JPS59128234A - Formation of multilayered film on surface of substrate - Google Patents

Formation of multilayered film on surface of substrate

Info

Publication number
JPS59128234A
JPS59128234A JP58002392A JP239283A JPS59128234A JP S59128234 A JPS59128234 A JP S59128234A JP 58002392 A JP58002392 A JP 58002392A JP 239283 A JP239283 A JP 239283A JP S59128234 A JPS59128234 A JP S59128234A
Authority
JP
Japan
Prior art keywords
metal
gas
substrate
gases
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58002392A
Other languages
Japanese (ja)
Inventor
Kenji Nakano
健司 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58002392A priority Critical patent/JPS59128234A/en
Publication of JPS59128234A publication Critical patent/JPS59128234A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form plural ceramic layers on a glass substrate by evaporating a metal in a vacuum vessel contg. the substrate while introducing different gases each forming ceramics by combination with the metal with the lapse of time. CONSTITUTION:A glass substrate 8 is suspended in a vessel 1 for reactive vacuum deposition by heating with electron beams, the vessel 1 is evacuated to a high degree of vacuum, and a metal 5 in a water-cooled copper hearth 4 is evaporated by heating with electrons emitted from a filament 3. At this time, a gas forming ceramic by combination with the metal 5 is introduced through a valve 6a and reacted with vapor of the metal, and the resulting ceramics is deposited on the substrate 8. The gas is then changed over to other gas, and other ceramics formed by the reaction of the gas with vapor of the metal is deposited on a layer of said ceramics. A multilayered transparent ceramic film is formed by using O2 and F as gases when the metal is Mg or Ce; O2, F, NH3 and N2 as gases when the metal is Al; O2, N2 and C2H2 as gases when the metal is Ti or Ta; and N2 and C2H2 as gases when the metal is Si.

Description

【発明の詳細な説明】 本発明は、カラス等の基板表面に多層膜を物理的方法に
よって形成づる方法に関づるものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of forming a multilayer film on the surface of a substrate such as a glass by a physical method.

従来、ガラス等の基板表面にヒラミックの多層膜を形成
させる方法として、物理的な真空蒸着法、スパッタリン
グ法およびイオンプレーテインク法が知られている。か
かる物理的方法により多層膜を形成するには、複数の原
材料物を個別的に蒸発させることを必要とする。従って
その方法による多層膜形成において、各原材わl物に適
合した個別的な蒸発条件を設定する必要があること、J
5よびその操作が繁雑であること等の問題があった。
Conventionally, physical vacuum evaporation, sputtering, and ion plate ink methods are known as methods for forming a helical multilayer film on the surface of a substrate such as glass. Forming multilayer films by such physical methods requires the separate evaporation of multiple raw materials. Therefore, in forming a multilayer film using this method, it is necessary to set individual evaporation conditions suitable for each raw material, J.
5 and its operation is complicated.

また従来の物理的方法によって形成される多層膜は、多
層膜間の密着性にtH点があった。従って該多層膜は(
幾械的淳耗に弱く、剥離され易(、また微細なりラック
も発生し易い欠点があった。
Furthermore, multilayer films formed by conventional physical methods have a tH point in the adhesion between the multilayer films. Therefore, the multilayer film (
It has the disadvantage that it is weak against mechanical abrasion and easily peels off (and also easily generates fine racks).

本発明は、従来公知の反応性物理的被膜形成方法に首目
し1、蒸発物質を変えることなく、反応ガスを変えるこ
とにより、少なくとも2種類の化合物で構成される多層
膜を基板表面に形成J−る新しい物理的多層膜形成方法
を提供りるものである。
The present invention is based on the conventionally known method for forming a reactive physical film, and forms a multilayer film composed of at least two types of compounds on the surface of a substrate by changing the reaction gas without changing the evaporation substance. This invention provides a new physical multilayer film formation method.

