JPS59131533A - Temperature control in optical glass production - Google Patents

Temperature control in optical glass production

Info

Publication number
JPS59131533A
JPS59131533A JP473483A JP473483A JPS59131533A JP S59131533 A JPS59131533 A JP S59131533A JP 473483 A JP473483 A JP 473483A JP 473483 A JP473483 A JP 473483A JP S59131533 A JPS59131533 A JP S59131533A
Authority
JP
Japan
Prior art keywords
temperature
glass
heater
pipe
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP473483A
Other languages
Japanese (ja)
Inventor
Ryoichi Hara
亮一 原
Hiromitsu Sato
博光 佐藤
Tamotsu Kamiya
保 神谷
Isamu Kinoshita
勇 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP473483A priority Critical patent/JPS59131533A/en
Publication of JPS59131533A publication Critical patent/JPS59131533A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01807Reactant delivery systems, e.g. reactant deposition burners
    • C03B37/01815Reactant deposition burners or deposition heating means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Control Of Temperature (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE:The temperature is measured, when the glass pipe is heated with the heater which is moving forward and the heater is controlled so that the pipe temperature is kept as prescribed, whereby the temperature of the heated glass pipe is stabilized. CONSTITUTION:The gas-phase starting materials are fed from one end of the rotating glass pipe 1 and simultaneously, the heater 2 is allowed to move forward form P to P' to burn H2 and O2 fed from the pipes 6, 7 equipped with flow controllers 4, 5. At the same time, the temperature-measuring device 3 in the temperature control system Tc is allowed to move in the same direction to measure the temperature near the heated part of the pipe 1. The signals of the temperature measurement f are input through the ever-closed relay contact S1 into the temperature controller 8 and compared with the previously prescribed temperature for the pipe 1, the modification signals r are input into the level converter 9 to operate the controllers 4, 5 and adjust the feed rates of H2 and O2 to keep the calorie of the heater in the appropriate level. The signals f are input into the averaging unit 10 where the average value of the signals f is calculated from P to P' and held.

Description

【発明の詳細な説明】 本発明はMCVD法番こ1り光学系のガラス材を製敢す
る際の温度制御方法番こ関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature control method when manufacturing a glass material for an optical system using an MCVD method.

MCVD法Gこより光フアイバ用母材、イメージガイド
用母材、ロンドレンズ用母イ2など、所望の光学系ガラ
ス材を製造するとき、第1図に示す方法が一般的にとし
れている。
MCVD method G When manufacturing desired optical system glass materials such as optical fiber preforms, image guide preforms, and Rondo lens preforms 2, the method shown in FIG. 1 is generally used.

以下これにつき簡単に説明すると、第1図Gこおいて合
成された石英等からなるガラスバイブ(1)はその両端
がガラス旋盤のチャック(図示せず)により保持されて
回転自在となっており、該ガラスバイブ(1)内(こは
その一端の原料供給系から他端のJII気糸番こわたっ
て気相のガラス原料(気相のガラス成分、気相の゛ドー
プ剤、キャリアガスなと)が供給されるよう(仁なって
いる。
To briefly explain this, as shown in Fig. 1G, a glass vibrator (1) made of synthesized quartz or the like is held at both ends by chucks (not shown) of a glass lathe, making it rotatable. , inside the glass vibrator (1) (this is from the raw material supply system at one end to the JII air thread at the other end), gaseous glass raw materials (gaseous glass components, gaseous dopant, carrier gas, etc.) are ) is supplied (benevolent).

一方、酸水素炎バーナ等からなる加熱器(2)は図示し
ないトラバース機構により上記ガラスパイプ(1)の長
手方向(こ沿って往復動自在となっており、温度制御系
の温度調整器(3)も上記加熱器(2)とどもにカラス
−パイプ長手方向(こ沿って往復動自在となっている。
On the other hand, the heater (2) consisting of an oxyhydrogen flame burner or the like is able to reciprocate in the longitudinal direction of the glass pipe (1) by means of a traverse mechanism (not shown), and is connected to the temperature regulator (3) of the temperature control system. ) is also capable of reciprocating along the longitudinal direction of the crow-pipe together with the heater (2).

上記においてガラスパイプ(1)内にガラス層を堆積さ
せるとき、該パイプ(1)内には原料供六a系からS 
i C14,0eC14,02などが供給され、加熱器
(2)はその原料供給側からIJ1気側への往動時、上
記ガラスパイプ(1)全高温(こ加熱する。
When depositing the glass layer in the glass pipe (1) in the above, the pipe (1) contains S.
iC14, 0eC14, 02, etc. are supplied, and the heater (2) heats the glass pipe (1) at a high temperature when moving from the raw material supply side to the IJ1 gas side.

