JPS59132014A - Reference voltage generating circuit - Google Patents

Reference voltage generating circuit

Info

Publication number
JPS59132014A
JPS59132014A JP58007022A JP702283A JPS59132014A JP S59132014 A JPS59132014 A JP S59132014A JP 58007022 A JP58007022 A JP 58007022A JP 702283 A JP702283 A JP 702283A JP S59132014 A JPS59132014 A JP S59132014A
Authority
JP
Japan
Prior art keywords
voltage
proportional
temperature
reference voltage
generating circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58007022A
Other languages
Japanese (ja)
Inventor
Harunori Sato
里 治則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58007022A priority Critical patent/JPS59132014A/en
Publication of JPS59132014A publication Critical patent/JPS59132014A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/30Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Logic Circuits (AREA)
  • Amplifiers (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To generate an optional reference voltage independent of temperature, by adding a voltage proportional to the forward voltage between the base and the emitter of a transistor TR and a voltage proportional to an absolute temperature and flowing an attained constant current to a resistance. CONSTITUTION:A voltage Vab proportional to a forward saturation voltage VBE between the base and the emitter of a TR is attained in a DELTAVBE generating circuit 7 consisting of TRs 8 and 9 and resistances 10-13. The voltage Vab and a voltage V24 proportional to an absolute temperature T are added in a T proportional constant current generating circuit 14 consisting of TRs 15-21, diodes 22 and 23, and a resistance 24 to attain a constant current I5 having an optional value independent of temperature. This current I5 is flowed to a resistance 27 set to an optional value to generate an output voltage V0 which is a desired reference voltage independent of temperature.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は周囲温度に影響されず、任意の出力電圧を発生
できる簡潔な基準電圧発生回路に関する。 〔従来技術〕 第1図は従来のエネルギーギャップ電圧を利用した方式
の周囲温度に影響されない基準電圧発生回路である。図
において、(1)は絶対温度(T)に比例した定電流(
I L)’を発生するT比例定電流発生回路、(2)は
絶対温度(T)に比例した電圧を発生させるだめの抵抗
(IRL)、(3)はダイオード(D)、(4)は出力
電圧(Vo)を出力する出力端子、(5)は電圧(vl
)を発生する電源である。 第1図において、T比例定電流発生回路(1)から絶対
温度(T)に比例した定電流(It)が出力されるとき
、出力端子(4)とアース間に発生する出力電圧(Vo
)は〔1〕式となる。 〔1〕式において、IL=10(μA)、 Ro=61
[KΩ]。 Is 勾2.6 X 10  (A’)に設定すると〔
1〕式の第1項。 第2項は下記〔2)、(3)式となる。 ILRo#610 (:mV)      −−−−・
・(:2)[2) 、(3)式を〔1〕式に代入すると
出力電圧(vO)は1224(mV)となる。この電圧
はエネルギーギャップ電圧と言われ周囲温度に依存しな
い電圧となる。例えば周囲温度が上昇すると、ダイオー
ド(3)の両端子間の電圧が減少し、又、T比例定電流
発生回路(1)の電流(IL)が増加して抵抗(2)の
両端子間の電圧が増加するため、各電圧変化は打ち消し
合って出力端子の出力電圧(VO)は変化しない。これ
によって周囲温度に依存しない基準電圧を得ることがで
きる。 しかしながら、このような従来装置による出力電圧(V
o)は、ダイオード(D)の順方向電圧のほぼ2倍であ
るため、任意の基準電圧を得るにはバッファ回路、増幅
器等が必要となる欠点があった。 〔発明の概要〕 本発明はこのような点に鑑みてなされたもので、その目
的は、任意の出力電圧を発生できる基準電圧発生回路を
提供することにある。 このような目的を達成するため本発明では、トランジス
タのペースエミッタ順方向飽和電圧に比例した電圧と、
絶対温度に比例した電圧とを加算して温度に依存しない
任意の値の定電流を作成し、この電流を任意の値の出力
抵抗に流して出力とするように構成したものである。 〔発明の実施例〕 第2図は本発明一実施例を示す回路図である。 図において、ΔVB1発生回路(7)はトランジスタ(
8)。 (9)と抵抗(to) 、 (11) 、 (12) 
、 (13)とによシ構成され、T比例定電流発生回路
(14)はトランジスタ(15)、(16)、(17)
、(1B)、(19)、(20)、(21)。 (21)とダイオード(22) 、 (23)と抵抗(
24)とにより構成され、出力回路(25)は出力端子
(4)とトランジスタ(26)と抵抗(27)と′によ
り構成されている。 次に第2図の動作について説明する。ΔVBE発生回路
(7)において、トランジスタ(8)のコレクタに流れ
る電流(Ir)は次に示す〔4〕式となる。 (但しVII8 、 VBE9はトランジスタ(8)、
(9)ノヘースエミツタ順方向飽和電圧である。) 又、■1118 t V!189はそれぞれ次に示す[
:5:l 、(6]式(但しIss 、  I89はト
ランジスタ(8) 、 (9)のペースエミッタの逆方
向飽和電流、I2はトランジスタ(9)のコレクタを流
れる電流である。) 上記〔5〕式からI2は次に示す〔7〕式となる。 次に抵抗(12)の値をR12とし、その両端子a。 b間の電圧をVabとすると、次に示す〔8〕式がなシ
たつ。 次にトランジスタ(15) 、 (16)及びダイオー
ド(22) 、 (23)のエミツタ面積比を各々1:
A(但しA〉1)とし、トランジスタ(1B) 、 (
19)のコレクタ面積比を1:1とし、トランジスタ(
20)。 (21)のエミツタ面積比を2=1とすると、抵抗(2
4)の端子間に発生する電圧をV24(!Jファレンス
電圧VR)tj:次に示す
[Technical Field of the Invention] The present invention relates to a simple reference voltage generation circuit that is not affected by ambient temperature and can generate any output voltage. [Prior Art] FIG. 1 shows a conventional reference voltage generation circuit using an energy gap voltage that is not affected by ambient temperature. In the figure, (1) is a constant current (