1tllら、本発明の基板表面に多層膜を形成する方法
は、高真空雰囲気内で゛金属を蒸発させ、蒸発した金属
と雰囲気中の気体とを反応させて、基板表面に反応して
Mlられる化合物の膜を形成する方法におい−(、雰囲
気中の反応性気体を経時的に変えることににす、基板表
面に少なくとも二種類の異なる化合物で構成され/ζ各
層から成る多層膜を形成することを特徴どするである。
The method of forming a multilayer film on the surface of a substrate according to the present invention involves evaporating metal in a high vacuum atmosphere, causing the evaporated metal to react with a gas in the atmosphere, and causing Ml to react on the substrate surface. In a method of forming a compound film, a reactive gas in the atmosphere is changed over time, and a multilayer film consisting of at least two different compounds/ζ layers is formed on the surface of a substrate. What are the characteristics?

なd3ここでいう蒸先 外とは広い意味の蒸発でありスパッタ呵嘴む。d3 Steam destination here Outside means evaporation in a broad sense, and spatter.

本発明の方法に使用する基板は、ガラス板、ガラス光学
部品、透明プラスチック板、透明グラスチック光学部品
等である。この基板は特に透明のものに限定されないが
、多層膜被覆体の目的、薄膜形成条件等によってその選
択は制限される。例え(J可視光の反射防止又は熱線の
反射増加を目的とし、比較的^温で多層膜を形成さlる
場合にはガラス板又はカラス光学部品が用いられる。
Substrates used in the method of the present invention include glass plates, glass optical components, transparent plastic plates, transparent glass optical components, and the like. This substrate is not particularly limited to a transparent substrate, but its selection is limited depending on the purpose of the multilayer film coating, thin film formation conditions, etc. For example, when forming a multilayer film at a relatively high temperature for the purpose of preventing reflection of visible light or increasing reflection of heat rays, glass plates or glass optical components are used.

本発明の方法に使用される蒸発物質である金属は、マグ
ネシウム、セリウム、えチタン、タンクル、アルミニウ
ム及びケイ素(本来は半金属であるがここにいう金属に
含める)等でd9る。<’c d3該合属に(よ二双上
の金属からなる合金も含む。また本発明の方法に使用さ
れる反応性気体は、反応条件下にJ3いて気体となるも
ので足り、酸素、フッ素、窒素、アンモニア、ノルチレ
ン、エチレン等である。本発明の方法においては、反応
性気体を経時的にかえることにより、それと蒸発さけた
金属とを反応させて多層膜を形成覆るので、該金属は、
使用される反応性気体との関係に83いて特定されるも
のである。即ち該金属は、使用される反応性気体と反応
し、反応すること(こより安定な固い化合物を生成する
ことが必要である。従って反応性気体がフッ素の場合に
は、チタン、ケイ素等の金属は使用できない。また本発
明の方法に使用される金属は1種類でiljす、反応性
気体は二双上のものを使用づるので、二双上の反応性気
体と反応し、=0上の安定な化合物を生成する金属でな
ければならない。また該金属は反応性気体と反応して生
じた化合物が透明の多層膜を、形成づるちのに1す(定
されるものではない。しかし透過光を利用した光干渉膜
の形成を目的とづる場合には、多層Ilつ)のりへてが
透明であることが望まれる。例えば金属がマグネシウム
、該気体が酸素およびフッ素の場合等である。
The metals that are evaporated substances used in the method of the present invention include magnesium, cerium, titanium, tankle, aluminum, and silicon (which is originally a metalloid but is included in the metals herein). <'c d3 The above metals include alloys consisting of two or more metals.The reactive gas used in the method of the present invention may be one that becomes a gas under the reaction conditions, including oxygen, These include fluorine, nitrogen, ammonia, nortylene, ethylene, etc. In the method of the present invention, by changing the reactive gas over time, the reactive gas is reacted with the evaporated metal to form a multilayer film, so that the metal teeth,
It is specified in relation to the reactive gas used. That is, it is necessary for the metal to react with the reactive gas used (to form a stable solid compound). Therefore, when the reactive gas is fluorine, metals such as titanium, silicon, In addition, only one type of metal is used in the method of the present invention, and since the reactive gas used is one on two pairs, it reacts with the reactive gas on two pairs, and the reactive gas on =0 is used. It must be a metal that forms stable compounds.The metal must also react with a reactive gas to form a transparent multilayer film (although this is not specified, When the purpose is to form an optical interference film using a multilayer film, it is desirable that the multilayer material is transparent.For example, when the metal is magnesium and the gases are oxygen and fluorine.