加熱されたガラスパイプ(1)内では上記気相ガラス原
料の熱分解が生じて白色スート(ガラス酸化物粉末)が
発生し、さらに該スートが高温の熱(こより透明ガラス
化されてガラスパイプ(1)の内周面(こイ″1着する
In the heated glass pipe (1), thermal decomposition of the vapor phase glass raw material occurs and white soot (glass oxide powder) is generated, and the soot is further turned into transparent vitrification by high temperature heat (the glass pipe (1)). 1) Inner peripheral surface (1 piece).

したがって加熱器(2)が往動するとき、ガラスパイプ
(1)内fこはガラス層が堆積されることとなり、この
際、湿度測定器(3)はガラスパイプ(1)の温度を測
定し、かつ、温度制御系を介したフィードバック制御番
こより加熱器(2〕をフン) ロー )Lrして上記熱
分解やガラス化(こ適した温度を安定させる。
Therefore, when the heater (2) moves forward, a glass layer is deposited inside the glass pipe (1), and at this time, the humidity measuring device (3) measures the temperature of the glass pipe (1). , and the feedback control system via the temperature control system stabilizes the heating device (2) at an appropriate temperature for the thermal decomposition and vitrification.

一方、加熱器(2)が復動するとき、回器(2)の燃料
供給系が遮断されたり絞られること(こなり、これ1こ
より該加熱器(2)は消火もしくは弱火状態(スナわち
ガラスパイプ+1) iこ対する非加熱状態)をとりな
がら元の位置へ復帰する。
On the other hand, when the heater (2) moves back, the fuel supply system of the heater (2) is cut off or throttled (this causes the heater (2) to be extinguished or in a low flame state (snuffle). Glass pipe + 1) Return to the original position while maintaining the non-heated state.

以下は原料ガス供給状態(こおいて加熱器(2)を往復
動させることによりガラスパイプ(1)内のガラス層厚
が増し、該ガラスパイプ(1)内1こ所定厚のガラス層
が堆積されると、同バイブ(1)は別工程の加熱処理に
よりコラプスされてガラス俸となる。
The following shows the raw material gas supply state (in which the thickness of the glass layer inside the glass pipe (1) increases by reciprocating the heater (2), and a glass layer of a predetermined thickness is deposited inside the glass pipe (1). Then, the same vibrator (1) is collapsed into a glass barrel through a heat treatment in a separate process.

ところで、上記のよう(こしてガラスパイプ(1)内に
ガラス層を堆積形成するとき、復動時の加熱器(2)は
ガラスパイプ(1)を加熱しないからそのパイプ温度は
室温付近1こまで急低下する。
By the way, as mentioned above (when forming a glass layer in the glass pipe (1) by straining, the heater (2) during double action does not heat the glass pipe (1), so the pipe temperature is around room temperature. It suddenly drops to .

もちろんこの間も温度制御系の温度測定器(3)や温度
調整器(PIまたはPID)は稼働している。
Of course, the temperature measuring device (3) and temperature regulator (PI or PID) of the temperature control system are in operation during this time as well.

このよう(こバイブ温度が低下すると、該バイブ温度と
温度設定値との偏差がきわめて大きくなり、か\る状態
では温度調整器のP1動作9こ工り偏差入力が積分され
、該温度調整器の出力が最大(飽和状態)になるため、
復動状態から往動状態にシフトする加熱器(2)は上記
温度調整器ζこより最大燃焼状態でガラスパイプ(1)
 を加熱するようになる。
In this case, when the temperature of the vibrator decreases, the deviation between the vibrator temperature and the temperature set value becomes extremely large. Since the output of is maximum (saturation state),
The heater (2), which shifts from the backward motion state to the forward motion state, is heated by the glass pipe (1) in the maximum combustion state from the temperature regulator ζ.
begins to heat up.

