JPS59132121A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59132121A
JPS59132121A JP645983A JP645983A JPS59132121A JP S59132121 A JPS59132121 A JP S59132121A JP 645983 A JP645983 A JP 645983A JP 645983 A JP645983 A JP 645983A JP S59132121 A JPS59132121 A JP S59132121A
Authority
JP
Japan
Prior art keywords
light intensity
high light
laser
laser beam
silicon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP645983A
Other languages
Japanese (ja)
Inventor
Ryoichi Mukai
良一 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP645983A priority Critical patent/JPS59132121A/en
Publication of JPS59132121A publication Critical patent/JPS59132121A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams

Abstract

PURPOSE:To reduce crystal defects in a single crystal silicon layer by moving the position of irradiation in succession in the eccentric direction of a high light intensity section in laser beams and in the direction crossing with a line tying two high light intensity sections. CONSTITUTION:The distribution of light intensity in laser-beams is adjusted so that two high light intensity sections 6a, 6b are formed at positions biassed from the center of laser-beams and an intermediate light intensity region 7 in a trailing skirt in different length la, lb on the beam center side of these high light intensity sections 6a, 6b is formed. A laser-beam irradiating region is moved in the eccentric directions of the two high light intensity sections 6a, 6b and in the direction of (m) crossing with a straight line tying the high light intensity sections 6a, 6b.

Description

【発明の詳細な説明】 (a)  発明の技術分野 本発明は絶縁基体(基板若しくは膜)上に配設された単
結晶シリコン層に半導体素子が形成されるSOI (5
iliconOn In5ulator )構造の半導
体装置の製造方法に係り、特に該製造工程に於て絶縁基
体上に形成されたシリコン層を単結晶化する方法に関す
る。
Detailed Description of the Invention (a) Technical Field of the Invention The present invention relates to an SOI (SOI) in which a semiconductor element is formed on a single crystal silicon layer disposed on an insulating substrate (substrate or film).
The present invention relates to a method of manufacturing a semiconductor device having an iliconon insulator structure, and particularly to a method of monocrystallizing a silicon layer formed on an insulating substrate in the manufacturing process.

(b)  技術の背景 近時、分離耐圧が高いので素子の高密度高集積化が容易
である、分離浮遊容量が小さいので素子動作の高速化が
図れる、等の利点からSOI構造の半導体装置が注目さ
れている。
(b) Background of the technology Recently, semiconductor devices with SOI structure have become popular due to their advantages such as high isolation voltage, which makes it easy to integrate devices at high density, and small isolation stray capacitance, which enables faster device operation. Attention has been paid.

該SOI構造の半導体装置に於て半導体素子が作9つけ
られる単結晶シリコン(St)層は、基板若しくは膜か
らなる絶縁基体上に堆積された非晶質若しくは多結晶S
t層を溶融し再結晶させることによって形成される。そ
して該単結晶化に際しては、レーザ・ビーム照射による
加熱位置を順次移動しながら行うレーザ・アニール技術
が多く用いられる。
In the semiconductor device having the SOI structure, the single crystal silicon (St) layer on which the semiconductor element is fabricated is an amorphous or polycrystalline silicon layer deposited on an insulating base consisting of a substrate or a film.
It is formed by melting and recrystallizing the t-layer. In the single crystallization, a laser annealing technique is often used in which the heating position is sequentially moved by laser beam irradiation.

(Q 従来技術と問題点 従来上記レーザ・アニールに用いられていたレーーザ・
ビームは、ビーム中心にするどい高光強度部を有するガ
ウシアン・ビーム若しくハスるどい高光強度部がなく比
較的平坦な光隼度分布を有する楕円ビームであった。
(Q Conventional technology and problems The laser that was conventionally used for the above laser annealing
The beam was either a Gaussian beam with a high light intensity area at the center of the beam or an elliptical beam with a relatively flat optical velocity distribution without a sharp high light intensity area.