(2) is a resistor (IRL) that generates a voltage proportional to the absolute temperature (T), (3) is a diode (D), and (4) is a T proportional constant current generating circuit that generates I L)'. The output terminal that outputs the output voltage (Vo), (5) is the voltage (vl)
). In Figure 1, when a constant current (It) proportional to the absolute temperature (T) is output from the T-proportional constant current generating circuit (1), an output voltage (Vo
) becomes equation [1]. [1] In formula, IL=10 (μA), Ro=61
[KΩ]. Is slope 2.6 × 10 (A') is set [
1] The first term of the equation. The second term becomes the following equations [2) and (3). ILRo#610 (:mV) -----・
・(:2) [2] When formula (3) is substituted into formula [1], the output voltage (vO) becomes 1224 (mV). This voltage is called an energy gap voltage and is independent of the ambient temperature. For example, when the ambient temperature rises, the voltage between both terminals of the diode (3) decreases, and the current (IL) of the T proportional constant current generating circuit (1) increases, causing the voltage between both terminals of the resistor (2) to decrease. Since the voltage increases, each voltage change cancels out and the output voltage (VO) at the output terminal does not change. This makes it possible to obtain a reference voltage that is independent of ambient temperature. However, the output voltage (V
o) is approximately twice the forward voltage of the diode (D), so there is a drawback that a buffer circuit, an amplifier, etc. are required to obtain an arbitrary reference voltage. [Summary of the Invention] The present invention has been made in view of the above points, and an object thereof is to provide a reference voltage generation circuit that can generate an arbitrary output voltage. In order to achieve such an object, the present invention provides a voltage proportional to the pace emitter forward saturation voltage of the transistor;
A constant current of an arbitrary value independent of temperature is created by adding a voltage proportional to the absolute temperature, and this current is made to flow through an output resistor of an arbitrary value as an output. [Embodiment of the Invention] FIG. 2 is a circuit diagram showing an embodiment of the present invention. In the figure, the ΔVB1 generation circuit (7) is a transistor (
8). (9) and resistance (to), (11), (12)
, (13), and the T proportional constant current generating circuit (14) includes transistors (15), (16), (17).
, (1B), (19), (20), (21). (21), diode (22), (23) and resistor (
24), and the output circuit (25) is composed of an output terminal (4), a transistor (26), a resistor (27), and '. Next, the operation shown in FIG. 2 will be explained. In the ΔVBE generation circuit (7), the current (Ir) flowing to the collector of the transistor (8) is expressed by the following equation [4]. (However, VII8 and VBE9 are transistors (8),
(9) Noise emitter forward saturation voltage. ) Also, ■1118 t V! 189 are shown below [
:5:l, Equation (6) (where Iss and I89 are the reverse saturation currents of the pace emitters of transistors (8) and (9), and I2 is the current flowing through the collector of transistors (9).) Above [5] ] From the formula, I2 becomes the following formula [7]. Next, if the value of the resistor (12) is R12, and the voltage between both terminals a and b is Vab, then the following formula [8] is obtained. Next, the emitter area ratio of transistors (15), (16) and diodes (22), (23) is set to 1:
A (where A>1), transistor (1B), (
19) with a collector area ratio of 1:1, and the transistor (
20). If the emitter area ratio of (21) is 2=1, then the resistance (2
4) The voltage generated between the terminals is V24 (!J reference voltage VR) tj: as shown below.