その結果、ガラスパイプ(1)の温度は急激に上昇して
設定温度を越えてしまうこととなり、爾後、上記温度測
定器、温度調整器を介して加熱器(2)の燃焼状態すな
わちガラスパイプ加熱温度が設定温度に整定されるとし
ても、上記バイブ温度の立ち上がりが大きいため、これ
を整定するまでに制御温度が乱高下し、その整定時間も
長くなる。
As a result, the temperature of the glass pipe (1) rises rapidly and exceeds the set temperature, and then the combustion state of the heater (2), that is, the glass pipe heating, is determined via the temperature measuring device and temperature regulator. Even if the temperature is stabilized to the set temperature, the rise in the vibrator temperature is large, so the control temperature fluctuates wildly until it is stabilized, and the settling time becomes long.

しかも加熱器(2)(こよるパイプ加熱点と71□4度
1則定器(3)【こよるバイブ温度測定点とが図示のご
とく一致していないため、温度制御上のずれがともな9
こととなり、上記の好1しくない傾向が強くあられれる
0 もちろんガラスパイプ(1)の一部(こでも加熱状況の
悪い部分が生じると、核部(こ不良が発生し、歩留まり
が低下する。
Moreover, since the pipe heating point of the heater (2) (71 □ 4 degrees 1 rule) and the temperature measurement point of the 71□4 degree 1 rule (3) (71 □ 4 degrees 1 rule) do not match as shown in the diagram, there is a discrepancy in temperature control.
Therefore, the above-mentioned unfavorable tendencies are strongly observed.Of course, if a part of the glass pipe (1) is heated poorly, defects will occur in the core part, and the yield will decrease.

第2図は上記従来例りこおけるガラスパイプ(1)の加
熱状況を示したものであり、同図で明らかなごとく、加
熱器(2)が往動するとと)こガラス/<イブ温度には
大きなオーバシュートが生している0 本発明は上記の問題点に対処すべく、この種の光学系ガ
ラス材製造法えおいて加熱器を介したガラスパイプ加熱
温度を安定させるよう〔こしたものであり、以下その具
体的方法を図示の実施例により説明する。
Figure 2 shows the heating situation of the glass pipe (1) in the conventional example above, and as is clear from the figure, when the heater (2) moves forward, the temperature of the glass A large overshoot occurs.0 In order to solve the above problems, the present invention has been developed to stabilize the heating temperature of the glass pipe via the heater in this type of optical glass manufacturing method. The specific method will be explained below with reference to illustrated embodiments.

第3図に示した本発明方法では、前述したようGこガラ
スパイプ(1)全回転状態とし、その回転している力゛
ラスバイブ(1)の一端から気相のガラス原料を供給す
るとともに該パイプ外周長手方向に沿って往復動自在な
加熱器(2)の往動時、当該加熱器(2)を介してガラ
スパイプ(1)を加熱するととによりその内部のガラス
原料をガラス化して該ガラスをガラスパイプ(1)の内
周面fこ付着させ、一方、加熱器(2)の復動時には加
熱器(2)を消火もしくは弱火の状態として一ガラスパ
イプ(1)を非加熱状態とする。
In the method of the present invention shown in FIG. 3, the glass pipe (1) is fully rotated as described above, and the glass raw material in the gas phase is supplied from one end of the rotating glass pipe (1). When the heater (2), which is reciprocally movable along the longitudinal direction of the pipe outer circumference, moves back and forth, the glass pipe (1) is heated through the heater (2), thereby vitrifying the glass raw material inside the pipe. Glass is attached to the inner circumferential surface of the glass pipe (1), and on the other hand, when the heater (2) is turned back on, the heater (2) is extinguished or set to a low flame and the glass pipe (1) is left unheated. do.

そして上記のごときガラス原料供給と加熱器往復動との
繰り返しと【こよりガラスパイプ(1)の内周面にガラ
ス層を堆積させる。
Then, a glass layer is deposited on the inner circumferential surface of the glass pipe (1) by repeating the above-described glass raw material supply and heater reciprocation.

また、往動状態にある加熱器(2)がガラスパイプ(1
)を加熱しているとき、温度制御系Tcの温度測定器(
3)、例えば赤外線放射温度計によりガラスパイプ(1
)の温度を測定し、該パイプ温度を設定温度に保持すべ
く加熱器(2)全制御するが、これ(こついてはつぎに
説明する〇 上記第3図において、加熱器(2)がP点からP′点へ
向けて往動するとき、流量調整器+41 (5)を備え
た燃料供給パイプ[6) (71を介して該加熱器(2
)にはH2,0□が供給され、これらの混合ガスが燃焼
される。
In addition, the heater (2) in forward motion is connected to the glass pipe (1).
), the temperature measuring device of the temperature control system Tc (
3), for example, a glass pipe (1
), and the heater (2) is fully controlled to maintain the pipe temperature at the set temperature. When moving forward from point P' to point P', the fuel supply pipe [6] (71) equipped with a flow regulator +41 (5)
) is supplied with H2,0□, and the mixed gas is combusted.