そして該従来のレーザ・アニール技術を用いて絶縁基体
上に堆積した非晶質Si層の単結晶化を行った際、上記
中心部にするどい高光強度部を有するガウシアン・ビー
ムを用いたときには、第1図に模式的に示したように、
矢印mに向う1回の加熱領域移動によって形成される単
結晶Si層mSiに、その周辺部から中心に向って、加
熱領域が移動した方向mに向って流れ且つ中心に向って
深く食い込んだ結晶欠陥りを生じ、半導体素子を形成し
得る領域が制限されて製造歩留まりが低下するという問
題や、該結晶欠陥りが素子形成領域まで延在して、素子
性能が低下するという問題があった。
When the conventional laser annealing technique was used to single-crystallize the amorphous Si layer deposited on the insulating substrate, when a Gaussian beam having a high light intensity region at the center was used, As schematically shown in Figure 1,
Crystals that flow from the periphery toward the center in the direction m in which the heating region moves and deeply bite into the center of the single-crystal Si layer mSi formed by one heating region movement in the direction of the arrow m There are problems in that crystal defects occur and the area in which semiconductor elements can be formed are restricted, resulting in a decrease in manufacturing yield, and that the crystal defects extend to the element formation area, resulting in a decrease in element performance.

又楕円ビームを用いたときには、ビーム幅の拡大は可能
であるが、レーザ・パワーが充分に得られず、そのため
良質な単結晶Si層を得ることが困難であるという問題
があった。
Furthermore, when an elliptical beam is used, although it is possible to widen the beam width, there is a problem in that sufficient laser power cannot be obtained, making it difficult to obtain a high-quality single-crystal Si layer.

(d)  発明の目的 本発明は上記問題点を除去し、絶縁基体上の非晶質若し
くは破結晶シリコン層を良質な単結晶化することが可能
なレーザ・アニール方法を提供するものであり、その目
的とするところはSOI構造の半導体装置の性能及び製
造歩留まりを向上せしめるにある。
(d) Purpose of the Invention The present invention provides a laser annealing method capable of eliminating the above-mentioned problems and converting an amorphous or fractured silicon layer on an insulating substrate into a high-quality single crystal. The purpose is to improve the performance and manufacturing yield of semiconductor devices with an SOI structure.

(e)発明の構成 即ち本発明は絶縁基体上に設けた単結晶シリコン層に半
導体素子が形成される半導体装置の製造工程に於て、絶
縁基体上に形成されたシリコン層を単結晶化するに際し
て、ビームの中心から偏った位置に二つの高光強度部を
有し、且つこれら高光強度部のビーム中心側に異なる長
さに裾を引いた中光強度領域を有するレーザ・ビームを
用い、該レーザ・ビームによる照射位置を、該レーザ・
ビームに於ける高光強度部の偏心方向であって且つ二つ
の高光強度部を結ぶ線と交差する方向に順次移動させな
がら前記シリコン層のレーザ・ビーム加熱を行うことを
特徴とする。
(e) Structure of the Invention That is, the present invention involves monocrystallizing a silicon layer formed on an insulating substrate in the manufacturing process of a semiconductor device in which a semiconductor element is formed on a single crystal silicon layer provided on an insulating substrate. In this case, a laser beam is used that has two high-light intensity parts at positions offset from the center of the beam, and a medium-light-intensity region with tails of different lengths on the side of the beam center of these high-light intensity parts. The irradiation position by the laser beam is
The laser beam heating of the silicon layer is performed while sequentially moving the beam in the eccentric direction of the high light intensity portion and in the direction intersecting a line connecting the two high light intensity portions.

(f)  発明の実施例 以下本発明を一実施例について、図ハ泪いて詳細に説明
する。
(f) Embodiment of the Invention The present invention will be described in detail below with reference to an embodiment of the invention.

