JP2007112668A - Method and apparatus for manufacturing glass member - Google Patents

Method and apparatus for manufacturing glass member Download PDF

Info

Publication number
JP2007112668A
JP2007112668A JP2005306454A JP2005306454A JP2007112668A JP 2007112668 A JP2007112668 A JP 2007112668A JP 2005306454 A JP2005306454 A JP 2005306454A JP 2005306454 A JP2005306454 A JP 2005306454A JP 2007112668 A JP2007112668 A JP 2007112668A
Authority
JP
Japan
Prior art keywords
glass tube
outer diameter
internal pressure
glass
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005306454A
Other languages
Japanese (ja)
Inventor
Taiichiro Yamashita
泰一郎 山下
Tetsuya Nakanishi
哲也 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005306454A priority Critical patent/JP2007112668A/en
Publication of JP2007112668A publication Critical patent/JP2007112668A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/018Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
    • C03B37/01861Means for changing or stabilising the diameter or form of tubes or rods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus for manufacturing a glass member by which the outside diameter of a glass tube is stabilized over the whole length. <P>SOLUTION: In a process for letting a gas 4 for controlling the inner pressure flow in, a pressure control CP for adjusting the flow rate FQ of the gas 4 for controlling the inner pressure so that the inner pressure P<SB>in</SB>of the glass tube becomes the reference inner pressure set value P<SB>in</SB><SP>*</SP>is carried out in the end part regions 21, 22 of the glass tube 2, an outer diameter control CD for adjusting the flow rate of the gas 4 for controlling the inner pressure so that the outer diameter D of the glass tube becomes the reference outer diameter set value D<SP>*</SP>is carried out in the intermediate region 23 of the glass tube 2. The pressure control CP and the diameter control CD are carried out so that the flow rate of the gas 4 for controlling the inner pressure is not changed in an instant when the pressure control CP and the outer diameter control CD are switched to and from each other. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ガラス管の内面にガラス微粒子層またはガラス層を形成するに際し、ガラス管の外径を全長にわたり安定させることができるガラス部材の製造方法および製造装置に関する。   The present invention relates to a method and an apparatus for manufacturing a glass member that can stabilize the outer diameter of a glass tube over its entire length when forming a glass fine particle layer or a glass layer on the inner surface of the glass tube.

管形状のガラス部材、たとえば光ファイバ母材の製造方法として、内付けCVD(MCVD:Modified Chemical Vapor Deposition)法によりガラス管内面にガラス層を形成する技術が知られている(たとえば、特許文献1等参照)。   As a method for manufacturing a tube-shaped glass member, for example, an optical fiber preform, a technique is known in which a glass layer is formed on the inner surface of a glass tube by an internal CVD (MCVD: Modified Chemical Vapor Deposition) method (for example, Patent Document 1). Etc.).

図5に示すように、この種のガラス管内面にガラス層を形成する装置9では、ガラス管91をダミー管921,922を介してガラス管旋盤93(ガラス管保持部931,932)に取り付け、これらの一体管の一方端側(上流側)から他方端側(下流側)に、ガラス原料含有ガス供給装置90からガラス原料含有ガス941を流しつつ、熱源95をガラス管91に沿って初期位置aからトラバースターン位置bまで相対的に移動させてガラス管91を加熱し、その内面にガラス微粒子層(たとえば、エルビウム添加光ファイバ:EDFを作る場合)またはガラス層96を形成する。ガラス原料含有ガス941が流されるガラス管には製品として有効な部分と有効でない部分がある。図5では、ガラス管91が製品として有効な部分(通常、ガラス微粒子層またはガラス層96が長さ方向に均一に形成される部分)であり、ダミー管921,922が有効でない部分である。   As shown in FIG. 5, in this type of apparatus 9 for forming a glass layer on the inner surface of a glass tube, the glass tube 91 is attached to a glass tube lathe 93 (glass tube holding portions 931 and 932) via dummy tubes 921 and 922. In addition, while the glass material-containing gas 941 is allowed to flow from the glass material-containing gas supply device 90 from one end side (upstream side) to the other end side (downstream side) of these integrated tubes, the heat source 95 is initially set along the glass tube 91. The glass tube 91 is heated by relatively moving from the position a to the traverse turn position b, and a glass fine particle layer (for example, when making an erbium-doped optical fiber: EDF) or a glass layer 96 is formed on the inner surface thereof. The glass tube in which the glass raw material-containing gas 941 is flowed includes a part that is effective as a product and a part that is not effective. In FIG. 5, the glass tube 91 is a portion that is effective as a product (usually a portion in which the glass fine particle layer or the glass layer 96 is uniformly formed in the length direction), and the dummy tubes 921 and 922 are portions that are not effective.

特許文献1には、ガラス管91の内圧を調製してガラス管の外径を一定とすることが開示されている。この場合には、ガラス管91内にはガラス原料含有ガス941の他、内圧調整用ガス供給装置98から内圧調整用ガス942が供給される。
特開2004−99342
Patent Document 1 discloses that the inner pressure of the glass tube 91 is adjusted to make the outer diameter of the glass tube constant. In this case, in addition to the glass raw material containing gas 941, the internal pressure adjusting gas 942 is supplied from the internal pressure adjusting gas supply device 98 into the glass tube 91.
JP 2004-99342 A

ガラス管91の端部領域971,972は、ガラス管の加熱を開始または終了する部分であるので、端部以外の部分(973)よりも温度が低くなる。このため、外径が変動しない。なお、図5では、端部領域971,972は、ガラス管91の端部およびダミー管921,922の各端部を含む接合部分近傍の領域である。   Since the end regions 971 and 972 of the glass tube 91 are portions where the heating of the glass tube starts or ends, the temperature is lower than the portion (973) other than the end portion. For this reason, the outer diameter does not vary. In FIG. 5, end regions 971 and 972 are regions in the vicinity of the joint portion including the end portions of the glass tube 91 and the end portions of the dummy tubes 921 and 922.

ガラス管91の端部領域971,972では、外径を検出することが不可能な場合もある。
これらの場合に、端部で外径が所定の径となっていてもその内圧は端部以外においては大きすぎることや小さすぎることがある。このため熱源の移動の開始点から少し移動した点では急に外径が大きくなる(内圧が大きすぎる場合)ことや急に外径が小さくなる(内圧が小さすぎる場合)ことがある。この場合、外径を一定にするために内圧を調整する制御が働くが、急に変動した外径が落ち着くまでにはしばらくの時間を要し、その間に外径が大きくなりすぎることと小さくなりすぎることを繰り返すハンチングが生じることがある。
In the end regions 971 and 972 of the glass tube 91, it may be impossible to detect the outer diameter.
In these cases, even if the outer diameter is a predetermined diameter at the end, the internal pressure may be too large or too small except at the end. For this reason, the outer diameter may suddenly increase (when the internal pressure is too large) or suddenly decrease (when the internal pressure is too small) at a point where the heat source has moved slightly from the starting point. In this case, control to adjust the internal pressure works to keep the outer diameter constant, but it takes some time for the suddenly changing outer diameter to settle, and the outer diameter becomes too large and small during that time. Hunting that repeats too much may occur.