〔9〕式となる。[9] Formula becomes.

〔9〕式において、第1項と第2項の値を等しく設定す
れば、
In formula [9], if the values of the first term and the second term are set equal,

〔9〕式は次に示す〔10〕式となる。なお、第
2項はT以外は定数であるため絶対温度に比例する電圧
VTとなる。また、第2項の2はダイオードとトランジ
スタの順方向電圧が2段になっているためについている
ものである。□ここで、 とすると、〔10〕式の括弧内はエネルギーギャップ電
圧(1224mV)となる。上記[9)、DO)式によ
シV24は周囲温度に依存しない基準電圧となっている
〇 一例として、A = 10 、 II = IKμA〕
とするとき、
Equation [9] becomes Equation [10] shown below. Note that the second term is a voltage VT that is proportional to the absolute temperature because everything other than T is a constant. Further, the second term 2 is present because the forward voltages of the diode and transistor are in two stages. □Here, if , then the value in the parentheses of equation [10] is the energy gap voltage (1224 mV). According to the above formula [9), DO), V24 is a reference voltage that does not depend on the ambient temperature. For example, A = 10, II = IKμA]
When

〔9〕式の第1項と第2項を等しく設定す
ることから、 となる。 上記〔11〕式のようにR11//R□2#5に設定す
れば、V24’t 240(mV)が得られる。 次にトランジスタ(18) 、 (19) 、 (26
)のコレクタ面積比を等しく設定すれば、トランジスタ
(ia)。 (16)のコレクタ電流(R5)は次に示す〔12〕式
となる。 トランジスタ(26)のコレクタ電流もR5となるので
、出力電圧(VO)は(9:] 、 [12)式からと
ガる。 出力電圧V□は〔10〕式、  〔13)式の括弧の中
が同一であることから周囲温度に依存しない電圧となる
。出力電圧の大きさはR27/R24の比を任意の値に
選ぶことによ多出力電圧を自由に設定できる。 〔発明の効果〕 以上詳細に説明したように本発明では、トランジスタの
ペースエミッタ飽和電圧に比例した電圧と、絶対温度に
比例した電圧とを加算して温度に依存しない任意の値の
定電流を作成し、この電流を任意の値の抵抗に流すこと
によシ、温度に依存しない任意の値の出力電圧を得られ
るという効果がある。
[9] By setting the first term and the second term of the equation to be equal, the following is obtained. If R11//R□2#5 is set as in the above formula [11], V24't 240 (mV) can be obtained. Next, transistors (18), (19), (26
), if the collector area ratios of the transistors (ia) are set equal. The collector current (R5) in (16) is expressed by the following equation [12]. Since the collector current of the transistor (26) is also R5, the output voltage (VO) can be obtained from the equation (9:) [12]. The output voltage V□ is a voltage that does not depend on the ambient temperature because the values in the parentheses of equations [10] and [13] are the same. As for the magnitude of the output voltage, multiple output voltages can be freely set by selecting the ratio of R27/R24 to an arbitrary value. [Effects of the Invention] As explained in detail above, the present invention adds a voltage proportional to the pace emitter saturation voltage of the transistor and a voltage proportional to the absolute temperature to generate a constant current of any value independent of temperature. By creating a current and passing this current through a resistor of any value, it is possible to obtain an output voltage of any value that is independent of temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の基準電圧発生回路を示す図、第2図は本
発明の一実施例を示す回路図である。 (4)・・・・出力端子、(5)・・・・電源、(1)
・・・・ΔvBE発生回路、(8) 、 (9) 、 
(15) 、 (16) 、 (17)。 (18) 、 (19) 、 (20) 、 (21)
  ・・・・トランジスタ、(10) 、 (11) 
、 (12)、 (13)、(23) 、 (27)・
・・・抵抗、(22) 、 (23)・・・・ダイオー
ド。 代理人 葛野信− 特許庁長官殿 1.事件の表示   特願昭 58−7022号2、発
明の名称 基準電圧発生回路 3、補正をする者 代表者片山仁へ部 4、代理人 5、補正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 明細書第8頁第14行の「飽和電圧」を「順方向電圧」
と補正する。 以  上
FIG. 1 is a diagram showing a conventional reference voltage generation circuit, and FIG. 2 is a circuit diagram showing an embodiment of the present invention. (4)...Output terminal, (5)...Power supply, (1)
...ΔvBE generation circuit, (8), (9),
(15), (16), (17). (18), (19), (20), (21)
...transistor, (10), (11)
, (12), (13), (23), (27)・
...Resistance, (22), (23)...Diode. Agent Makoto Kuzuno - Commissioner of the Japan Patent Office 1. Indication of the case: Japanese Patent Application No. 58-7022 2, Name of the invention Reference voltage generation circuit 3, Representative Hitoshi Katayama of the person making the amendment 4, Agent 5, Detailed description of the invention in the specification to be amended 6. Change "saturation voltage" on page 8, line 14 of the amendment statement to "forward voltage"
and correct it. that's all