第2図(イ)乃至(ハ)は本発明の一実施例に於ける工
程断面図、第3図は同実施例に用いるレーザ・ビームの
平面光強度分布図(イ)及び断面光強度分布図(ロ)、
第4図は同実施例に用いだレーザ発生装置の一例に於け
る構造模式図、第5図は同実施例によシ形成された単結
晶シリコン層の上面模式図である。
Figures 2 (a) to (c) are process cross-sectional views in one embodiment of the present invention, and Figure 3 is a plane light intensity distribution diagram (a) and cross-sectional light intensity distribution of the laser beam used in the same embodiment. Figure (b),
FIG. 4 is a schematic structural diagram of an example of a laser generator used in the same embodiment, and FIG. 5 is a schematic top view of a single crystal silicon layer formed according to the same embodiment.

本発明の方法により例えば二酸化シリコン(SiO□)
膜を絶縁物基体とするSOI構造の半導体装置を形成す
るに際しては、第2図(イ)に示すように通常通り熱酸
化法等によりシリコン(Si )基板1上に例えば1〜
1.5〔μm〕程度の厚さの5in2膜2を形成し、次
いで該5in2膜2上に例えば蒸着等の方法によシ厚さ
例えば0.4〜0.5〔μm〕程度の非晶質St層3′
を形成する。
For example, silicon dioxide (SiO□) can be produced by the method of the present invention.
When forming a semiconductor device having an SOI structure using a film as an insulator substrate, for example, 1 to 1 are deposited on a silicon (Si) substrate 1 by a thermal oxidation method or the like as shown in FIG. 2(a).
A 5in2 film 2 with a thickness of about 1.5 [μm] is formed, and then an amorphous film with a thickness of about 0.4 to 0.5 [μm], for example, is formed on the 5in2 film 2 by a method such as vapor deposition. Quality St layer 3'
form.

次いで第2図(ロ)に示すように、前記非晶質Siや 
 。
Next, as shown in FIG. 2(b), the amorphous Si and
.

層3′上に例えば厚500 [A:]程度の窒化シリコ
ン(SisN+)膜と厚さ0.5〜0.6 [jlm:
]程度のシん珪酸ガラス(PSG)膜が積層されてなる
反射防止膜(ウエートを兼ねる)4を形成した後、該基
板を例えば空気中で450C℃E程度に加熱した状態で
前記反射防止膜4を通して非晶質Si層3′の表面全域
を基板を移動しながらレーザ・ビームLで順次加熱しく
矢印mは加熱領域移動方向)、非晶質St層3′を順次
溶融、再結晶せしめて単結晶St層3化する(5は溶融
Si層)。
For example, a silicon nitride (SisN+) film with a thickness of about 500 [A:] and a film with a thickness of 0.5 to 0.6 [jlm:] is formed on the layer 3'.
] After forming an antireflection film (also serving as a weight) 4 made of laminated cinsilicate glass (PSG) films, the antireflection film is heated to about 450° C.E. in air, for example. 4, the entire surface of the amorphous Si layer 3' is sequentially heated with a laser beam L while moving the substrate (arrow m indicates the direction of movement of the heating area), and the amorphous St layer 3' is sequentially melted and recrystallized. Three single crystal St layers are formed (5 is a molten Si layer).

本発明の方法に於て該レーザ・アニール処理に用いるレ
ーザ・ビームは、通常通りSlに於ける吸収係数の大き
い0.45〜0.53[μm〕程度の波長を有する連続
波アルゴン(CWAr )レーザ・ビームを用いる。そ
して該レーザ・ビームに於ける光強度の分布は、第3図
(イ)に示すように該レー禿・ビームLの中心から偏っ
た位置に二つの高光強度部6a及び6bを有し、これら
高光強度部6a 、 6bのビーム中心側に異なる長さ
Aa、 tbに裾を引いた中光強度領域7が形成される
ように調節される。
In the method of the present invention, the laser beam used for the laser annealing process is usually continuous wave argon (CWAr) having a wavelength of about 0.45 to 0.53 [μm], which has a large absorption coefficient in Sl. Uses a laser beam. The distribution of light intensity in the laser beam has two high light intensity parts 6a and 6b at positions offset from the center of the laser beam L, as shown in FIG. 3(a). Adjustments are made so that a medium light intensity region 7 with skirts of different lengths Aa and tb is formed on the beam center side of the high light intensity portions 6a and 6b.