また、外径を一定とするための制御が働くことでガラス管の内圧がハンチングするとガラス管内の気流が乱れてガラス原料含有ガス941が逆流してガラス微粒子層またはガラス層96がガラス管91の内面に形成されることが乱されるおそれもある。   In addition, when the inner pressure of the glass tube is hunted by controlling the outer diameter to be constant, the air flow in the glass tube is disturbed and the glass raw material-containing gas 941 flows backward, so that the glass fine particle layer or the glass layer 96 is in the glass tube 91. There is also a possibility that the formation on the inner surface may be disturbed.

本発明の目的は、ガラス管の内面にガラス微粒子層またはガラス層を形成するに際し、ガラス管の外径を全長にわたり安定させることにある。
本発明の他の目的は、ガラス管の内面にガラス微粒子層またはガラス層を形成するに際し、ガラス管の外径を全長にわたり安定させ、かつガラス管の内面のガラス微粒子層またはガラス層厚を所望の値とすることにある。
An object of the present invention is to stabilize the outer diameter of the glass tube over the entire length when forming a glass fine particle layer or a glass layer on the inner surface of the glass tube.
Another object of the present invention is to stabilize the outer diameter of the glass tube over the entire length and form the glass particle layer or glass layer thickness on the inner surface of the glass tube when forming the glass particle layer or glass layer on the inner surface of the glass tube. It is in the value of.

本発明のガラス部材の製造方法は、ガラス管にガラス原料含有ガスを流しつつ前記ガラス管に沿って相対的に移動する熱源により前記ガラス管を加熱し、前記ガラス管の内面にガラス微粒子層またはガラス層を形成する工程と、当該工程に併せて前記ガラス管に内圧調整用ガスを流入させる工程とを有するものであって、
前記内圧調整用ガスを流入させる工程において、
前記ガラス管の一方の端部領域または双方の端部領域では、前記ガラス管の内圧が基準内圧設定値になるように前記内圧調整用ガスの流量を調整する圧力制御を行い、
前記ガラス管の一方の端部領域または双方の端部領域を除く領域では、前記ガラス管の外径が基準外径設定値になるように前記内圧調整用ガスの流量を調整する外径制御を行い、かつ、
前記圧力制御および前記外径制御が、一方から他方に切り換わる瞬間に前記内圧調整用ガスの流量が変化しないように前記圧力制御および前記外径制御を行う、
ことを特徴とする
In the method for producing a glass member of the present invention, the glass tube is heated by a heat source that moves relatively along the glass tube while flowing a glass raw material-containing gas through the glass tube, and a glass fine particle layer or an inner surface of the glass tube is formed. A step of forming a glass layer, and a step of flowing an internal pressure adjusting gas into the glass tube in combination with the step,
In the step of introducing the internal pressure adjusting gas,
In one or both end regions of the glass tube, pressure control is performed to adjust the flow rate of the internal pressure adjusting gas so that the internal pressure of the glass tube becomes a reference internal pressure setting value,
In the region excluding one end region or both end regions of the glass tube, outer diameter control is performed to adjust the flow rate of the internal pressure adjusting gas so that the outer diameter of the glass tube becomes a reference outer diameter set value. Done and
The pressure control and the outer diameter control are performed so that the flow rate of the internal pressure adjusting gas does not change at the moment when the pressure control and the outer diameter control are switched from one to the other.
It is characterized by

本発明のガラス部材の製造方法では、前記圧力制御においては、前記熱源の位置の前記ガラス管の内圧の測定値と前記内圧設定値との偏差に基づき前記内圧調整用ガスの流量を調整し、前記外径制御においては、前記熱源の位置の前記ガラス管の外径の測定値と前記基準外径設定値との偏差に基づき前記内圧調整用ガスの流量を調整することができる。   In the method for producing a glass member of the present invention, in the pressure control, the flow rate of the internal pressure adjusting gas is adjusted based on a deviation between the measured value of the internal pressure of the glass tube at the position of the heat source and the set value of the internal pressure, In the outer diameter control, the flow rate of the inner pressure adjusting gas can be adjusted based on the deviation between the measured value of the outer diameter of the glass tube at the position of the heat source and the reference outer diameter setting value.

また、本発明のガラス部材の製造方法では、前記ガラス部材が光ファイバ母材である場合に、前記ガラス管の内面にガラス微粒子層またはガラス層を形成する工程を複数回行うことができる。
本発明のガラス部材の製造方法によれば、熱源がガラス管の端部に位置するときは前記熱源の位置のガラス管の外径によらず内圧を設定値とする。これにより、所定の内圧でガラス管の加熱およびガラス微粒子層またはガラス層の形成を開始することができる。したがって、ガラス管の温度が所定の温度近くとなったときに、急にガラス管の外径が変動することがない。そして内圧を所定の値としてガラス管の外径が一定となるように内圧を調整する制御に切り換える。切り換え時には流量が変化しないようにするので急な内圧の変動がない。それ以降は、内圧の調整により熱源により加熱されるガラス管の外径が一定となる。終了端では逆の動作を行い、切り換え時の流量を基準にして圧力が設定値になるように流量を下げるまたは上げる。
Moreover, in the manufacturing method of the glass member of this invention, when the said glass member is an optical fiber preform | base_material, the process of forming a glass fine particle layer or a glass layer in the inner surface of the said glass tube can be performed in multiple times.
According to the method for producing a glass member of the present invention, when the heat source is located at the end of the glass tube, the internal pressure is set as the set value regardless of the outer diameter of the glass tube at the position of the heat source. Thereby, heating of a glass tube and formation of a glass fine particle layer or a glass layer can be started with a predetermined internal pressure. Therefore, when the temperature of the glass tube becomes close to a predetermined temperature, the outer diameter of the glass tube does not change suddenly. Then, the control is switched to control for adjusting the internal pressure so that the outer diameter of the glass tube is constant with the internal pressure as a predetermined value. Since the flow rate is prevented from changing at the time of switching, there is no sudden fluctuation in internal pressure. Thereafter, the outer diameter of the glass tube heated by the heat source becomes constant by adjusting the internal pressure. At the end, the reverse operation is performed, and the flow rate is reduced or increased so that the pressure becomes a set value based on the flow rate at the time of switching.

本発明のガラス部材の製造装置は、
ガラス原料含有ガス供給装置と、熱源と、熱源相対移動装置とを備え、前記ガラス原料含有ガス供給装置により前記ガラス管にガラス原料含有ガスを流しつつ前記熱源相対移動装置により前記熱源を前記ガラス管に沿って相対的に移動させて前記ガラス管を加熱し、前記ガラス管の内面にガラス微粒子層またはガラス層を形成するものであって、
前記ガラス管内に内圧調整用ガスを供給する内圧調整用ガス供給装置と、
前記ガラス管の一方の端部領域または双方の端部領域の前記熱源の位置における前記ガラス管の内圧を測定するガラス管内圧センサと、
前記ガラス管の一方の端部領域または双方の端部領域を除く領域の前記熱源の位置における前記ガラス管の外径を測定するガラス管外径センサと、
前記熱源が前記ガラス管の一方の端部領域または双方の端部領域にあるときは前記ガラス管内圧センサによる測定値に基づき前記ガラス管の内圧が基準内圧設定値になるように、前記熱源の位置の前記ガラス管の内圧の測定値と前記基準内圧設定値との偏差に基づいて前記内圧調整用ガスの流量を調整する圧力制御を行い、
前記熱源が前記ガラス管の一方の端部領域または双方の端部領域を除く領域にあるときは前記ガラス管外径センサによる測定値に基づき前記ガラス管の外径が基準外径設定値になるように前記熱源の位置の前記ガラス管の外径の測定値と前記基準外径設定値との偏差に基づいて前記内圧調整用ガスの流量を調整する外径制御を行い、かつ、
前記圧力制御および前記外径制御が、一方から他方に切り換わる瞬間に、前記内圧調整用ガスの流量が変化しないように前記圧力制御および前記外径制御を行う、
制御装置と、
を備えたことを特徴とする。
The apparatus for producing a glass member of the present invention comprises:
A glass raw material containing gas supply device, a heat source, and a heat source relative movement device, wherein the glass raw material containing gas supply device causes the glass raw material containing gas to flow through the glass tube while the heat source relative movement device causes the heat source to move to the glass tube. The glass tube is heated by relatively moving the glass tube, and a glass fine particle layer or a glass layer is formed on the inner surface of the glass tube,
An internal pressure adjusting gas supply device for supplying an internal pressure adjusting gas into the glass tube;
A glass tube internal pressure sensor for measuring an internal pressure of the glass tube at the position of the heat source in one end region or both end regions of the glass tube;
A glass tube outer diameter sensor that measures an outer diameter of the glass tube at the position of the heat source in a region excluding one end region or both end regions of the glass tube;
When the heat source is in one end region or both end regions of the glass tube, the internal pressure of the glass tube is set to a reference internal pressure set value based on a measurement value by the glass tube internal pressure sensor. Performing pressure control to adjust the flow rate of the internal pressure adjusting gas based on the deviation between the measured value of the internal pressure of the glass tube at the position and the reference internal pressure setting value;
When the heat source is in one end region of the glass tube or in a region excluding both end regions, the outer diameter of the glass tube becomes a reference outer diameter setting value based on a measurement value by the glass tube outer diameter sensor. Performing outer diameter control to adjust the flow rate of the internal pressure adjusting gas based on the deviation between the measured value of the outer diameter of the glass tube at the position of the heat source and the reference outer diameter setting value, and
The pressure control and the outer diameter control are performed so that the flow rate of the internal pressure adjusting gas does not change at the moment when the pressure control and the outer diameter control are switched from one to the other.
A control device;
It is provided with.

本発明のガラス部材の製造装置では、前記制御装置は、前記圧力制御においては、前記熱源の位置の前記ガラス管の内圧の測定値と前記内圧設定値との偏差に基づき前記内圧調整用ガス流量を調整し、前記外径制御においては、前記熱源の位置の前記ガラス管の外径の測定値と前記基準外径設定値との偏差に基づき前記内圧調整用ガス流量を調整することができる。
また、本発明のガラス部材の製造装置では、前記ガラス部材が光ファイバ母材である場合に、前記ガラス管の内面にガラス微粒子層またはガラス層を形成する工程を複数回行うことができる。
In the glass member manufacturing apparatus of the present invention, the control device, in the pressure control, uses the internal pressure adjusting gas flow rate based on a deviation between the measured value of the internal pressure of the glass tube at the position of the heat source and the set value of the internal pressure. In the outer diameter control, the inner pressure adjusting gas flow rate can be adjusted based on the deviation between the measured value of the outer diameter of the glass tube at the position of the heat source and the reference outer diameter setting value.
Moreover, in the manufacturing apparatus of the glass member of this invention, when the said glass member is an optical fiber preform | base_material, the process of forming a glass fine particle layer or a glass layer in the inner surface of the said glass tube can be performed in multiple times.

本発明では、ガラス管の内面にガラス微粒子層またはガラス層を形成するに際し、ガラス管の端部領域では内圧測定値に基づく圧力制御を行い、ガラス管の端部領域を除く領域(中間領域)では外径測定値に基づく外径制御を行い、かつ圧力制御CPと外径制御CDとの切り換えの瞬間に、内圧調整用ガスの流量が急激に変化しないような制御を行う。これにより、ガラス管の内圧が急激に変化することはなく(したがって、ガラス原料含有ガスの定常的な流れが維持される)、ガラス管の外径を全長にわたり安定させることができる。
また、ガラス管の内圧も安定し、ガラス原料含有ガスの逆流もなく、ガラス微粒子層またはガラス層の形成が乱れるといった問題も生じない。
In the present invention, when the glass fine particle layer or the glass layer is formed on the inner surface of the glass tube, the end region of the glass tube performs pressure control based on the measured internal pressure, and the region excluding the end region of the glass tube (intermediate region) Then, the outside diameter control based on the outside diameter measurement value is performed, and at the moment of switching between the pressure control CP and the outside diameter control CD, control is performed so that the flow rate of the internal pressure adjusting gas does not change suddenly. Thereby, the internal pressure of the glass tube does not change abruptly (therefore, a steady flow of the glass raw material-containing gas is maintained), and the outer diameter of the glass tube can be stabilized over the entire length.
Further, the internal pressure of the glass tube is stable, there is no back flow of the glass raw material-containing gas, and there is no problem that the formation of the glass fine particle layer or the glass layer is disturbed.

以下、本発明の一実施形態を、ガラス部材をMCVD法により製造する場合を例に説明する。なお、各図における各構成要素の寸法・形状等は実際のものと異なる。   Hereinafter, an embodiment of the present invention will be described by taking a case where a glass member is manufactured by an MCVD method as an example. In addition, the dimension, shape, etc. of each component in each drawing are different from actual ones.

以下の実施形態では、ガラス部材は光ファイバ母材であり、後述するようにガラス管の内面にガラス微粒子層またはガラス層を形成する工程が複数回行われる。   In the following embodiments, the glass member is an optical fiber preform, and a step of forming a glass fine particle layer or a glass layer on the inner surface of the glass tube is performed a plurality of times as will be described later.

図1は本発明のガラス部材の製造装置1を示す説明図である。図1において、製造装置1は、ガラス原料含有ガス供給装置11と、ガラス管旋盤12(ガラス管保持部121,122)と、熱源13と、熱源相対移動装置14と、内圧調整用ガス供給装置15と、ガラス管内圧センサ16(161,162)と、ガラス管外径センサ17と、制御装置18とを備えている。   FIG. 1 is an explanatory view showing a glass member manufacturing apparatus 1 according to the present invention. In FIG. 1, a manufacturing apparatus 1 includes a glass raw material containing gas supply device 11, a glass tube lathe 12 (glass tube holding portions 121 and 122), a heat source 13, a heat source relative movement device 14, and an internal pressure adjusting gas supply device. 15, a glass tube internal pressure sensor 16 (161, 162), a glass tube outer diameter sensor 17, and a control device 18.

ガラス管旋盤12には、ガラス管保持部121,122により、両端にダミー管201,202が取り付けられたガラス管2が保持されている。   The glass tube lathe 12 holds the glass tube 2 with the dummy tubes 201 and 202 attached to both ends by the glass tube holding portions 121 and 122.

熱源13は、酸水素バーナ、プラズマバーナ、高周波ヒータ、熱線ヒータ等である。ガラス管2にはガラス原料含有ガス3が流され、熱源13は熱源移動装置14によりガラス管2に沿って相対的に移動し、当該ガラス管2を加熱する。これにより、ガラス管2の内面にガラス微粒子層またはガラス層(31)を形成する。なお、ガラス管2の内面にガラス微粒子層またはガラス層(31)を形成する工程は、その厚みが所定値になるように複数回行われる。   The heat source 13 is an oxyhydrogen burner, a plasma burner, a high frequency heater, a hot wire heater, or the like. A glass raw material-containing gas 3 is caused to flow through the glass tube 2, and the heat source 13 is relatively moved along the glass tube 2 by the heat source moving device 14 to heat the glass tube 2. Thereby, a glass fine particle layer or a glass layer (31) is formed on the inner surface of the glass tube 2. In addition, the process of forming a glass fine particle layer or a glass layer (31) on the inner surface of the glass tube 2 is performed a plurality of times so that the thickness becomes a predetermined value.

内圧調整用ガス供給装置15は、バルブ151を有しておりバルブ開度に応じて内圧調整用ガス4をガラス管2内(図1ではガラス管保持部122)に注入することができる。   The internal pressure adjusting gas supply device 15 has a valve 151 and can inject the internal pressure adjusting gas 4 into the glass tube 2 (the glass tube holding portion 122 in FIG. 1) according to the valve opening.

ガラス管内圧センサ161,162は、ガラス管2の端部領域21,22における内圧Pin1,Pin2を測定することができる。本発明における「ガラス管の端部領域」は、図1ではガラス管2の端部領域21,22に相当するが、ガラス管2とダミー管201,202の接合部近傍(ガラス管2の一部とダミー管201,202の一部)を本発明における「ガラス管の端部領域」としてもよいし、ガラス管2を含まないダミー管201,202の一部を本発明における「ガラス管の端部領域」としてもよい。なお、両端にダミー管201,202が取り付けられていない場合には、ガラス管2の製品とされる部分(有効部E)の両側を本発明における「ガラス管の端部領域」とすることができる。 The glass tube internal pressure sensors 161 and 162 can measure the internal pressures P in1 and P in2 in the end regions 21 and 22 of the glass tube 2. The “end region of the glass tube” in the present invention corresponds to the end regions 21 and 22 of the glass tube 2 in FIG. 1, but in the vicinity of the junction between the glass tube 2 and the dummy tubes 201 and 202 (one of the glass tube 2). And a part of the dummy tubes 201 and 202) may be used as “the end region of the glass tube” in the present invention, and a part of the dummy tubes 201 and 202 not including the glass tube 2 may be “glass tube It may be an “end region”. In addition, when the dummy tubes 201 and 202 are not attached to both ends, both sides of the portion (effective portion E) to be the product of the glass tube 2 may be set as “the end region of the glass tube” in the present invention. it can.

端部領域21,22の内圧をPin(x)とし、ガラス管2とダミー管201,202との全体長がLであり、ガラス管保持部121からの端部21,22の位置がxである場合において、ガラス管内圧センサ161,162の測定値がPin1,Pin2であるときは、
in(x)=Pin1+[(L−x1)/L]×(Pin2−Pin1
として求めることができる。
ガラス管外径センサ17は、ガラス管2の端部領域21,22を除く領域の熱源13の位置xにおけるガラス管2の外径D(x)を測定することができる。図1において、xはガラス管保持部121からの距離である。ガラス管外径センサ17として、具体的には撮像装置を用いた距離検出装置や、レーザ光源を用いた距離検出装置やCCDを使用することができる。撮像装置を用いた距離検出装置では、ガラス管2を撮影し、撮影画像から画像処理(たとえば、ガラス管2の熱源13を含む部分の形状認識等)によりガラス管2の太さを求めることができる。また、レーザ光源からガラス管2にレーザ光を照射し、出射光と反射光との位相差を測定することでレーザ光源距離(たとえば、結果的には、ガラス管2の中心軸とガラス管2の表面との距離)を検出することができる。
The internal pressure of the end regions 21 and 22 is P in (x), the entire length of the glass tube 2 and the dummy tubes 201 and 202 is L, and the positions of the end portions 21 and 22 from the glass tube holding part 121 are x. When the measured values of the glass tube internal pressure sensors 161 and 162 are P in1 and P in2 ,
P in (x) = P in1 + [(L−x 1 ) / L] × (P in2 −P in1 )
Can be obtained as
The glass tube outer diameter sensor 17 can measure the outer diameter D (x) of the glass tube 2 at the position x of the heat source 13 in the region excluding the end regions 21 and 22 of the glass tube 2. In FIG. 1, x is the distance from the glass tube holding part 121. Specifically, as the glass tube outer diameter sensor 17, a distance detection device using an imaging device, a distance detection device using a laser light source, or a CCD can be used. In the distance detection device using the imaging device, the glass tube 2 is photographed, and the thickness of the glass tube 2 is obtained from the photographed image by image processing (for example, shape recognition of a portion including the heat source 13 of the glass tube 2). it can. In addition, the laser light source is irradiated with laser light from the laser light source, and the phase difference between the emitted light and the reflected light is measured to thereby determine the laser light source distance (for example, the central axis of the glass tube 2 and the glass tube 2 as a result. Can be detected.

制御装置18は、熱源13がガラス管2の端部領域21,22にあるときはガラス管内圧センサ16による測定値に基づきガラス管2の内圧Pin(t)が基準内圧設定値(Pin *)になるように内圧調整用ガス4の流量FQ(FP(t)=FQ)を調整する圧力制御CPを行う。なお、熱源13の移動は、時間tと位置xとに相関があるので、流量FQは時間の関数FP(t)または距離の関数FP(x)で表される。ここでは、流量FQはFP(t)で記すものとする。 When the heat source 13 is located in the end regions 21 and 22 of the glass tube 2, the control device 18 determines that the internal pressure P in (t) of the glass tube 2 is based on the measured value by the glass tube internal pressure sensor 16 and the reference internal pressure setting value (P in * ) A pressure control CP is performed to adjust the flow rate FQ (FP (t) = FQ) of the internal pressure adjusting gas 4 so as to be. Since the movement of the heat source 13 has a correlation between the time t and the position x, the flow rate FQ is expressed by a function FP (t) of time or a function FP (x) of distance. Here, the flow rate FQ is expressed as FP (t).

