 are conforming examples according to the present invention. It was confirmed that there was no damage to the refractory in the hearth under any conditions, and there was no trouble in discharging the product, and it was possible to recover the reduced iron from the gangue and ash.
[0026]
Nos. 13 and 14 follow the procedure shown in Fig. 10 for the method of stacking the carbon material interior pellets, and the carbon material interior pellets were stacked in direct contact with the refractories on the hearth. This is an example (comparative example). When the reduced pellets are melted for gangue and ash removal operations, the slag and molten iron are welded to the refractory of the hearth and the refractory is eroded, and the slag and molten iron become refractories of the hearth in the subsequent cooling operation. It was stuck as it was and could not be discharged by the discharge device.
[0027]
In the reduction operation of the carbonaceous material-incorporated pellets in the mobile hearth furnace, the carbonaceous material-incorporated pellets are stacked or scattered on the hearth so as not to directly contact the hearth via the powdered solid reducing material. In addition, the reduced reduced iron is melted on the hearth, and according to the present invention, while using a simple facility, without damaging the facility, while ensuring a smooth operation, It is possible to produce reduced iron free from gangue and ash, and it is possible to obtain high-quality reduced iron that is extremely useful for use in an electric furnace.
[Brief description of the drawings]
FIGS. 1A and 1B are explanatory diagrams of a rotary hearth furnace. FIG.
[Fig. 2] (a) and (b) are explanatory diagrams when a mixed powder of iron ore and solid reducing material is directly stacked on a moving hearth.
FIGS. 3 (a) to (c) are views showing the state of stacking of raw materials (carbon material-containing pellets) according to the present invention and the state of change when reduced iron is melted.
FIGS. 4A to 4C are views showing a state of stacking raw materials (carbon material-containing pellets) according to the present invention and a change state when the reduced iron is melted.
FIG. 5 is a view showing a configuration of a rotary hearth furnace used in Examples.
FIGS. 6A and 6B are explanatory diagrams of the raw material stacking method employed in the examples (Condition 1: conforming example).
FIGS. 7A and 7B are explanatory diagrams of the raw material stacking procedure employed in the embodiment of the present invention (Condition 2: Conformity example).
FIG. 8 is an explanatory diagram of the raw material stacking method employed in the embodiment of the present invention (Condition 3: conforming example).
FIGS. 9A and 9B are explanatory diagrams of the raw material stacking procedure employed in the embodiment of the present invention (Condition 4: Conformity example).
FIG. 10 is an explanatory diagram of the raw material stacking procedure employed in the examples of the present invention (Condition 5: Comparative Example).
FIG. 11 is a diagram showing an arrangement state of crushers arranged in a mobile hearth furnace.
[Explanation of symbols]
1 Charcoal material interior pellet (or mixed powder of powdered iron ore and powder auxiliary material and powdered solid reducing material auxiliary material)
2 Layer of powdered solid reductant 3 Mobile hearth 4 Reduced iron 5 from which gangue and ash were separated 5 Slag 6 Moving (rotating) hearth 7 Discharge device 8 Charger (raw material loading device on the hearth)
9 Furnace
10 Burner
11 Cooler
12 Discharge device
13 crusher a hearth b layer of solid reducing material c furnace body d burner e discharge device f charging device g molten iron h slag

Claims (1)

鉄分を含有する炭材内装ペレットを還元して還元鉄を製造する方法において、
炉床上に粉状炭素材を置き、該粉状炭素材の上部に炭材内装ペレットを置いて炉床上部から熱供給して炭材内装ペレットを還元した後に、
上記炉床上で炭材内装ペレットを還元して得た還元鉄を溶融し、溶融鉄と溶融スラグとに2分することにより、還元鉄中に含まれる脈石、灰分をスラグにして還元鉄から分離することを特徴とする還元鉄の製造方法。
In a method for producing reduced iron by reducing carbon-containing pellets containing iron,
After placing the powdered carbon material on the hearth, placing the carbonaceous interior pellets on top of the powdered carbon material and supplying heat from the top of the hearth to reduce the carbonaceous interior pellets,
The reduced iron obtained by reducing the carbonaceous material-incorporated pellets on the hearth is melted and divided into molten iron and molten slag for 2 minutes, and the gangue and ash contained in the reduced iron are converted into slag from the reduced iron. A method for producing reduced iron, characterized by separating.
JP14561298A 1998-05-27 1998-05-27 Method for producing reduced iron Expired - Fee Related JP4069493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14561298A JP4069493B2 (en) 1998-05-27 1998-05-27 Method for producing reduced iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14561298A JP4069493B2 (en) 1998-05-27 1998-05-27 Method for producing reduced iron

Publications (2)