該図に於て8は低光強度領域を示す。なお該ビームの直
径dは例えば、60〔μm〕程度に形成し、レーザ出力
は4〜8〔W〕程度とする。第3図(ロ)は該レーザ・
ビームのA−A’矢視方向の断面光強度分布を模式的に
示したものである。
In the figure, 8 indicates a low light intensity region. The diameter d of the beam is, for example, about 60 [μm], and the laser output is about 4 to 8 [W]. Figure 3 (b) shows the laser
It is a diagram schematically showing the cross-sectional light intensity distribution of the beam in the direction of the arrow A-A'.

上記光強度分布を有するCWArレーザ・ビームは、例
えば第4図に示すような気体レーザ発生装置R(Arレ
ーザ管Ar−LT)に於ける外部共振ミラーC,,C2
の対向角度を2次元的に変えることにより形成される。
The CWAr laser beam having the above-mentioned light intensity distribution is transmitted to external resonant mirrors C, , C2 in a gas laser generator R (Ar laser tube Ar-LT) as shown in FIG. 4, for example.
It is formed by two-dimensionally changing the opposing angles of the two.

同図に於てE、 、 E、は電極、Gは放電、Lはレー
ザ光、Bはブルースター窓を示している。
In the figure, E, , E are electrodes, G is a discharge, L is a laser beam, and B is a Brewster window.

又本発明の方法でレーザ・ビーム照射領域の移動は、第
3図(イ)に於て二つの高光強度部6a、6bの偏心方
向であって且つ高光強度部6a、6bを結ぶ直線に例え
ば直角に交わる矢印mの方向に、例えば50 Crra
n/yc 〕程度の速度で行われる。
Further, in the method of the present invention, the laser beam irradiation area is moved in the eccentric direction of the two high light intensity parts 6a, 6b in FIG. For example, 50 Crra in the direction of the arrow m that intersects at right angles.
n/yc].

次いで前記反射防止膜4を通常のエツチング技術により
除去し、通常行われるフォトリングラフィ技術により単
結晶Si層のパターンニングを行い、第2 m)−3−
に丞土孟−うにSto、膜2上に島状に分離された単結
晶St層パターン3a、3b等を形成する。
Next, the antireflection film 4 is removed by a conventional etching technique, and the single crystal Si layer is patterned by a conventional photolithography technique.
Single-crystal St layer patterns 3a, 3b, etc. separated into islands are formed on the film 2.

そして以後図示しないが、これら単結晶St層パターン
に単導体素子が作シ込まれ、絶縁膜の形第4図は上記実
施例の方法で1回のビーム照射位置の移動によって形成
された単結晶Si層3の上面を模式的に示したもので、
該図のように上記方法によって形成した単結晶Si層3
は、その周辺部即ち多結晶Si層3′との界面から単結
晶Si層3の中心に向って成長する結晶欠陥りは高光強
度で溶融された領域Mhでと壕シ、その長さが従来に比
べて極めて短かくなる(数μm程度)ので、広い面積を
有する良質な単結晶層3が形成できる。
Although not shown hereafter, single conductor elements are implanted into these single crystal St layer patterns, and the shape of the insulating film shown in FIG. This diagram schematically shows the top surface of the Si layer 3.
As shown in the figure, a single crystal Si layer 3 formed by the above method
The crystal defects growing from the periphery, that is, the interface with the polycrystalline Si layer 3' to the center of the single-crystal Si layer 3, are trenches in the region Mh melted with high light intensity, and the length thereof is longer than that of the conventional one. Since it is extremely short (about several micrometers) compared to , a high-quality single crystal layer 3 having a wide area can be formed.

上記実施例に於ては本発明を、SiO2膜上に単結晶S
i層を形成する際に適用したが、本発明の方法は上記実
施例に限らず、SiO2膜以外の絶縁膜上は勿論、絶縁
体基板上に・単結晶Si層を形成する際にも1−用−て
−きる。文具なる絶縁膜が積着されてなる絶縁基体であ
ってもよい。
In the above embodiment, the present invention is applied to a single crystal S on a SiO2 film.
Although the method of the present invention was applied when forming an i-layer, the method of the present invention is not limited to the above-mentioned embodiments, and can be applied not only to insulating films other than SiO2 films but also to forming single-crystal Si layers on insulating substrates. -Use-te-kiru. It may also be an insulating substrate on which an insulating film of stationery is deposited.

更に又レーザービームの径、レーザ・パワー 。Furthermore, the diameter of the laser beam and the laser power.

Si層の厚さ等も上記実施例に限定されるものではない
The thickness of the Si layer and the like are not limited to those in the above embodiments.

そして又、レーザ照射位置の移動方向はレーザ・ビーム
に於ける高光強度部を結ぶ線と交差する方向であればよ
く、前記実施例に示した直角に交差する方向には°限ら
ない。
Furthermore, the moving direction of the laser irradiation position may be any direction that intersects the line connecting the high light intensity parts of the laser beam, and is not limited to the direction that intersects at right angles as shown in the above embodiment.

(g)  発明の詳細 な説明したように、本発明によれば絶縁基体上に形成さ
れた単結晶シリコン層の結晶欠陥が大幅に減少する。従
ってSOI構造の半導体装置の品質及び製造歩留まりの
向上が図れる。
(g) Detailed Description of the Invention As described above, according to the present invention, crystal defects in a single crystal silicon layer formed on an insulating substrate are significantly reduced. Therefore, it is possible to improve the quality and manufacturing yield of semiconductor devices having an SOI structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はガウシアン・ビームを用いる従来のレーザ・ア
ニール法で形成した単結晶シリコン層の上面模式図、第
2図(イ)乃至(ハ)は本発明の方法の一実施例に於け
る工程断面図、第3図は同実施例に用いたレーザ・ビー
ムの平面光強度分布図(イ)及び断面光強度分布図(ロ
)、第4図は同実施例に用いたレーザ発生装置の一例に
於ける構造模式図、第5−図は同実施例により形成され
た単結晶シリコン層の上面模式図である。 図に於て、2は二酸化シリコン膜、3′は非晶質シリコ
ン層、3は単結晶シリコン層、3a、3bは単結晶シリ
コン層パターン、4は反射防止膜、5は溶融シリコン層
、6 a p 6 bはレーザ・ビームに於ける高光強
度部、7は生先強度領域、8は低光強度領域、Lはレー
ザービーム、Ar −LTはArレーザ管、CX、C,
は外部共振ミラー、I、 、E。 は電極、Gは放電、Dは結晶欠陥、Mhは高光強度で溶
融された領域、mはレーザ照射領域移動方向矢印し、t
a、tbは生先強度領域の長さ、dはレーザ・ビームの
直径を示す。 早 1 閃 察 ? 図 宅 3 囚 v−4図 番5酊
Figure 1 is a schematic top view of a single crystal silicon layer formed by a conventional laser annealing method using a Gaussian beam, and Figures 2 (a) to (c) are steps in one embodiment of the method of the present invention. 3 is a planar light intensity distribution diagram (A) and a cross-sectional light intensity distribution diagram (B) of the laser beam used in the same example, and FIG. 4 is an example of the laser generator used in the same example. FIG. 5 is a schematic top view of a single crystal silicon layer formed according to the same example. In the figure, 2 is a silicon dioxide film, 3' is an amorphous silicon layer, 3 is a single crystal silicon layer, 3a and 3b are single crystal silicon layer patterns, 4 is an antireflection film, 5 is a molten silicon layer, and 6 a p 6 b is the high light intensity region of the laser beam, 7 is the site intensity region, 8 is the low light intensity region, L is the laser beam, Ar -LT is the Ar laser tube, CX, C,
are external resonant mirrors, I, ,E. is an electrode, G is a discharge, D is a crystal defect, Mh is a region melted with high light intensity, m is an arrow in the direction of movement of the laser irradiation region, and t
a, tb are the lengths of the original intensity region, and d is the diameter of the laser beam. Early 1 flash? Picture number 3 Prisoner v-4 Picture number 5 Drunkenness