また、制御装置18は、熱源13がガラス管2の端部領域21,22を除く領域(中間領域23)にあるときはガラス管外径センサ17による測定値に基づき内圧調整用ガス4の流量FQを、ガラス管2の外径D(x)が基準外径設定値(D*)になるように内圧調整用ガス4の流量FQ(FP(t)=FQ)を調整する外径制御CDを行う。なお、圧力制御CPの場合と同様、この場合にも流量FQは時間の関数FD(t)または距離の関数FD(x)で表される。ここでは、流量FQはFD(t)で記すものとする。 In addition, when the heat source 13 is in a region (intermediate region 23) excluding the end regions 21 and 22 of the glass tube 2, the control device 18 controls the flow rate of the internal pressure adjusting gas 4 based on the measured value by the glass tube outer diameter sensor 17. The outer diameter control CD for adjusting the flow rate FQ (FP (t) = FQ) of the internal pressure adjusting gas 4 so that the outer diameter D (x) of the glass tube 2 becomes the reference outer diameter setting value (D * ). I do. As in the case of the pressure control CP, the flow rate FQ is also expressed in this case as a time function FD (t) or a distance function FD (x). Here, the flow rate FQ is expressed as FD (t).

さらに、制御装置18は、圧力制御CPおよび外径制御CDが、一方から他方に切り換わる瞬間(内圧制御から外径制御CDに切り換わる瞬間t=tch1,外径制御CDから内圧制御に切り換わる瞬間t=tch2)に、内圧調整用ガス4の流量FQが変化しないように圧力制御CPおよび外径制御CDを行う(FP(tch1)=FD(tch1)、FP(tch2)=FD(tch2))。この切り換えの瞬間は、温度または移動距離によって決まる。温度が上がってガラス管が柔らかくなって制御が効く状態となった時を切り換え時とすることができる。そのために必要な時間または熱源13の移動距離を予め求め、その時間が経過したときまたは熱源13が移動したときとすることもできる。 Further, the control device 18 switches the pressure control CP and the outer diameter control CD from one to the other (the moment t = t ch1 when the inner pressure control is switched to the outer diameter control CD, and the outer diameter control CD is switched to the inner pressure control. At the moment of change t = t ch2 ), pressure control CP and outer diameter control CD are performed so that the flow rate FQ of the internal pressure adjusting gas 4 does not change (FP (t ch1 ) = FD (t ch1 ), FP (t ch2 ) = FD (t ch2 )). The instant of switching is determined by temperature or travel distance. When the temperature rises and the glass tube becomes soft and the control becomes effective, it can be set as the switching time. For that purpose, the time required or the movement distance of the heat source 13 can be obtained in advance, and the time can be assumed to have elapsed or when the heat source 13 has moved.

これにより、ガラス管4の内圧が急激に変化することはなく、したがって、ガラス原料含有ガスの定常的な流れが維持される、ガラス管の外径を全長にわたり安定させることができる。また、ガラス原料含有ガスの流れが乱れず、ガラス微粒子層またはガラス層31の形成が乱れることはない。   Thereby, the internal pressure of the glass tube 4 does not change abruptly. Therefore, the outer diameter of the glass tube in which the steady flow of the glass raw material-containing gas is maintained can be stabilized over the entire length. Further, the flow of the glass raw material-containing gas is not disturbed, and the formation of the glass fine particle layer or the glass layer 31 is not disturbed.

図2に制御装置18の具体例を示す。制御装置18は、圧力制御系181と、外径制御系182と、操作量出力部183とからなる。   FIG. 2 shows a specific example of the control device 18. The control device 18 includes a pressure control system 181, an outer diameter control system 182, and an operation amount output unit 183.

圧力制御CP系181は、差分器1811と圧力制御CPコントローラ1812と加算器1813とからなる。差分器1811は、ガラス管端部センサ16による測定値Pin(t)と基準内圧設定値(Pin *)との偏差ΔPinを圧力制御CPコントローラ1812に送出する。圧力制御CPコントローラ1812では、制御量CP(ΔPin,t)を算出して、加算器1813に送出する。加算器1813は、圧力制御CP用基準流量FPbと、制御量CP(ΔPin,t)とを加算し、これをガス流量FP(t)として操作量出力部183に送出する。 The pressure control CP system 181 includes a differencer 1811, a pressure control CP controller 1812, and an adder 1813. The differentiator 1811 sends a deviation ΔP in between the measured value P in (t) measured by the glass tube end sensor 16 and the reference internal pressure setting value (P in * ) to the pressure control CP controller 1812. The pressure control CP controller 1812 calculates a control amount CP (ΔP in , t) and sends it to the adder 1813. The adder 1813 adds the reference flow rate FPb for the pressure control CP and the control amount CP (ΔP in , t), and sends this to the operation amount output unit 183 as the gas flow rate FP (t).

一方、外径制御CD系182は、差分器1821と外径制御CDコントローラ1822と加算器1823とからなる。差分器1821は、ガラス管外径センサ17による測定値Din(t)と基準外径設定値(D*)との偏差ΔDを外径制御CDコントローラ1822に送出する。外径制御CDコントローラ1822では、制御量CD(ΔD,t)を算出して、加算器1823に送出する。加算器1823は、外径制御CD用基準流量FDbと、制御量CD(ΔD,t)とを加算し、これをガス流量FD(t)として操作量出力部183に送出する。 On the other hand, the outer diameter control CD system 182 includes a differencer 1821, an outer diameter control CD controller 1822, and an adder 1823. The differentiator 1821 sends a deviation ΔD between the measured value D in (t) measured by the glass tube outer diameter sensor 17 and the reference outer diameter setting value (D * ) to the outer diameter control CD controller 1822. The outer diameter control CD controller 1822 calculates the control amount CD (ΔD, t) and sends it to the adder 1823. The adder 1823 adds the reference flow rate FDb for outer diameter control CD and the control amount CD (ΔD, t), and sends this to the operation amount output unit 183 as the gas flow rate FD (t).

操作量出力部183は、連動スイッチ1831を備えており、加算器1813,加算器1823の何れかからのガス流量値を選択し、これを内圧調整用ガス4の流量設定値として内圧調整用ガス供給装置15に送出する。   The manipulated variable output unit 183 includes an interlocking switch 1831, selects a gas flow rate value from either the adder 1813 or the adder 1823, and uses this as the flow rate setting value of the internal pressure adjusting gas 4. It is sent to the supply device 15.

制御装置18は、熱源13がガラス管2の端部領域21から中間領域23に移行する瞬間(t=tch1)において、FP(tch1)=FD(tch1)とし、熱源13がガラス管2の中間領域23から端部領域22に移行する瞬間(t=tch2)において、FD(tch2)=FP(tch2)とする。 The controller 18 sets FP (t ch1 ) = FD (t ch1 ) at the moment (t = t ch1 ) when the heat source 13 moves from the end region 21 to the intermediate region 23 of the glass tube 2, and the heat source 13 is the glass tube. FD (t ch2 ) = FP (t ch2 ) at the moment (t = t ch2 ) of transition from the second intermediate region 23 to the end region 22.

圧力制御CPにおいて、ガラス管2の端部21,22におけるガラス管内圧Pinの測定値が内圧設定値Pin *に一致するように、内圧調整用ガス供給装置15を制御して内圧調整用ガス4の流量FQを調整する。ガラス管内圧Pinは、ガラス管内圧センサ161,162の測定値の差分から、ガラス管2の端部21,22の圧力を測定することができる。 In the pressure control CP, the internal pressure adjusting gas supply device 15 is controlled so that the measured value of the glass tube internal pressure P in at the ends 21 and 22 of the glass tube 2 coincides with the internal pressure set value P in * . The flow rate FQ of the gas 4 is adjusted. Glass pipe internal pressure P in from the difference between the measured value of the glass pipe pressure sensor 161 may measure the pressure of the end portions 21 and 22 of the glass tube 2.

また、制御装置18は、外径制御CDにおいて、熱源13の位置xのガラス管2の外径D(x)の測定値が基準外径設定値D*に一致するように、内圧調整用ガス供給装置15を制御して内圧調整用ガス4の流量FQを調整する。 Further, in the outer diameter control CD, the control device 18 adjusts the inner pressure adjusting gas so that the measured value of the outer diameter D (x) of the glass tube 2 at the position x of the heat source 13 matches the reference outer diameter setting value D *. The supply device 15 is controlled to adjust the flow rate FQ of the internal pressure adjusting gas 4.

すなわち、制御装置18は、圧力制御CPと外径制御CDとの切り換えに際し、内圧調整用ガス4の流量FQが切り換えの前と後とで変化しないように、内圧調整用ガス供給装置15を制御して、内圧調整用ガス4の流量FQを調整している。   That is, the control device 18 controls the internal pressure adjusting gas supply device 15 so that the flow rate FQ of the internal pressure adjusting gas 4 does not change before and after switching when switching between the pressure control CP and the outer diameter control CD. Thus, the flow rate FQ of the internal pressure adjusting gas 4 is adjusted.

図3(A)に、本実施形態による処理を行った場合の、圧力制御CPから外径制御CDに切り換わるときの内圧調整用ガス4の流量FQを示す。図3(A)では、圧力制御CPから外径制御CDに切り換われる時刻tch1および外径制御CDから圧力制御CPに切り換われる瞬間に内圧調整用ガス4の流量FQが変化しないような制御が行われている様子が示されている。なお、図3(B)に本実施形態による処理を行わない場合の、内圧調整用ガス4の流量FQを参考に示す。 FIG. 3A shows the flow rate FQ of the inner pressure adjusting gas 4 when the pressure control CP is switched to the outer diameter control CD when the processing according to the present embodiment is performed. In FIG. 3A, the flow rate FQ of the internal pressure adjusting gas 4 does not change at the time t ch1 when the pressure control CP is switched to the outer diameter control CD and the moment when the pressure control CP is switched to the pressure control CP. It shows how control is taking place. FIG. 3B shows the flow rate FQ of the internal pressure adjusting gas 4 when the process according to the present embodiment is not performed.

本発明のガラス部材の製造方法の実施形態を、製造装置1を用いた場合を例に、図4のフローチャートを参照して説明する。
制御が開始されると、まず制御装置18は圧力制御CPを行う(S101)。圧力制御CPでは、ガラス管2の熱源13の位置xにおける内圧Pinを測定し、ガラス管2の端部の内圧Pinの測定値に基づき前記内圧調整用ガス4の流量FQを調整する。
An embodiment of the glass member manufacturing method of the present invention will be described with reference to the flowchart of FIG.
When the control is started, the control device 18 first performs pressure control CP (S101). In the pressure control CP, measure the internal pressure P in the position x of the glass tube 2 of the heat source 13, to adjust the flow rate FQ of the pressure regulating gas 4 based on the measured value of the internal pressure P in the end of the glass tube 2.

すなわち、圧力制御CPにおいては、熱源13の位置x(すなわち、基準時刻からの経過時間t)におけるガラス管12の端部領域21におけるガラス管内圧Pinの測定値が内圧設定値Pin *に一致するように内圧調整用ガス4の流量FQ(=FP(t))の調整が行われる。具体的には、熱源13の位置x(すなわち、基準時刻からの経過時間t)における内圧Pinの測定値と内圧設定値Pin *との偏差ΔPinに基づき内圧調整用ガス4の流量FQが決定される。 That is, in the pressure control CP, the position x of the heat source 13 (i.e., the elapsed time t from the reference time) measurement of the glass pipe pressure P in the end region 21 of the glass tube 12 in the internal pressure set value P in * The flow rate FQ (= FP (t)) of the internal pressure adjusting gas 4 is adjusted so as to match. Specifically, the flow rate FQ of the internal pressure adjusting gas 4 based on the deviation ΔP in between the measured value of the internal pressure P in and the internal pressure set value P in * at the position x of the heat source 13 (that is, the elapsed time t from the reference time). Is determined.

熱源13が端部領域21に存在しているときには上記の制御が継続して行われる(S102の「YES」)が、熱源13が端部領域21に存在しなくなったとき(中央領域23に到達したとき:S102の「NO」))は、外径制御CDを行う(S103)。圧力制御CPから外径制御CDに切り換わる瞬間(tch1)に、内圧調整用ガス4の流量FQが変化しないように圧力制御CPおよび外径制御CDを行う(FP(tch1)=FD((tch1))。 When the heat source 13 is present in the end region 21, the above control is continuously performed ("YES" in S102), but when the heat source 13 is no longer present in the end region 21 (reach the central region 23). When “NO” in S102)), the outer diameter control CD is performed (S103). At the moment of switching from the pressure control CP to the outer diameter control CD (t ch1 ), the pressure control CP and the outer diameter control CD are performed so that the flow rate FQ of the inner pressure adjusting gas 4 does not change (FP (t ch1 ) = FD ( (T ch1 )).

外径制御CDでは、ガラス管2の熱源13の位置xにおける外径D(x)を測定し、熱源13の位置xにおけるガラス管2の外径D(x)の測定値に基づき内圧調整用ガス4の流量FQを調整する。すなわち、外径制御CDにおいては、熱源13の位置xにおけるガラス管2の外径D(x)の測定値が基準外径設定値D*に一致するように内圧調整用ガス4の流量FQ(=FD(t))の調整が行われる。具体的には、熱源13の位置x(すなわち、基準時刻からの経過時間t)における外径Dの測定値と基準外径設定値D*との偏差ΔDに基づき内圧調整用ガス4の流量FQが決定される。 In the outer diameter control CD, the outer diameter D (x) at the position x of the heat source 13 of the glass tube 2 is measured, and the inner pressure is adjusted based on the measured value of the outer diameter D (x) of the glass tube 2 at the position x of the heat source 13. The flow rate FQ of the gas 4 is adjusted. That is, in the outer diameter control CD, the flow rate FQ (internal pressure adjusting gas 4) so that the measured value of the outer diameter D (x) of the glass tube 2 at the position x of the heat source 13 matches the reference outer diameter setting value D *. = FD (t)) is adjusted. Specifically, the flow rate FQ of the internal pressure adjusting gas 4 based on the deviation ΔD between the measured value of the outer diameter D and the reference outer diameter setting value D * at the position x of the heat source 13 (that is, the elapsed time t from the reference time). Is determined.

熱源13が中間領域23に存在しているときには上記の制御が継続して行われる(S104の「YES」)が、熱源13が中間領域23に存在しなくなったとき(端部領域22に到達したとき:S104の「NO」))は、圧力制御CDを行う(S105)。外径制御CDから圧力制御CPに切り換わる瞬間(tch2)に、内圧調整用ガス4の流量FQが変化しないように圧力制御CPおよび外径制御CDを行う(FP(tch2)=FD((tch2))。 When the heat source 13 exists in the intermediate region 23, the above control is continuously performed ("YES" in S104), but when the heat source 13 no longer exists in the intermediate region 23 (the end region 22 has been reached). When: “NO” in S104)), pressure control CD is performed (S105). At the moment (t ch2 ) when switching from the outer diameter control CD to the pressure control CP, the pressure control CP and the outer diameter control CD are performed so that the flow rate FQ of the inner pressure adjusting gas 4 does not change (FP (t ch2 ) = FD ( (T ch2 )).

この後、トラバースターンを行うかが判断され、トラバースターンを行うとき(S105の「YES」)は、熱源の温度を下げるか、熱源の動作を停止して、ガラス層形成のために移動するときの速度よりも高速で開始点まで熱源を移動させる(この間、ガラス微粒子層またはガラス層は形成されない)。
この後、ステップS101に処理を戻すが、トラバースターンを行わないとき(S105の「NO」)は処理を終了する。
Thereafter, it is determined whether a traverse turn is to be performed, and when the traverse turn is to be performed (“YES” in S105), the temperature of the heat source is lowered or the operation of the heat source is stopped and moved to form a glass layer. The heat source is moved to the starting point at a speed higher than the speed of (No glass fine particle layer or glass layer is formed during this time).
Thereafter, the process is returned to step S101, but when the traverse turn is not performed (“NO” in S105), the process ends.

本発明のガラス部材の製造装置の一実施形態を示す説明図である。It is explanatory drawing which shows one Embodiment of the manufacturing apparatus of the glass member of this invention. 図1の製造装置における制御装置の具体例を示す図である。It is a figure which shows the specific example of the control apparatus in the manufacturing apparatus of FIG. (A)は本実施形態による処理を行った場合の、圧力制御から外径制御に切り換わるときの内圧調整用ガスの流量を示す図、(B)に本実施形態による処理を行わない場合の、内圧調整用ガスの流量を示す図である。(A) is the figure which shows the flow volume of the gas for internal pressure adjustment at the time of switching from pressure control to outer diameter control when the process by this embodiment is performed, (B) When the process by this embodiment is not performed It is a figure which shows the flow volume of the gas for internal pressure adjustment. 本発明のガラス部材の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the glass member of this invention. 従来のガラス部材の製造装置を示す説明図である。It is explanatory drawing which shows the manufacturing apparatus of the conventional glass member.

符号の説明Explanation of symbols

1 製造装置
11 ガラス原料含有ガス供給装置
12 ガラス管旋盤
13 熱源
14 熱源相対移動装置
15 内圧調整用ガス供給装置
16(161,162) ガラス管内圧センサ
17 ガラス管外径センサ
18 制御装置
31 ガラス微粒子層またはガラス層
21,22 端部領域
23 中間領域
121,122 ガラス管保持部
181 圧力制御系
182 外径制御系
183 操作量出力部
201,202 ダミー管
1811, 1821 差分器
1812 圧力制御CPコントローラ
1813,1823 加算器
1822 外径制御CDコントローラ







DESCRIPTION OF SYMBOLS 1 Manufacturing apparatus 11 Glass raw material containing gas supply apparatus 12 Glass tube lathe 13 Heat source 14 Heat source relative movement apparatus 15 Internal pressure adjustment gas supply apparatus 16 (161, 162) Glass tube internal pressure sensor 17 Glass tube outer diameter sensor 18 Control apparatus 31 Glass particulate Layer or glass layer 21, 22 end region 23 intermediate region 121, 122 glass tube holding unit 181 pressure control system 182 outer diameter control system 183 manipulated variable output unit 201, 202 dummy tube 1811, 1821 differentiator 1812 pressure control CP controller 1813 , 1823 Adder 1822 Outer diameter control CD controller







Claims (2)

ガラス管にガラス原料含有ガスを流しつつ前記ガラス管に沿って相対的に移動する熱源により前記ガラス管を加熱し、前記ガラス管の内面にガラス微粒子層またはガラス層を形成する工程と、当該工程に併せて前記ガラス管に内圧調整用ガスを流入させる工程とを有するガラス部材の製造方法であって、
前記内圧調整用ガスを流入させる工程において、
前記ガラス管の一方の端部領域または双方の端部領域では、前記ガラス管の内圧が基準内圧設定値になるように前記内圧調整用ガスの流量を調整する圧力制御を行い、
前記ガラス管の一方の端部領域または双方の端部領域を除く領域では、前記ガラス管の外径が基準外径設定値になるように前記内圧調整用ガスの流量を調整する外径制御を行い、かつ、
前記圧力制御および前記外径制御が、一方から他方に切り換わる瞬間に前記内圧調整用ガスの流量が変化しないように前記圧力制御および前記外径制御を行う、
ことを特徴とするガラス部材の製造方法。
A step of heating the glass tube with a heat source that moves relatively along the glass tube while flowing a glass raw material-containing gas through the glass tube, and forming a glass fine particle layer or a glass layer on the inner surface of the glass tube; In addition to the step of causing the internal pressure adjusting gas to flow into the glass tube,
In the step of introducing the internal pressure adjusting gas,
In one or both end regions of the glass tube, pressure control is performed to adjust the flow rate of the internal pressure adjusting gas so that the internal pressure of the glass tube becomes a reference internal pressure setting value,
In the region excluding one end region or both end regions of the glass tube, outer diameter control is performed to adjust the flow rate of the internal pressure adjusting gas so that the outer diameter of the glass tube becomes a reference outer diameter set value. Done and
The pressure control and the outer diameter control are performed so that the flow rate of the internal pressure adjusting gas does not change at the moment when the pressure control and the outer diameter control are switched from one to the other.
The manufacturing method of the glass member characterized by the above-mentioned.
ガラス原料含有ガス供給装置と、熱源と、熱源相対移動装置とを備え、前記ガラス原料含有ガス供給装置により前記ガラス管にガラス原料含有ガスを流しつつ前記熱源相対移動装置により前記熱源を前記ガラス管に沿って相対的に移動させて前記ガラス管を加熱し、前記ガラス管の内面にガラス微粒子層またはガラス層を形成するガラス部材の製造装置であって、
前記ガラス管内に内圧調整用ガスを供給する内圧調整用ガス供給装置と、
前記ガラス管の一方の端部領域または双方の端部領域の前記熱源の位置における前記ガラス管の内圧を測定するガラス管内圧センサと、
前記ガラス管の一方の端部領域または双方の端部領域を除く領域の前記熱源の位置における前記ガラス管の外径を測定するガラス管外径センサと、
前記熱源が前記ガラス管の一方の端部領域または双方の端部領域にあるときは前記ガラス管内圧センサによる測定値に基づき前記ガラス管の内圧が基準内圧設定値になるように、前記熱源の位置の前記ガラス管の内圧の測定値と前記基準内圧設定値との偏差に基づいて前記内圧調整用ガスの流量を調整する圧力制御を行い、
前記熱源が前記ガラス管の一方の端部領域または双方の端部領域を除く領域にあるときは前記ガラス管外径センサによる測定値に基づき前記ガラス管の外径が基準外径設定値になるように前記熱源の位置の前記ガラス管の外径の測定値と前記基準外径設定値との偏差に基づいて前記内圧調整用ガスの流量を調整する外径制御を行い、かつ、
前記圧力制御および前記外径制御が、一方から他方に切り換わる瞬間に、前記内圧調整用ガスの流量が変化しないように前記圧力制御および前記外径制御を行う、
制御装置と、
を備えたことを特徴とするガラス部材の製造装置。

A glass raw material containing gas supply device, a heat source, and a heat source relative movement device, wherein the glass raw material containing gas supply device causes the glass raw material containing gas to flow through the glass tube while the heat source relative movement device causes the heat source to move to the glass tube. A glass member manufacturing apparatus that heats the glass tube by relatively moving the glass tube to form a glass fine particle layer or a glass layer on the inner surface of the glass tube,
An internal pressure adjusting gas supply device for supplying an internal pressure adjusting gas into the glass tube;
A glass tube internal pressure sensor for measuring an internal pressure of the glass tube at the position of the heat source in one end region or both end regions of the glass tube;
A glass tube outer diameter sensor that measures an outer diameter of the glass tube at the position of the heat source in a region excluding one end region or both end regions of the glass tube;
When the heat source is in one end region or both end regions of the glass tube, the internal pressure of the glass tube is set to a reference internal pressure set value based on a measurement value by the glass tube internal pressure sensor. Performing pressure control to adjust the flow rate of the internal pressure adjusting gas based on the deviation between the measured value of the internal pressure of the glass tube at the position and the reference internal pressure setting value;
When the heat source is in one end region of the glass tube or in a region excluding both end regions, the outer diameter of the glass tube becomes a reference outer diameter setting value based on a measurement value by the glass tube outer diameter sensor. Performing outer diameter control to adjust the flow rate of the internal pressure adjusting gas based on the deviation between the measured value of the outer diameter of the glass tube at the position of the heat source and the reference outer diameter setting value, and
The pressure control and the outer diameter control are performed so that the flow rate of the internal pressure adjusting gas does not change at the moment when the pressure control and the outer diameter control are switched from one to the other.
A control device;
An apparatus for producing a glass member, comprising:

JP2005306454A 2005-10-20 2005-10-20 Method and apparatus for manufacturing glass member Withdrawn JP2007112668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005306454A JP2007112668A (en) 2005-10-20 2005-10-20 Method and apparatus for manufacturing glass member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005306454A JP2007112668A (en) 2005-10-20 2005-10-20 Method and apparatus for manufacturing glass member

Publications (1)

Publication Number Publication Date
JP2007112668A true JP2007112668A (en) 2007-05-10

Family

ID=38095188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005306454A Withdrawn JP2007112668A (en) 2005-10-20 2005-10-20 Method and apparatus for manufacturing glass member

Country Status (1)

Country Link
JP (1) JP2007112668A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017065967A (en) * 2015-09-30 2017-04-06 株式会社フジクラ Method for manufacturing glass and method for manufacturing optical fiber preform

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017065967A (en) * 2015-09-30 2017-04-06 株式会社フジクラ Method for manufacturing glass and method for manufacturing optical fiber preform

Similar Documents

Publication Publication Date Title
JP5959655B2 (en) Method of manufacturing cylindrical member made of glass by stretching
CN100371275C (en) Method and apparatus for fabricating an optical fiber preform in ovd process
JP4687648B2 (en) Method and apparatus for manufacturing optical fiber preform
CN110790501A (en) Sintering device and method for optical fiber preform
US20100005837A1 (en) Method of manufacturing an elongated glass body
JP5572022B2 (en) Manufacturing method of primary preform for optical fiber
JP2022153332A (en) Pipe made of silica glass and method of manufacturing the pipe
JP2007112668A (en) Method and apparatus for manufacturing glass member
JP2007022874A (en) Method of working glass tube
CN211141894U (en) Optical fiber perform&#39;s sintering device
KR100450928B1 (en) Apparatus and method for manufacturing optical fiber preform using modified chemical vapour deposition
JP6170958B2 (en) Optical fiber preform manufacturing method
CN108147654B (en) Apparatus for manufacturing optical fiber preform and method for manufacturing the same
KR100734449B1 (en) A method and apparatus for controlling an outside diameter of a preform bait tube during a glass layer deposition process
KR100685084B1 (en) Apparatus for measuring temperature by adjusting position according to the speed of heat source in mcvd process
JP2006219331A (en) Device for drawing optical fiber preform and method for drawing optical fiber preform
JP2004269284A (en) Method of manufacturing porous glass material and glass material less in fluctuation of outside diameter
JP2004099342A (en) Method and apparatus for manufacturing glass member
KR20090095247A (en) Apparatus and method for correcting refractive index of optical fiber preform
JP5933390B2 (en) Optical fiber preform manufacturing method
JP2005119916A (en) Method and apparatus for manufacturing glass article
JP4082326B2 (en) Method for measuring surface temperature of article to be heated, heating method using the same, and method for manufacturing optical fiber preform
JP4239595B2 (en) Optical fiber preform manufacturing method
JP2014034163A (en) Manufacturing method of a heat-shrinkable tube and manufacturing apparatus of a heat-shrinkable tube
JP2002338287A (en) Device and method for manufacturing optical fiber preform

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070319

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090106