燃焼状態の加熱器(2)はガラスパイプ(1)全加熱し
ながら上記P′方向へ移動するが、このとき温度制御系
Tcの温度測定器(3)も同方向へ移動することとなり
、該温度測定器(3)はガラスパイプ(1)の被加熱部
近1労【こおいて同パイプ(1)の温度を測定器(3)
がガラスパイプ(1)の温度を測定しているとき、該温
度測定器(3)lこよる測定値信号fは常閉のリレー接
点Rs Hを経由して温度制御系Tcの温度調整器(8
)へ入力され、この温度調整i (8]はあらかじめ定
められているガラスパイプ(1)の設定温度と上記測定
値信号fとを電気的、電子的に比較演算し、これ(こ基
づく修正信号γをレベル変換器(9)へ入力させる。
The heater (2) in the combustion state moves in the direction P' while completely heating the glass pipe (1), but at this time, the temperature measuring device (3) of the temperature control system Tc also moves in the same direction. Place the temperature measuring device (3) near the heated part of the glass pipe (1).
When the temperature measuring device (3) is measuring the temperature of the glass pipe (1), the measured value signal f from the temperature measuring device (3) is sent to the temperature regulator (of the temperature control system Tc) via the normally closed relay contact RsH. 8
), and this temperature adjustment i (8) electrically and electronically compares and calculates the predetermined set temperature of the glass pipe (1) and the above measured value signal f, and generates a correction signal based on this. γ is input to the level converter (9).

修正信号γを受けたレベル変換器(9)はこれに基づい
て前記流量調整器(4) +5]を作動させ、これによ
り0□ガヌ、H2ガスの供給量を加減して加熱器(3)
の火力を適正状態とし、かつ、ガラスパイプ(1)の温
度を設定温度fこ保持する。
Based on the correction signal γ, the level converter (9) operates the flow rate regulator (4) +5], thereby adjusting the supply amount of the H2 gas to the heater (3). )
The heating power of the glass pipe (1) is set to an appropriate level, and the temperature of the glass pipe (1) is maintained at the set temperature f.

こうした温度測定とこれに基づく温度制御は加熱器(2
)がP′点(こ到達するまで行なわれ、その間、温度測
定器(3)による測定値信号fは温度調整器(8)側へ
入力されるが、この際、温度制御系Tcの信号平均化装
置00)にも上記測定値信号fが入力され、当該装置(
10)は加熱器(2)がP点からP′点に至るまでの間
、その測定値信号fの平均値を演算し、これを保持する
These temperature measurements and temperature control based on them are performed using heaters (2
) is carried out until the point P' is reached, during which time the measured value signal f from the temperature measuring device (3) is input to the temperature regulator (8) side, but at this time, the signal average of the temperature control system Tc The measurement value signal f is also input to the conversion device 00), and the device (
10) calculates and holds the average value of the measured value signal f while the heater (2) is moving from point P to point P'.

加熱器(2)がP′点に至るとりミントスイッチLs2
がONされ、これにより第4図の電磁リレーR2が作動
してリレー接点Rs 2 の閉成、リレー接点Rs 1
の開成が行なわれ、同時に燃料供給パイプt6) (7
)のいずれか一方または両方が図示しない供給遮断パル
プにより自動的に閉止される。
Mint switch Ls2 when heater (2) reaches point P'
is turned ON, thereby operating the electromagnetic relay R2 in FIG. 4, closing the relay contact Rs 2 and closing the relay contact Rs 1.
At the same time, the fuel supply pipe t6) (7
) are automatically closed by a supply cutoff pulp (not shown).

したがって加熱器(2)がP′点に達した後、P方向へ
復動゛するとき、該加熱器+21はガラスパイプ(1)
(こ対し非加熱状態をとるが、この復動特番こおいては
上記のごとくリレー接点Rs 1が開、リレー接点几s
2が閉となるので温度調整器(8)この上9!こ、復動
時の加熱器(2)はガラスパイプ[11を加熱しないが
、上記温度調整器(8)1こは加熱しているのと同等の
擬制信号f′が入力されるので、該温度調整器(8)は
出力飽和を来すことのないPI動作を行なうこととなり
、それ故、後述で明らかなごとく2回目以降の加熱に際
してオーバシュートは生じなくなる。
Therefore, when the heater (2) moves back in the P direction after reaching the P' point, the heater +21 moves back to the glass pipe (1).
(On the other hand, it is in a non-heating state, but in this double-acting special number, relay contact Rs 1 is open and relay contact s is open as described above.
2 is closed, so the temperature regulator (8) is 9! In this case, the heater (2) during double operation does not heat the glass pipe [11], but the temperature regulator (8) 1 is inputted with a fictitious signal f' which is equivalent to heating the glass pipe [11]. The temperature regulator (8) performs a PI operation that does not cause output saturation, and therefore, as will be clear later, no overshoot occurs during the second and subsequent heating.

上記復動状態の加熱器(2)がその後P点に達したとき
、リミットスイッチLs1がONされ、これにともなう
電磁リレーR1の作動(こよりリレー接点Rs3が閉成
されるとともにリレー接点Rsl も閉成状態となり、
さらにタイマーTが作動し始める。
When the heater (2) in the double-acting state then reaches point P, the limit switch Ls1 is turned on, and the electromagnetic relay R1 is activated (thereby, the relay contact Rs3 is closed and the relay contact Rsl is also closed. It becomes a state of formation,
Furthermore, timer T starts operating.

この時点から加熱器(2)は再度燃焼状態となってガラ
スパイプ(1)の加熱を再開し、往動し始めるが、前記
スイッチ動作においてタイマースイッチTsがONされ
ているためリレー接点R82の閉成状態は保持され、し
たがって加熱器(2〕によるバイブ加熱再開時、温度調
整器(8)(こは擬制信号r′が紺、続して入力される
こととなり、該加熱器(2)(こよるパイプ加熱温度は
、初回加熱時の平均値に保持される。
From this point on, the heater (2) enters the combustion state again, resumes heating the glass pipe (1), and begins to move forward, but since the timer switch Ts is turned on during the switch operation, the relay contact R82 is closed. Therefore, when the heater (2) resumes heating the vibrator, the virtual signal r' is input to the temperature regulator (8) (dark blue), and the heater (2) ( The pipe heating temperature is maintained at the average value at the time of initial heating.

つまりガラスバイブ(1)の低下した温度(はぼ常温)
ではなく、初回の平均加熱温度を基準とするので極端な
オーバシュー トは生じないこととなる。
In other words, the temperature of the glass vibrator (1) has decreased (about room temperature)
Since the initial average heating temperature is used as the standard instead, extreme overshoot will not occur.

その後、所定時間が経過すると、タイマーTがタイマー
スインチTsをOF F L、リレー接点R,s 2を
開成するので、温度調整器(8)への擬制信号f′はカ
ントされ、その後はリレー接点Rs )の閉成状態によ
り、温度調整器(8)昏こは測定値信号fが人力される
こととなり、加熱器(2)がP′点に達する1で、該信
号ffこ基づく前述の温度制御が行なわれる。
Thereafter, when a predetermined period of time has elapsed, the timer T turns the timer switch Ts off and opens the relay contact R, s2, so the false signal f' to the temperature regulator (8) is canted, and after that, the relay Due to the closed state of the contact Rs), the measured value signal f is manually applied to the temperature regulator (8), and when the heater (2) reaches the point P', the signal ff is based on the above-mentioned Temperature control is performed.

もちろん加熱器(2)がP′点(こ達する1での間、信
号平均化装置(10)は測定値信号「を平均化してその
平均値信号を次回の擬制信号f′ とずべく保持し、リ
ミットスイッチLs2のoNiこより同信号(/1.温
度調整器(8)−\人力させるよう(こなる。
Of course, while the heater (2) reaches point P' (1), the signal averaging device (10) averages the measured value signal and holds the average value signal as the next pseudo signal f'. , the same signal (/1. Temperature regulator (8) -\manual power is generated) from oNi of limit switch Ls2.

第5図は上記(こお・けるガラスバイブ(1)の温度制
御状態を示したものである。
FIG. 5 shows the temperature control state of the glass vibrator (1) described above.

この図で明らかなより)こ、jJ[I熱器(2)が1回
目の往動を行なうときは従来例と変らないが、2回目以
降の場合、擬制信号f′が復動時と加熱初期とfこわた
って温度調整器(8)へ人力さtl、るので、大きなオ
ーバシュートがなく、バイブ温度はほぼ一定に安定して
いる。
As is clear from this figure), jJ[I When the heating device (2) makes the first forward movement, it is the same as in the conventional example, but from the second time onwards, the false signal f' is different from the heating during the backward movement. Since the temperature regulator (8) is manually applied from the initial stage to the initial stage, there is no large overshoot, and the temperature of the vibrator remains almost constant.

なお、上記の擬制信号f′は1回目のオーバシュートf
Kも含めて平均化した値であるが、その端はガラスバイ
ブ(1)の制御温度平均値と見做せるから温度設定値(
こ近県している。
Note that the above fictitious signal f′ is the first overshoot f
This value is averaged including K, but since the edge can be regarded as the average control temperature of the glass vibrator (1), the temperature setting value (
I live in this prefecture.

さら〔ここの擬制信号f′は加熱器(2)の復動時たけ
でなく、2回目以降の各加熱開始時がらt時間(こわた
って温度調整器(8)へ入力させるようにしているが、
この際の時間tはオーバシュートの状況やこれの整定時
間を考慮して経験則により設定ず九ばよい。
Furthermore, the fictitious signal f' here is input to the temperature regulator (8) not only during the return operation of the heater (2), but also at the start of each subsequent heating for a period of time t. ,
The time t at this time may be set according to a rule of thumb in consideration of the overshoot situation and its settling time.

以上説明した通り、本発明は回転しているガラスバイブ
内1こ気相のガラス原料を供給し、このガラスバイブの
外周長手方向1こ沿って往復動自在な加熱器の往動時、
尚該加熱器を介してガラスパイプを加熱すること(こよ
りその内部のカラス原料をガラス化して該ガラスをガラ
スパイプ内周面(こ伺着させ、かつ、加熱器の復動時に
はカラスバイブを非加熱状態とし、上記ガラス原料の供
給と加熱器往復動の繰り返しと(こより、ガラスパイプ
内周面(こガラス層を堆積させる光学系ガラス利の製造
方法において、上記加熱器を往動ざぜて該加熱器により
力ラヌパイブを加熱するとき、当該加熱器とともに加熱
制御系の温度測定器を走査してガラスパイプ温度を測定
し、かつ、その測定値信号を受けた加熱制御系の温度調
整装置により加熱器を制御してガラスバイブの温度を設
定温度(仁保持し、さらに上記jliA度測定器からの
測定値信号を受けた温度制御系の信号平均化装置では、
該測定値信号を平均化してその平均値信号を擬制信号と
し、加熱器が非加熱状態になる復動時からその後の加熱
開始初期までの間、上記擬制信号を温度制御系の温度調
整装置(こ入力させて加熱器を制御することを特徴とし
ている。
As explained above, the present invention supplies a glass raw material in a vapor phase inside a rotating glass vibrator, and when a heater that can reciprocate along the lengthwise direction of the outer periphery of the glass vibrator moves back and forth,
In addition, heating the glass pipe via the heater (by vitrifying the glass raw material inside the glass pipe and causing the glass to adhere to the inner peripheral surface of the glass pipe, and disabling the glass vibrator when the heater returns) In a method for manufacturing an optical glass glass in which a glass layer is deposited on the inner circumferential surface of a glass pipe (by repeating the feeding of the glass raw material and the reciprocating movement of the heater), the heater is reciprocated. When heating the Lanupive with a heater, the temperature measuring device of the heating control system is scanned together with the heating device to measure the glass pipe temperature, and the temperature adjusting device of the heating control system that receives the measured value signal is heated. In the signal averaging device of the temperature control system, the temperature of the glass vibrator is maintained at the set temperature by controlling the temperature measuring device, and further receives the measured value signal from the above-mentioned JLIA degree measuring device.
The measured value signals are averaged and the average value signal is used as a simulated signal, and the simulated signal is used by the temperature adjustment device ( This input is used to control the heater.

したがって本発明方法の場合、1回目のガラスパイプ加
熱(!除くとして、2回目以降の加熱(こ際しては擬制
信号(こ基づく所定の制御(こより、加熱初期(こみら
れた極度のオーバシュートがなくなるとともにこれの整
定時間も短縮され、ガラスバイブ加熱長全域(こわたる
加熱温度が設定温度にはぼ等しい状態で安定することと
なる。
Therefore, in the case of the method of the present invention, the first heating of the glass pipe (excluding!), the second and subsequent heating (in this case, a predetermined control based on the artificial signal At the same time, the settling time is shortened, and the heating temperature over the entire glass vibe heating length is stabilized at approximately the same temperature as the set temperature.

もちろんこうした温度制御ができる結果、ガラス材(こ
は不良部が殆ど発生しないこととなり、高品質のものが
歩留まりよく得られる。
Of course, as a result of such temperature control, there are almost no defective parts in the glass material, and high quality products can be obtained at a high yield.

また、不測の原因によりガラスバイブ内への原料供給量
が一時的に減少する事態が生じ、これ(こより突発的な
オーバシュートが発生したとしても、擬制信号(平均値
信号)がそれ(こ応じて大きくなり、その後の加熱開始
時の温度調整出力を減じるので、オーバシュート対策が
自動的に行なえることとなる。
In addition, even if the amount of raw material supplied into the glass vibrator temporarily decreases due to an unforeseen cause, and a sudden overshoot occurs due to this, the fictitious signal (average value signal) Since the temperature adjustment output is reduced at the time of starting heating thereafter, it is possible to automatically take measures against overshoot.

【図面の簡単な説明】 第1図は従来法の銘水説明図、第2図は従来法【こおけ
る制御温度状況の説明図、第3図は本発明方法の銘水説
明図、第4図は同方法における装置要部の電気回路図、
第5図は本発明方法(こおける制御温度状況を示す説明
図である。 (1)  ・・・・・ガラスパイプ (2)  ・・・・・加熱器 (3)  ・・・・・温度測定器 t4) t5)・・・・・流量調整器 +61 t7+・・・・・燃料供給パイプ(8)  ・
・・・・温度調整器(温度調整装置の一部)(9)  
・・・・・レベル変換器(fjL度調整装置の一部)α
0) ・・・・・信号平均化装置 Tc・・・・・温度制御系 特許出願人 代理人 弁理士  井 藤   誠
[Brief explanation of the drawings] Fig. 1 is an explanatory diagram of the famous water using the conventional method, Fig. 2 is an explanatory diagram of the controlled temperature situation in the conventional method, Fig. 3 is an explanatory diagram of the famous water of the method of the present invention, The figure is an electrical circuit diagram of the main parts of the device in the same method.
Fig. 5 is an explanatory diagram showing the control temperature situation in the method of the present invention (1)...Glass pipe (2)...Heater (3)...Temperature measurement t4) t5)...Flow regulator +61 t7+...Fuel supply pipe (8) ・
...Temperature regulator (part of temperature regulating device) (9)
...Level converter (part of fjL degree adjustment device) α
0) ...Signal averaging device Tc ...Temperature control system patent applicant representative Patent attorney Makoto Ito

Claims (1)

【特許請求の範囲】[Claims] 回転しているガラスパイプ内に気相のカラス原料を供給
し、このガラスパイプの外周長手方向fこ沿って往復動
自在な加熱器の往動時、当該加熱器を介してガラスバイ
ブを加熱すること(こよりその内部のガラス原料?ガラ
ス化して該ガラスをガラスパイプ内周面に伺着させ、か
つ、加熱器の復動時にはガラツバイブを非加熱状態とし
、上記ガラス原料の供給と加熱器(1復動の繰り返しと
Gこより、ガラスパイプ内周面にカラヌ;Wを堆積させ
る光学系ガラス材の製造法にお□ので、上記加熱器を往
動させて該加熱器によりガラスバイブを加熱するとき、
当該加熱器とともに加熱制御系の温度6(u定器を走査
して加熱状態のガラスバイブ温度を測定し、かつ、その
測定値信号を受けた加熱制御系の温度調整装置に平均化
装置では該測定値信号を平均化してその平均値信号を擬
制信号とし、加熱器が非加熱状態(こなる復動時からそ
の後の加熱開始初期までの間、上記擬制信号を温度制御
系の温度調整装置(こ入力させて加熱器を制御する光学
系ガラス材製造法(こおける温度制御方法。
Gas-phase glass raw material is supplied into a rotating glass pipe, and when a heater that can reciprocate along the outer circumferential longitudinal direction of the glass pipe moves back and forth, a glass vibrator is heated through the heater. (Thus, the glass raw material inside the glass pipe is vitrified and the glass is deposited on the inner circumferential surface of the glass pipe, and when the heater returns, the glass vibrator is kept in a non-heating state, and the glass raw material is supplied and the heater (1) is heated. Due to the repeated backward movement and G, the method for manufacturing optical glass materials involves depositing Calanu; ,
The heating control system temperature 6 (U) is scanned together with the heating device to measure the temperature of the glass vibe in the heated state, and the averaging device measures the temperature of the heating control system that receives the measured value signal. The measured value signals are averaged and the average value signal is used as a dummy signal, and when the heater is in a non-heating state (from the return operation to the initial heating start period), the dummy signal is sent to the temperature adjustment device of the temperature control system ( Optical glass material manufacturing method (temperature control method in a heater) that controls the heater by inputting this temperature.
JP473483A 1983-01-14 1983-01-14 Temperature control in optical glass production Pending JPS59131533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP473483A JPS59131533A (en) 1983-01-14 1983-01-14 Temperature control in optical glass production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP473483A JPS59131533A (en) 1983-01-14 1983-01-14 Temperature control in optical glass production