Publication Number Publication Date
JPH11335712A JPH11335712A (en) 1999-12-07
JP4069493B2 true JP4069493B2 (en) 2008-04-02

Family

ID=15389072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14561298A Expired - Fee Related JP4069493B2 (en) 1998-05-27 1998-05-27 Method for producing reduced iron

Country Status (1)

Country Link
JP (1) JP4069493B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4564126B2 (en) * 2000-03-27 2010-10-20 住友重機械工業株式会社 Method for producing molten iron using a rotary kiln
CN1229505C (en) 2000-03-30 2005-11-30 米德雷克斯国际公司苏黎世分公司 Method of producing metallic iron and raw material feed device
JP2001279313A (en) 2000-03-30 2001-10-10 Midrex Internatl Bv Method for producing molten metallic iron
JP2001288504A (en) 2000-03-31 2001-10-19 Midrex Internatl Bv Method for producing molten metallic iron
TW562860B (en) 2000-04-10 2003-11-21 Kobe Steel Ltd Method for producing reduced iron
ZA200300865B (en) * 2001-06-18 2004-02-26 Kobe Steel Ltd Method for manufacturing metal nuggets.
JP4256645B2 (en) 2001-11-12 2009-04-22 株式会社神戸製鋼所 Metal iron manufacturing method
MX2007006785A (en) 2004-12-07 2007-10-08 Nu Iron Technology Llc Method and system for producing metallic iron nuggets.
JP4935384B2 (en) * 2006-02-02 2012-05-23 Jfeスチール株式会社 Method for producing reduced metal
JP5428495B2 (en) * 2008-04-25 2014-02-26 Jfeスチール株式会社 Reduced iron production method using high zinc content iron ore
JP5396991B2 (en) * 2008-04-25 2014-01-22 Jfeスチール株式会社 Granular iron production method using high zinc content iron ore
CN102016080A (en) * 2008-04-25 2011-04-13 杰富意钢铁株式会社 Process for production of direct-reduced iron
JP5397020B2 (en) * 2008-05-30 2014-01-22 Jfeスチール株式会社 Reduced iron production method
JP5397021B2 (en) * 2008-05-30 2014-01-22 Jfeスチール株式会社 Reduced iron production method
TWI426133B (en) * 2008-05-30 2014-02-11 Jfe Steel Corp Production method of pig iron
JP5000593B2 (en) * 2008-06-30 2012-08-15 株式会社神戸製鋼所 Manufacturing method of granular metallic iron and manufacturing method of molten steel using the metallic iron
JP5042203B2 (en) * 2008-12-15 2012-10-03 株式会社神戸製鋼所 Production of granular metallic iron
JP2010261101A (en) * 2009-04-07 2010-11-18 Mitsutaka Hino Method for producing metallic iron
JP6014009B2 (en) * 2012-11-22 2016-10-25 株式会社神戸製鋼所 Method for producing reduced iron

Also Published As

Publication number Publication date
JPH11335712A (en) 1999-12-07

Similar Documents

Publication Publication Date Title
JP4069493B2 (en) Method for producing reduced iron
US8088195B2 (en) Method for manufacturing titanium oxide-containing slag
KR100388329B1 (en) A movable hearth furnace for reducing oxides, and method of operating the furnace
JP4231960B2 (en) Method and apparatus for producing carbon-containing iron using hearth rotary furnace
CA2372378C (en) Method for producing reduced iron
KR20020001655A (en) Method for producing reduced iron
JP2010111941A (en) Method for producing ferrovanadium
CA1244656A (en) Processes and appparatus for the smelting reduction of smeltable materials
EP1408124B1 (en) Method for producing feed material for molten metal production and method for producing molten metal
US20110036204A1 (en) Method for producing reduced iron
JP3482838B2 (en) Operating method of mobile hearth furnace
JP3539263B2 (en) Method for producing reduced metal from metal-containing material and mobile hearth furnace for producing reduced metal
JP4120230B2 (en) Operation method of mobile hearth furnace
JP3817969B2 (en) Method for producing reduced metal
JP4572435B2 (en) Method for producing reduced iron from iron-containing material
JP3451901B2 (en) Operating method of mobile hearth furnace
JP3449195B2 (en) Operating method of mobile hearth furnace
JP5103915B2 (en) Method for producing reduced metal
JP2011179090A (en) Method for producing granulated iron
JP5119815B2 (en) Operation method of mobile hearth furnace
JP2002275517A (en) Method for operating movable heath type furnace
JPH02247312A (en) Production of chromium-containing molten iron
JPS58193341A (en) Preparation of silicon or ferrosilicon
JP2003239007A (en) Method for manufacturing reduced metal from metal- containing substance

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040928

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees