JPS5952321A - Current source circuit - Google Patents

Current source circuit

Info

Publication number
JPS5952321A
JPS5952321A JP16252182A JP16252182A JPS5952321A JP S5952321 A JPS5952321 A JP S5952321A JP 16252182 A JP16252182 A JP 16252182A JP 16252182 A JP16252182 A JP 16252182A JP S5952321 A JPS5952321 A JP S5952321A
Authority
JP
Japan
Prior art keywords
current
current source
source
temperature coefficient
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16252182A
Other languages
Japanese (ja)
Inventor
Kazuo Takahagi
高萩 和男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16252182A priority Critical patent/JPS5952321A/en
Publication of JPS5952321A publication Critical patent/JPS5952321A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/22Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To give an optional temperature coefficient to the output current value of a current source of a semiconductor IC, by setting a proper addition ratio for the currents of a branch path corresponding to the 1st current source and a branch path corresponding to the 2nd current source. CONSTITUTION:The output current of the 1st current source 20 and that of the 2nd current source 21 are added together and applied to a current source 18 and then undergoes current mirror to the output current to be supplied to a branch path 26 within the source 18. A branch path 27 is equal to an output terminal of a current mirror circuit which is similar to the path 26 to be supplied to another circuit part. The current of a branch path 24 corresponding to the source 20 having a positive temperature coefficient is set larger than that of a branch path 25 corresponding to the source 21 having a negative temperature coefficient. In this case, the temperature coefficient is positive for the output current to be supplied to paths 26 and 27. On the contrary, said temperature coefficient is negative when the current of the path 24 is set less than that of the path 25.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体集積回路に用いる電流源回路に関し、特
に電流源の出力電流値に任意の湿度係数を与えることを
可能とした電流源回路に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a current source circuit used in a semiconductor integrated circuit, and more particularly to a current source circuit that can give an arbitrary humidity coefficient to the output current value of the current source.

従来例の構成とその問題点 半導体集積回路に用いる電流源回路の代表的従来例を第
1図に示す。
1. Structure of a conventional example and its problems FIG. 1 shows a typical conventional example of a current source circuit used in a semiconductor integrated circuit.

第1図において、1はトランジスタ、2はダイオード列
、3,4は抵抗、5はコレクタ端子、6゜7は電源の両
端子である。トランジスタ1のコレクタ端子已に流入す
る電流値Ic+は、トランジスタのhyxが十分大きい
ものとして、ダイオード列2によって定まるトランジス
タ1のエミッタ電圧値Vx1.(= Wax (n−1
))とエミッタニ接続すレ7’c抵抗3の抵抗値R5よ
り定まり。
In FIG. 1, 1 is a transistor, 2 is a diode array, 3 and 4 are resistors, 5 is a collector terminal, and 6°7 are both terminals of a power supply. The current value Ic+ flowing into the collector terminal of the transistor 1 is determined by the emitter voltage value Vx1. (= Wax (n-1
)) and the resistance value R5 of the emitter connection thread 7'c resistor 3.

Ic1= Vx1/R1I= VBx(n−1)/R3
・−−−−−−−−■となる。ここで、 Waxはトラ
ンジスタ1のベーク・エミッタ間電位であり、まだ、ダ
イオード列2中のn個のダイオードの順方向電圧でもあ
る。
Ic1= Vx1/R1I= VBx(n-1)/R3
・-------■ becomes. Here, Wax is the bake-emitter potential of transistor 1, and is also the forward voltage of n diodes in diode string 2.

かかる回路において、ダイオード列2のダイオード電圧
は負の湿度係数を有し、温度の上昇とともにダイオード
電圧は減少する。一方、抵抗3の抵3  、、、、。
In such a circuit, the diode voltage of the diode string 2 has a negative humidity coefficient, and as the temperature increases, the diode voltage decreases. On the other hand, resistor 3 of resistor 3...

抗値は正の湿度係数を有し、湿度の上昇とともに抵抗値
は増加する。したがって、■式よりわかるように電流源
の電流値工C1はほぼ一定の負の温度特性をもって温度
」二昇とともに減少することになる。
The resistance value has a positive humidity coefficient, and the resistance value increases with increasing humidity. Therefore, as can be seen from equation (2), the current value C1 of the current source has a nearly constant negative temperature characteristic and decreases as the temperature rises.

一般に、半導体素子は湿度変化により特性が大きく変化
するので、半導体素子を用いた回路では温度補償を行う
必要がある。
In general, the characteristics of semiconductor elements change significantly due to changes in humidity, so it is necessary to perform temperature compensation in circuits using semiconductor elements.

使用する目的、用途によっては、それぞれの回路に応じ
た温度係数を要求されるが、第1図に示した電流源では
定まった湿度係数しか得られないため、所望する温度係
数が得られない不都合が存在する。
Depending on the purpose and application, a temperature coefficient suitable for each circuit is required, but since the current source shown in Figure 1 can only obtain a fixed humidity coefficient, it is inconvenient that the desired temperature coefficient cannot be obtained. exists.

この問題に対し、電流源の電流値の湿度係数を制御する
手段として第1図のダイオード列2間の電圧を第2図に
示したバンドギャップ型電圧源回路の端子17と端子1
6間の出力電圧により得、この出力電圧の温度係数が、
バンドギャップ型電圧源回路のバイアス条件によって変
化することを利用し、電流源の出力電流の温度係数を変
えられるようにしたものがある。
To solve this problem, as a means to control the humidity coefficient of the current value of the current source, the voltage between the diode array 2 in FIG.
6, and the temperature coefficient of this output voltage is
There is a device that makes use of the fact that the bandgap voltage source circuit changes depending on the bias conditions to change the temperature coefficient of the output current of the current source.

しかしながら、かかるバンドギャップ型電圧源を用いた
電流源においては、電流源の電流値の温度係数を所望の
値に選ぶには、バンドギャップ型電圧源回路のバイアス
値を特定の値にせねば力らず回路設計」二の制約が多く
、さらにバンドギャップ型電圧源の出力値の温度係数は
湿度により変化するため所望の温度係数を得られる温度
範囲が限られてしまう問題があった。尚、第2図におい
て、8.9.12は抵抗、10,11.13はトランジ
スタ、14は定電流源、15〜17はそれぞれ正側電源
端子、負側電源端子、出力端子である。
However, in a current source using such a bandgap voltage source, in order to select a desired value for the temperature coefficient of the current value of the current source, it is necessary to set the bias value of the bandgap voltage source circuit to a specific value. There are many restrictions on circuit design, and the temperature coefficient of the output value of the bandgap voltage source changes depending on humidity, which limits the temperature range in which a desired temperature coefficient can be obtained. In FIG. 2, 8, 9, and 12 are resistors, 10, 11, and 13 are transistors, 14 is a constant current source, and 15 to 17 are a positive power terminal, a negative power terminal, and an output terminal, respectively.

発明の目的 発明の構成 本発明は、電流値が正の温度係数を有する第1の電流源
と同負の湿度係数を有する第2の電流源との両電流を加
算受給する第1のトランジスタおよび前記第1のトラン
ジスタに電流ミラー結合さ57・ ・ れた第2の1−ランジヌタをそなえた電流源回路であり
、本発明によれば第1の電流源と第2の電流源とで互い
の電流値を任意に違えて制御することにより、両型流値
を加算して得られる電流に任意の温度特性をもつ電流源
回路が実現できる。
Object of the Invention Constitution of the Invention The present invention provides a first transistor whose current value receives and adds currents from a first current source having a positive temperature coefficient and a second current source having the same negative humidity coefficient; A current source circuit is provided with a second 1-range nut coupled to the first transistor by a current mirror, and according to the present invention, the first current source and the second current source are connected to each other. By controlling the current value to be arbitrarily different, it is possible to realize a current source circuit in which the current obtained by adding the current values of both types has an arbitrary temperature characteristic.

実施例の説明 第3図は本発明の一実施例を示したブロック図であり、
第3図において、18は電流源、19は前記電流源18
より発生し枝路26を通る電流によって駆動される電圧
源、2oは前記電圧源19より発生し枝路22を通して
印加され、電圧によって駆動され出力枝路24の出力電
流が正の温度係数を有する第1の電流源、21は前記電
圧源19より発生し枝路23を通し印加される電圧によ
り駆動され、出力枝路25の出力電流が負の温度係数を
有する第2の電流源である。
DESCRIPTION OF EMBODIMENTS FIG. 3 is a block diagram showing an embodiment of the present invention.
In FIG. 3, 18 is a current source, and 19 is the current source 18.
A voltage source 2o is generated by said voltage source 19 and is applied through branch 22 and is driven by a voltage whose output current in output branch 24 has a positive temperature coefficient. The first current source, 21, is a second current source driven by a voltage generated by the voltage source 19 and applied through the branch 23, the output current of the output branch 25 having a negative temperature coefficient.

前記第1の電流源2oの出力電流と第2の電流源21の
出力電流は加え合わされ電流源18に加えられ、電流源
18内で枝路26への出力電流へと電流ミラーされる。
The output currents of the first current source 2o and the second current source 21 are summed and applied to the current source 18, where they are current-mirrored to an output current to the branch 26.

枝路27は他の回路部へ供給61・ 、・ される枝路26と同様な電流ミラー回路の出力端子であ
る。かかる回路において、正の温度係数を有する第1の
電流源2oに相当する枝路24の電流を、負の温度係数
を有する第2の電流源21に相当する枝路25の電流よ
り多くすれば枝路26及び枝路27への出力電流の温度
係数は正となり、逆に枝路24の電流を枝路25の電流
より少くすれば枝路26及び枝路27への出力電流の温
度係数は負となる。
Branch 27 is the output terminal of a current mirror circuit similar to branch 26 which is supplied to other circuit sections 61. In such a circuit, if the current in the branch 24 corresponding to the first current source 2o having a positive temperature coefficient is made larger than the current in the branch 25 corresponding to the second current source 21 having a negative temperature coefficient, The temperature coefficient of the output current to the branches 26 and 27 is positive; conversely, if the current in the branch 24 is made smaller than the current in the branch 25, the temperature coefficient of the output current to the branches 26 and 27 becomes becomes negative.

さらに、枝路24の電流と枝路25の電流を適切な比率
に定めることにより湿度係数を零とすることも可能であ
る。
Furthermore, it is also possible to make the humidity coefficient zero by setting the current in the branch 24 and the current in the branch 25 at an appropriate ratio.

以上述べたように、本方法を用いれば、枝路24の電流
と枝路25の電流の加算比率を適当に定めることにより
任意の温度係数を持つ電流源回路を得ることができる。
As described above, by using this method, a current source circuit having an arbitrary temperature coefficient can be obtained by appropriately determining the addition ratio of the current in the branch 24 and the current in the branch 25.

第4図は本発明の具体的な一実施例である。同図におい
て、28.29.36は第3図における電流源18を構
成する各トランジスタであり、トランジスタ29のエミ
ッタ’tL流ハ)ランジスタ28゜7 /−・ 36のエミッタ電流へそれぞれ電流ミラーされる。
FIG. 4 shows a specific embodiment of the present invention. In the figure, reference numerals 28, 29, and 36 are transistors constituting the current source 18 in FIG. Ru.

30.31は第3図における電圧源19を構成するダイ
オードであり、枝路26を通って供給される前記トラン
ジスタ28のコレクタ電流により駆動される。なお、ト
ランジスタ28のコレクタ電流ハ、トランジスタ29の
コレクタ電流とミラー比1:1で対応する。トランジス
タ32及び抵抗33は第3図の正の湿度係数を有する電
流源2゜を構成し、トランジスタ34及び抵抗36は第
3図の負の温度係数を有する電流源21を構成している
。37は正の電源端子、38は負の電源端子である。
30 and 31 are diodes constituting the voltage source 19 in FIG. 3, and are driven by the collector current of the transistor 28 supplied through the branch 26. Note that the collector current of the transistor 28 corresponds to the collector current of the transistor 29 at a mirror ratio of 1:1. Transistor 32 and resistor 33 constitute current source 2° with a positive humidity coefficient of FIG. 3, and transistor 34 and resistor 36 constitute current source 21 with negative temperature coefficient of FIG. 37 is a positive power supply terminal, and 38 is a negative power supply terminal.

以下、第4図の回路における枝路27の電流値の温度係
数についてのべる。簡単のためトランジスタのhyzは
十分大きな値であり、さらにトランジスタ28のコレク
タよりダイオード30.31へ供給される電流値IC2
Bは温度係数が零であると仮定スる。トランジスタ32
のコレクタ電流値をIC52,)ランジヌタ34のコレ
クタ電流値ヲIc54゜抵抗33の値をR33,抵抗3
5の値をR55とするとすると次に示す■、■式が成立
する。
The temperature coefficient of the current value of the branch 27 in the circuit of FIG. 4 will be described below. For simplicity, hyz of the transistor is a sufficiently large value, and furthermore, the current value IC2 supplied from the collector of the transistor 28 to the diode 30.31 is
It is assumed that B has a temperature coefficient of zero. transistor 32
The collector current value of the resistor 33 is R33, the collector current value of the lung nut 34 is Ic54,
Assuming that the value of 5 is R55, the following equations (1) and (2) hold true.

ただし、kはボルツマン定数、ρは単位電荷量。However, k is Boltzmann's constant and ρ is the unit charge.

Tは絶対湿度、 Isは飽和電流値である。抵抗33゜
35に半導体集積回路内の抵抗を用いた場合、R33、
R34は2000ppm/に程度(D 正(D 温度係
数を有し、Isは20%7に程度の負の温度係数を有し
、かつ、l028  は温度係数零と仮定しているから
■式よりIC32は正の湿度係数、0式よりIC34は
負の湿度係数を有していることがわかる。従って、工C
32とIC511の和よりなるトランジスタ29のコレ
クタ電流の値IC29は、工C32とIC54の割合を
変化させることにより正、負任意の温度係数を持たせる
ことができ、その電流ミラーによって得られた枝路27
の電流値工C36もIC29と同一の任意の温度係数を
有することができる。
T is the absolute humidity, and Is is the saturation current value. If a resistor in the semiconductor integrated circuit is used as the resistor 33°35, R33,
R34 has a temperature coefficient of about 2000 ppm/ (D positive (D), Is has a negative temperature coefficient of about 20%7, and l028 is assumed to have a temperature coefficient of zero, so from formula It can be seen that IC32 has a positive humidity coefficient and IC34 has a negative humidity coefficient from equation 0. Therefore, the engineering C
The collector current value IC29 of the transistor 29, which is the sum of C32 and IC511, can have any positive or negative temperature coefficient by changing the ratio of C32 and IC54, and the branch obtained by the current mirror Road 27
The current value circuit C36 can also have the same arbitrary temperature coefficient as IC29.

以上は前記したように簡単のだめトランジスタ91・ 
・− 28の温度係数を零として仮定したが、実際にはIC2
8もIC29を電流ミラーしたものであり、IC2Bも
湿度係数を有することになる。
The above is a simple transistor 91 as described above.
- It was assumed that the temperature coefficient of 28 was zero, but in reality IC2
8 is also a current mirror of IC29, and IC2B also has a humidity coefficient.

したがって、IC56の正確な温度係数を求めるには、
IC2B  の湿度係数も考慮した回路方程式をたてて
数値解析を行うことにより得られることはいうまでもな
い。
Therefore, to find the accurate temperature coefficient of IC56,
Needless to say, this can be obtained by formulating a circuit equation that also takes into account the humidity coefficient of IC2B and performing numerical analysis.

発明の効果 以上のように、本発明の電流源回路は半導体集積回路に
任意の温度係数を持った電流源を容易に実現できるもの
であり、半導体集積回路の動作。
Effects of the Invention As described above, the current source circuit of the present invention can easily realize a current source with an arbitrary temperature coefficient in a semiconductor integrated circuit, and can improve the operation of the semiconductor integrated circuit.

温度特性を最ものぞましい値に容易に設定することがで
き、半導体集積回路の性能を上げることが可能となる。
Temperature characteristics can be easily set to the most desirable value, making it possible to improve the performance of semiconductor integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電流源回路図、第2図はバンドギャップ
型電圧源回路図、第3図は本発明の一実施例を示すブロ
ック図、第4図は本発明の具体的一実施例の回路構成図
である。 28.29.32.34.36・・・・・・トランジス
1ol・ −・ 夕、33 、35−・・・・抵抗、18,2o121・
川・・電流源回路、19・・・・・・電圧源回路、30
.31・・・・・・ダイオード。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 第4図
Fig. 1 is a conventional current source circuit diagram, Fig. 2 is a bandgap voltage source circuit diagram, Fig. 3 is a block diagram showing an embodiment of the present invention, and Fig. 4 is a specific embodiment of the present invention. FIG. 28.29.32.34.36...Transistor 1ol--Yu, 33, 35-...Resistance, 18,2o121-
River...Current source circuit, 19...Voltage source circuit, 30
.. 31...Diode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)電流値が正の垢1度係数を有する第1の電流源と
、電流値が負の湿度係数を有する第2の電流源と、前記
第1.第2の電流源の電流を加算受給する第1のトラン
ジスタと、前記第1のトランジスタに電流ミラー結合さ
れた第2のトランジスタをそなえた電流源回路。
(1) a first current source whose current value has a positive humidity coefficient; a second current source whose current value has a negative humidity coefficient; A current source circuit comprising: a first transistor that adds and receives current from a second current source; and a second transistor that is current mirror coupled to the first transistor.
(2)第1および第2の電流源を制御するための駆動電
圧源が前記訓電流源の加算電流に対応する電流によって
駆動される特許請求の範囲第1項に記載 載の電学源回路。
(2) The electromagnetic power source circuit according to claim 1, wherein the drive voltage source for controlling the first and second current sources is driven by a current corresponding to the added current of the training current source. .
(3)駆動電圧源が第1のトランジスタに電流ミラー結
合された第3の電流源により駆動される特許請求の範囲
第2項に記載の電流源回路。
(3) The current source circuit according to claim 2, wherein the drive voltage source is driven by a third current source that is current mirror coupled to the first transistor.
JP16252182A 1982-09-17 1982-09-17 Current source circuit Pending JPS5952321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16252182A JPS5952321A (en) 1982-09-17 1982-09-17 Current source circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16252182A JPS5952321A (en) 1982-09-17 1982-09-17 Current source circuit

Publications (1)

Publication Number Publication Date
JPS5952321A true JPS5952321A (en) 1984-03-26

Family

ID=15756198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16252182A Pending JPS5952321A (en) 1982-09-17 1982-09-17 Current source circuit

Country Status (1)

Country Link
JP (1) JPS5952321A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0140677A2 (en) * 1983-10-27 1985-05-08 Fujitsu Limited Differential amplifier using a constant-current source circuit
FR2653574A1 (en) * 1989-10-20 1991-04-26 Sgs Thomson Microelectronics Current source with low temperature coefficient
US5103159A (en) * 1989-10-20 1992-04-07 Sgs-Thomson Microelectronics S.A. Current source with low temperature coefficient

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56135217A (en) * 1980-02-22 1981-10-22 Bosch Gmbh Robert Voltage source

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56135217A (en) * 1980-02-22 1981-10-22 Bosch Gmbh Robert Voltage source

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0140677A2 (en) * 1983-10-27 1985-05-08 Fujitsu Limited Differential amplifier using a constant-current source circuit
FR2653574A1 (en) * 1989-10-20 1991-04-26 Sgs Thomson Microelectronics Current source with low temperature coefficient
US5103159A (en) * 1989-10-20 1992-04-07 Sgs-Thomson Microelectronics S.A. Current source with low temperature coefficient

Similar Documents

Publication Publication Date Title
KR0136874B1 (en) Stabilized current and voltage reference sources
JP2001510609A (en) Reference voltage source with temperature compensated output reference voltage
US4683416A (en) Voltage regulator
JPH03244207A (en) Current mirror functioning as compensation of base current in combination
JPS5952321A (en) Current source circuit
KR950010131B1 (en) Voltage regulator having a precision thermal current source
JP3178716B2 (en) Maximum value output circuit, minimum value output circuit, maximum value minimum value output circuit
JPH05216550A (en) Voltage generator
EP0539136A2 (en) Voltage generating device
JPH0225561B2 (en)
JP2825396B2 (en) Current source circuit
US6356066B1 (en) Voltage reference source
JPH0518288B2 (en)
JPH05324108A (en) Constant current output circuit
JP3310033B2 (en) Constant voltage circuit
JPH036020Y2 (en)
JP2772962B2 (en) Constant voltage circuit and DC two-wire sensor using the same
JPS636888Y2 (en)
JPS6233365Y2 (en)
JPS59132014A (en) Reference voltage generating circuit
JPH067379Y2 (en) Reference voltage source circuit
JPS5938819A (en) Reference voltage generating circuit
JPS589289Y2 (en) constant current circuit
JPS63287105A (en) Current mirror circuit
JPS63236403A (en) Current source circuit