Publications (1)

Publication Number Publication Date
JPS59131533A true JPS59131533A (en) 1984-07-28

Family

ID=11592129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP473483A Pending JPS59131533A (en) 1983-01-14 1983-01-14 Temperature control in optical glass production

Country Status (1)

Country Link
JP (1) JPS59131533A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1533283A2 (en) * 2003-11-20 2005-05-25 Sumitomo Electric Industries, Ltd. Apparatus and method for processing a glass tube and glass tube obtained
CN116820160A (en) * 2023-08-29 2023-09-29 绵阳光耀新材料有限责任公司 Spheroidizing machine parameter regulation and control method and system based on glass bead state monitoring

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1533283A2 (en) * 2003-11-20 2005-05-25 Sumitomo Electric Industries, Ltd. Apparatus and method for processing a glass tube and glass tube obtained
EP1533283A3 (en) * 2003-11-20 2006-04-26 Sumitomo Electric Industries, Ltd. Apparatus and method for processing a glass tube and glass tube obtained
CN100390086C (en) * 2003-11-20 2008-05-28 住友电气工业株式会社 Glass tube processing method, apparatus and glass tube
US8015845B2 (en) 2003-11-20 2011-09-13 Sumitomo Electric Industries, Ltd. Glass tube processing method
US8024945B2 (en) 2003-11-20 2011-09-27 Sumitomo Electric Industries, Ltd. Glass tube processing apparatus
CN116820160A (en) * 2023-08-29 2023-09-29 绵阳光耀新材料有限责任公司 Spheroidizing machine parameter regulation and control method and system based on glass bead state monitoring
CN116820160B (en) * 2023-08-29 2023-11-21 绵阳光耀新材料有限责任公司 Spheroidizing machine parameter regulation and control method and system based on glass bead state monitoring

Similar Documents

Publication Publication Date Title
JPH0413299B2 (en)
JPH03252388A (en) Automatic control of neck part growth of single crystal by cz method
CN103739194B (en) A kind of sintering method of preform and equipment thereof
US11230489B2 (en) Method for manufacturing porous glass fine particle body, manufacturing apparatus for porous glass fine particle body, and method for manufacturing glass preform
JPS59131533A (en) Temperature control in optical glass production
US20070271961A1 (en) Production method and device of optical fiber parent material
EP0744383B1 (en) Method for drying and sintering an optical fiber preform
JPS60122740A (en) Manufacture of soot for optical fiber
JPS593943B2 (en) Temperature control method during glass production using MCVD method
JP2007112668A (en) Method and apparatus for manufacturing glass member
JPH04240126A (en) Forming device for quartz base porous glass layer
SU1402291A1 (en) Apparatus for controlling temperature and lighting in hothouses
SU700471A1 (en) Method of operation control of electric glass-moulding oven
JP2592359B2 (en) Burner control device for forming clad members
JPH0332501Y2 (en)
JP2000128563A (en) Dehydration treatment of porous preform for optical fiber
KR100365775B1 (en) Regulating device for inner pressure of optical fiber preform
JPS63163713A (en) Temp. control method for vaporizer of liquid fuel combustion apparatus
JPH04260633A (en) Production unit for glass preform for optical fiber
JP2637831B2 (en) Hot water supply apparatus and hot water temperature control method
SU798345A1 (en) Glass-making furnace automatic control method
JPH0251436A (en) Dehydrating sintering furnace for mother material of optical glass
JP3754844B2 (en) Manufacturing method and manufacturing apparatus for optical fiber preform
JP4203731B2 (en) Manufacturing method of glass preform for optical fiber
JPS62226834A (en) Optical fiber drawing device