Claims (1)

【特許請求の範囲】[Claims] 絶縁基体上に設けた単結晶シリコン層に半導体素子が形
成される半導体装置の製造工程に於て、絶縁基体上に形
成されたシリコン層を単結晶化するに際して、ビームの
中心から偏った位置に二つの高光強度部を有し、且つこ
れら高光強度部のビーム中心側に異なる長さに裾を引い
た中光強度供域を有するレーザ・ビームを用い、該レー
ザ・ビームによる照射位置を、該レーザ・ビームに於け
る高光強度部の偏心方向であって且つ二つの高光強度部
を結ぶ線と交差する方向に順次移動させながら前記シリ
コン層のレーザ・ビーム加熱を行うことを特徴とする半
導体装置の製造方法。
In the manufacturing process of semiconductor devices in which semiconductor elements are formed on a single-crystal silicon layer provided on an insulating base, when the silicon layer formed on the insulating base is single-crystallized, the beam is placed at a position offset from the center. Using a laser beam that has two high light intensity parts and a medium light intensity range with different lengths on the beam center side of these high light intensity parts, the irradiation position by the laser beam is adjusted to A semiconductor device characterized in that the silicon layer is heated with a laser beam while the laser beam is sequentially moved in an eccentric direction of a high light intensity portion of the laser beam and in a direction intersecting a line connecting two high light intensity portions. manufacturing method.
JP645983A 1983-01-18 1983-01-18 Manufacture of semiconductor device Pending JPS59132121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP645983A JPS59132121A (en) 1983-01-18 1983-01-18 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP645983A JPS59132121A (en) 1983-01-18 1983-01-18 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59132121A true JPS59132121A (en) 1984-07-30

Family

ID=11639019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP645983A Pending JPS59132121A (en) 1983-01-18 1983-01-18 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59132121A (en)

Similar Documents

Publication Publication Date Title
JPS5861622A (en) Manufacture of single crystal thin film
JPS62160712A (en) Manufacture of semiconductor device
JPS59132121A (en) Manufacture of semiconductor device
JPS59148322A (en) Manufacture of semiconductor device
JPS6159820A (en) Manufacture of semiconductor device
JPS5892213A (en) Manufacture of semiconductor single crystalline film
JPS59132120A (en) Manufacture of semiconductor device
JP2929660B2 (en) Method for manufacturing semiconductor device
JPH10270359A (en) Manufacture of thin-film semiconductor
JPS61251115A (en) Growth of semiconductor single crystal on insulating film
JPS62206819A (en) Semiconductor device
JPS58212123A (en) Manufacture of single crystal thin film
JPH01200615A (en) Method of forming insulator with thin single crystal semiconductor material layer
JPH0355975B2 (en)
JP3484547B2 (en) Thin film formation method
JPS59158515A (en) Manufacture of semiconductor device
JPS5886716A (en) Forming of single crystal semiconductor film
JPS62219510A (en) Formation of single crystal island region
JPS58212124A (en) Manufacture of single crystal thin film
JPH01297814A (en) Manufacture of single crystal
JPH0354819A (en) Manufacture of soi substrate
JPS6149412A (en) Single crystallizing method of silicon film
JPS5978999A (en) Manufacture of semiconductor single crystal film
JPS5880829A (en) Formation of silicon single crystal film
JPH0523492B2 (en)