Claims (1)

【特許請求の範囲】[Claims] トランジスタのペースエミッタ順方向飽和電圧(Vng
 )に抵抗値によって設定される定数(K)を乗じた電
圧を発生する回路と、電圧(VBI XK )を入力す
るとともに、この電圧にほぼ等しく絶対温度に比例する
電圧(VT)を発生し、かつこれらの電圧を加算した電
圧(VB=VT+V!IEXK )を発生する回路と、
電圧(VR)を抵抗値によって設定される定数によって
出力電圧(VO)に変換する回路とから1    なる
ことを特徴とする基準電圧発生回路。
Transistor pace emitter forward saturation voltage (Vng
) multiplied by a constant (K) set by the resistance value, and a circuit that inputs the voltage (VBI and a circuit that generates a voltage that is the sum of these voltages (VB=VT+V!IEXK),
1. A reference voltage generation circuit comprising: a circuit that converts a voltage (VR) into an output voltage (VO) using a constant set by a resistance value.
JP58007022A 1983-01-17 1983-01-17 Reference voltage generating circuit Pending JPS59132014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58007022A JPS59132014A (en) 1983-01-17 1983-01-17 Reference voltage generating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58007022A JPS59132014A (en) 1983-01-17 1983-01-17 Reference voltage generating circuit

Publications (1)

Publication Number Publication Date
JPS59132014A true JPS59132014A (en) 1984-07-30

Family

ID=11654407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58007022A Pending JPS59132014A (en) 1983-01-17 1983-01-17 Reference voltage generating circuit

Country Status (1)

Country Link
JP (1) JPS59132014A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172320A (en) * 1984-09-18 1986-04-14 Matsushita Electric Ind Co Ltd Generating circuit of reference voltage
EP0449567A2 (en) * 1990-03-30 1991-10-02 Texas Instruments Incorporated Positive to negative voltage translator circuit and method of operation
JP2008523465A (en) * 2004-12-07 2008-07-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Reference voltage generator for providing temperature compensated output voltage

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172320A (en) * 1984-09-18 1986-04-14 Matsushita Electric Ind Co Ltd Generating circuit of reference voltage
EP0449567A2 (en) * 1990-03-30 1991-10-02 Texas Instruments Incorporated Positive to negative voltage translator circuit and method of operation
JP2008523465A (en) * 2004-12-07 2008-07-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Reference voltage generator for providing temperature compensated output voltage

Similar Documents

Publication Publication Date Title
JPS6269308A (en) Reference voltage generation circuit apparatus
US4683416A (en) Voltage regulator
KR980010682A (en) Voltage-to-current conversion circuit
JP4689126B2 (en) Electronic circuit
JPS59132014A (en) Reference voltage generating circuit
JP3347896B2 (en) Constant voltage source circuit
JPH0225561B2 (en)
US5206581A (en) Constant voltage circuit
JP2729071B2 (en) Constant current circuit
JP3129071B2 (en) Voltage controlled amplifier
JPS6297363A (en) Reference-voltage generating circuit
JPS5937852Y2 (en) constant current circuit
JP3123881B2 (en) Current comparison device
JPH0477329B2 (en)
JPS5952321A (en) Current source circuit
JPH067379Y2 (en) Reference voltage source circuit
JP3315850B2 (en) Current-voltage converter
JPS63177214A (en) Reference voltage generating circuit
JP2573279B2 (en) Current conversion circuit
JPH0828627B2 (en) Amplifier circuit
JPH0518288B2 (en)
JPS6233365Y2 (en)
JPH0716210U (en) Reference voltage source circuit
JPS62133810A (en) Multiplication circuit
JPH1131018A (en) Reference voltage generating circuit