以上より使用される金属と反応性気体との組合わせは、
マグネシウム、セリウムのときは酸素、フッ素等であり
、アルミニウムのとぎは−・酸素、フッ素、アンモニア
又は窒素等であり、チタン、タンタルのときは酸素、窒
素、アレブーレン等であり、ケイ素のときは窒素、アレ
チレン等であり、他の金属においても特定の反応性気体
との組合わけ−が可能である。
From the above, the combination of metal and reactive gas used is
For magnesium and cerium, it is oxygen, fluorine, etc. For aluminum, it is oxygen, fluorine, ammonia or nitrogen, etc. For titanium and tantalum, it is oxygen, nitrogen, aleburene, etc. For silicon, it is nitrogen. , aretylene, etc., and other metals can also be combined with specific reactive gases.

;1だ本発明の方法において反応性気体を経口)的に変
える際に一方の気体の減少と反比例して他の気体を増加
さUることができる。この方法では多層股間の境界領域
形成口Nには二種類の気体が混在づ−る。これら二種類
の各々の気体と一種類の金属とが反応し、二種類の金属
化合物により境界領域が461成される。
(1) When changing the reactive gas orally in the method of the present invention, the decrease in one gas can be inversely proportional to the increase in the other gas. In this method, two types of gases coexist in the boundary region forming opening N between the multilayer crotches. Each of these two types of gas and one type of metal react, and a boundary region 461 is formed by the two types of metal compounds.

本発明の方法において二種類の反応性気体を同一反応器
内に経時的に導入することは極めて容易であり、それを
交互に金属と反応させることによりJ5膜を交互に積み
重ねることも容易かつ簡便である。しかも一種類の金属
の使用で足り、複数の金属または金属化合物を各々に適
合した個別的な条件下に蒸発させる必要がないので、多
層膜形成の操作は極めて容易となる。従って本発明の方
法によれば、多層膜を、従来の物理的り法と比べると容
易かつ簡便に形成−りることができる。
In the method of the present invention, it is extremely easy to introduce two types of reactive gases into the same reactor over time, and it is also easy and simple to stack J5 membranes alternately by reacting them with metal alternately. It is. Moreover, since it is sufficient to use one type of metal and there is no need to evaporate a plurality of metals or metal compounds under individual conditions suitable for each, the operation for forming a multilayer film becomes extremely easy. Therefore, according to the method of the present invention, a multilayer film can be formed more easily and conveniently than conventional physical methods.

また本発明によれば多層股間の境界領、域に両気体の反
応により生じた鉤止合物を混在u−シめることができる
。かかる場合多層膜は、−の化合物ヨり他の化合物に境
界線を示さないで変わるので密着性は極めて良好である
。従って、該多層膜は機械的摩耗にも強くなり、容易に
剥1’4+1されない。またそのためにより多くの多層
膜を積層することが可能となり、薄膜としての機能は茗
しく向上りる。
Further, according to the present invention, it is possible to mix the hooking compound produced by the reaction of both gases in the boundary area between the multilayer crotches. In such a case, the multilayer film has extremely good adhesion because the - compound changes from the other compound without showing a boundary line. Therefore, the multilayer film is resistant to mechanical abrasion and is not easily peeled off. Moreover, it becomes possible to laminate more multilayer films, and the function as a thin film is greatly improved.

以下、実施例ににり本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1 第1図は電子線加熱(こよる反応性真空蒸着装置の概略
断面図である。本実施例で【3L第2図にその拡大断面
を示づガラス基板上の多層膜を形成する))ン人 を 
説 明 ず る 。
Example 1 Figure 1 is a schematic cross-sectional view of a reactive vacuum deposition apparatus using electron beam heating (Fig. 2 shows an enlarged cross-section). ))
Here's an explanation.

まづ゛、真空反応槽1内を、バルブ2を通して1Q −
51−o’rr以下の高真空とする。そしてフィラメン
ト3より飛び出した電子により、水冷銅ハース4中のマ
グネシウム5を加熱しマグネシウムを蒸発さμる。次い
でバリアプルリークバルブ6aにり反応性ガスの酸素を
導入づ−ると同時にシャッター7を聞り高真空中でマグ
ネシウムと酸素とを反応さゼ、ガラス基板8の表面に酸
化マグネシウムの薄膜(第1層)9を形成さける。
First, the inside of the vacuum reaction tank 1 is passed through the valve 2 to 1Q -
A high vacuum of 51-o'rr or less is used. The electrons ejected from the filament 3 heat the magnesium 5 in the water-cooled copper hearth 4 and evaporate the magnesium. Next, the reactive gas oxygen is introduced into the barrier pull leak valve 6a, and at the same time, the shutter 7 is turned on to react magnesium and oxygen in a high vacuum. 1 layer) Avoid forming 9.

所定の膜厚の形成が終了する直前に、バリアプルリーク
バルブ6aをゆっくり11じりftめると同時に別の同
バルブ6bをゆっくりと聞き始め、別の反応性ガスであ
るフッ素を同断に真空反応槽内に導入づる。この間【よ
フッ素と酸素が同時に導入されるため、酸化マグネシウ
ムとフッ化マグネシウムの二種の化合物が層内に混在す
る。そして所定の混在層10の形成後、バリアプルリー
クバルブ6aを完全に閉じる。それ以後はフッ化マグネ
シウムのみの薄層(第2層)11が形成される。第21
i;jの薄膜が所定の厚さになる直前に、上述と同様な
操作を(り返し、それぞれ混在層12.14をかいして
カラス基板上に第3層の酸化マグネシウム層13と第4
I??4のフッ化マグネシウム層15を形成J−る。こ
の方法により酸化マグネシウム層9.13とフッ化マグ
ネシウム1m11.15かが交互に’4i+1み重ねら
れた4層の多Ii者股を形成でさ−る。
Immediately before the formation of a predetermined film thickness is completed, the barrier pull leak valve 6a is slowly turned down by 11 ft, and at the same time, another same valve 6b is slowly turned on, and another reactive gas, fluorine, is simultaneously cut off and vacuumed. Introduce it into the reaction tank. During this time, fluorine and oxygen are introduced at the same time, so two types of compounds, magnesium oxide and magnesium fluoride, coexist within the layer. After forming the predetermined mixed layer 10, the barrier pull leak valve 6a is completely closed. After that, a thin layer (second layer) 11 of only magnesium fluoride is formed. 21st
Immediately before the thin film i;
I? ? 4. Forming the magnesium fluoride layer 15. By this method, a 4-layer multi-layer structure is formed in which 9.13 layers of magnesium oxide and 1 ml of magnesium fluoride and 1 ml of magnesium fluoride are alternately stacked.

」上記方法により形成された4層膜の拡大断面図を第2
図に承り。
"The enlarged cross-sectional view of the four-layer film formed by the above method is shown in the second figure.
Accept the illustration.

上記方法で形成される上記4層の膜の厚さを、第1層か
ら第4層まで順に1510.1900.1510111
111、95071ングス1−目一ムどり′る。これに
より第3図に示づような各波長に対する反射率の関係が
jgられ可視光反射率の平均は1%以下であるので反射
防止膜ととしての利用価値が非常に高く、ざらにこの−
「製膜はでの境界に混在層が存在するため膜間の密着化
がすぐれている。
The thickness of the four layers formed by the above method is 1510.1900.1510111 in order from the first layer to the fourth layer.
111, 95071 ngs 1 - one step wrong. As a result, the relationship between the reflectance for each wavelength as shown in Fig. 3 is shown, and the average visible light reflectance is less than 1%, so it has very high utility value as an antireflection film.
``Due to the presence of a mixed layer at the boundary between membranes, the adhesion between the membranes is excellent.

実施例2 本実施例は実施例1と同様に電子線加熱による反応性兵
学蒸着法にJ:す、ガラス基板の表面に酸化セリウムと
フッ化ゼリウムよりなる多層膜を形成づる方法である。
Example 2 Similar to Example 1, this example is a method of forming a multilayer film of cerium oxide and cerium fluoride on the surface of a glass substrate using the reactive chemical vapor deposition method using electron beam heating.

ただし本実施例にJ3いては多層膜の境界面をできるだ
(プ平滑にJ−るため残在する気体をできる限り排除し
て後、他の気体を導入り−ることとする。
However, in this embodiment, in order to make the boundary surface of the multilayer film smooth, other gases are introduced after removing as much of the remaining gas as possible.

金属としてヒリウムを用い、反応性〕jスとしで酸素と
フッ素を用い、実施例1と同様にしてノコラス基板上に
酸化レリウAVi(第1闇)を、次いてフッ化はリウム
層<a12層)の各層をざらに交互にぞれらの化合物よ
りなる層を形成し、6層膜を形成覆る。。
Using hylium as the metal and using oxygen and fluorine as the reactive gas, oxide AVi (first layer) was formed on the Nocolas substrate in the same manner as in Example 1, and then fluoride was used to form the lithium layer < a12 layer. ) are roughly alternately formed with layers of each compound to form a 6-layer film. .

」−開方法によれに1ガラス塁板上に容易に6@膜を形
成づることができる。そしてそれらの6層膜の厚さは第
1層から第6図まで各々1140.1600.1140
.1600.1140.800Aングス1−口−11と
づることによりずぐれl〔赤外線反In多層lI9が1
【7られる。実施例1.2は反応性真空F/TA ’Z
法による方法を用いて説明したが、よく知られた反応1
’1g L) Cスパッタリング法によっても、上記多
層膜を容易に形成することがて゛きる。
- A 6@ film can be easily formed on a glass base plate by the opening method. And the thickness of those six layer films is 1140.1600.1140 respectively from the first layer to Figure 6.
.. 1600.1140.800 Angus 1-mouth-11
[7. Example 1.2 is a reactive vacuum F/TA'Z
Although the method was explained using the method, the well-known reaction 1
The above multilayer film can also be easily formed by the C sputtering method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は多層膜を形成する反応性真空蒸着装置の概略断
面図、第2図は実施例1で得られる多層膜の拡大断面図
、第3図は第2図(実施例1)の多層膜の特性を示し入
射光の波長と反射率の関係を示′9′線図である。 1・・・真空反応槽   2・・・真空調整用バルブ3
・・・フィラメント  4・・・水冷銅ハース5・・・
金h7JX 6a、(31)・・・バリアプルリークバルブ7・・・
シ17ツター   8・・・カラス基板9.13・・・
酸化マグネシウム層 11.15・・・フッ化マグネシウム層10.12.1
/′I・・・酸化マグネシウムとフッ化マグネシウムの
混在層 第1図 第3図
Fig. 1 is a schematic cross-sectional view of a reactive vacuum evaporation apparatus for forming a multilayer film, Fig. 2 is an enlarged cross-sectional view of the multilayer film obtained in Example 1, and Fig. 3 is a multilayer film of Fig. 2 (Example 1). It is a '9' diagram showing the characteristics of the film and showing the relationship between the wavelength of incident light and the reflectance. 1... Vacuum reaction tank 2... Vacuum adjustment valve 3
...Filament 4...Water-cooled copper hearth 5...
Gold h7JX 6a, (31)...Barrier pull leak valve 7...
Shi17 Tsuta 8... Crow board 9.13...
Magnesium oxide layer 11.15... Magnesium fluoride layer 10.12.1
/'I...Mixed layer of magnesium oxide and magnesium fluoride Figure 1 Figure 3

Claims (1)

【特許請求の範囲】 記 (1)高真空雰囲気内で金属を・蒸Xさぜ、蒸発した金
属と雰囲気中の気体とを反応させて、基板表面に反応し
て1!′7られる化合物の膜を形成する方法に43いて
、 雰囲気中の反応性気体を経時的に変えることにより、基
板表面に少なくとも二種類の異なる化合物で(11z成
された各層から成る多層膜を形成覆ることを特徴とする
基板表面に多層膜を形成する方法。 (2〉金属はマグネシウム又はレリウムであり、反応1
1気体は酸素とフッ素である特許請求の範囲第11負記
載の方法。 (3)基板【よ、ガラス板である特許請求の範囲第1項
記載の方法。 (4)雰囲気中の反応性気体を変える際に、一方の気体
の減少と反比例して他方の気体を増加するようにJる特
;′[請求の範囲第1項記載の方法。
[Claims] (1) A metal is vaporized in a high vacuum atmosphere, the evaporated metal is reacted with a gas in the atmosphere, and the reaction occurs on the substrate surface. A method for forming a film of a compound containing at least two different compounds (11z) is formed on the surface of a substrate by changing the reactive gas in the atmosphere over time. A method for forming a multilayer film on the surface of a substrate, characterized in that the metal is magnesium or relium, and reaction 1
11. The method according to claim 11, wherein the one gas is oxygen and fluorine. (3) The method according to claim 1, wherein the substrate is a glass plate. (4) The method according to claim 1, wherein when changing the reactive gas in the atmosphere, the decrease in one gas is inversely proportional to the increase in the other gas.
JP58002392A 1983-01-11 1983-01-11 Formation of multilayered film on surface of substrate Pending JPS59128234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58002392A JPS59128234A (en) 1983-01-11 1983-01-11 Formation of multilayered film on surface of substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58002392A JPS59128234A (en) 1983-01-11 1983-01-11 Formation of multilayered film on surface of substrate

Publications (1)

Publication Number Publication Date
JPS59128234A true JPS59128234A (en) 1984-07-24

Family

ID=11527959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58002392A Pending JPS59128234A (en) 1983-01-11 1983-01-11 Formation of multilayered film on surface of substrate

Country Status (1)

Country Link
JP (1) JPS59128234A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115094388A (en) * 2022-07-08 2022-09-23 广东信大科技有限公司 Heating pipe coating method and rose gold pipe and gold pipe prepared by same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115094388A (en) * 2022-07-08 2022-09-23 广东信大科技有限公司 Heating pipe coating method and rose gold pipe and gold pipe prepared by same
CN115094388B (en) * 2022-07-08 2024-02-09 广东信大科技有限公司 Heating pipe coating method and rose gold pipe prepared by heating pipe coating method

Similar Documents

Publication Publication Date Title
JP5162618B2 (en) Method for producing a multilayer film and apparatus for carrying out said method
US8263172B2 (en) Method for producing optical element having multi-layered film
Dake et al. Electronic and chemical interactions at aluminum/TiO2 (110) interfaces
US6858357B2 (en) Attenuated embedded phase shift photomask blanks
CN1219248A (en) Attenuating embedded phase shift photomask blanks
JP4623349B2 (en) Thin film type ND filter and manufacturing method thereof
JPS59128234A (en) Formation of multilayered film on surface of substrate
JP2004250784A (en) Sputtering system, mixed film produced by the system, and multilayer film including the mixed film
JP2002363745A (en) Film deposition method by sputtering, optical member and sputtering device
JP2006509102A (en) Method for producing a multilayer film and apparatus for carrying out said method
JP2000147205A (en) Infrared antireflection film
JPH08101301A (en) Optical thin film and its production
JPS6128027B2 (en)
JPH09189801A (en) Optical parts with heat resistant antireflection film
JP2019035100A (en) Method for manufacturing reflective film
JP2005206875A (en) Film deposition apparatus, and film deposition method
WO2023042438A1 (en) Light blocking film, multilayer antireflection film, method for producing said light blocking film, method for producing said multilayer antireflection film, and optical member
JPH10160902A (en) Antireflection film, its forming method and forming device
JPS5928629B2 (en) Hard coating manufacturing method
JPS62228462A (en) Metallic vapor deposited film and its production
JPH08269691A (en) Metal coated film
JP2504484B2 (en) Input surface of X-ray image intensifier and manufacturing method thereof
JP3346309B2 (en) Manufacturing method of gas barrier film
JPH11326634A (en) Optical multilayer thin film and production of the optical multilayer thin film
Seddon et al. MetaMode: a new method for high-rate MetaMode reactive sputtering