JPS59127644A - Apparatus for controlling generation of stock gas - Google Patents

Apparatus for controlling generation of stock gas

Info

Publication number
JPS59127644A
JPS59127644A JP65783A JP65783A JPS59127644A JP S59127644 A JPS59127644 A JP S59127644A JP 65783 A JP65783 A JP 65783A JP 65783 A JP65783 A JP 65783A JP S59127644 A JPS59127644 A JP S59127644A
Authority
JP
Japan
Prior art keywords
gas
flow rate
outlet
raw material
branched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP65783A
Other languages
Japanese (ja)
Inventor
Isao Hino
日野 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP65783A priority Critical patent/JPS59127644A/en
Publication of JPS59127644A publication Critical patent/JPS59127644A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/008Feed or outlet control devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To precisely control the flow amount of generated stock gas even in a small flow amount, by a method wherein a gaseous mixture is branched into two streams at the outlet of an output arranged pipe and a second gas flow controller is provided to one of branched arranged pipes while a gas resistance means is provided to the other branched arranged pipe. CONSTITUTION:The outlet of carrier gas is branched by a branching device 20 and second flow controller 21 similar to a first flow controller 11 is provided to one of branched pipes while a gas resistance means 23 for imparting resistance to a gas flow amount is provided to the other branched pipe and taken out from an outlet 22. Stock gas of which the flow amount is regulated by the second gas flow amount controller 21 is sent out from the outlet 22 and the residue in the stock gas which is generated in a bubbler 12 and issued from the outlet 22 is taken out from an outlet 24 through the gas resistance means 23.

Description

【発明の詳細な説明】 本発明はバプラよシ発生するガスの流量を精密に制御す
る原料ガス発生制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a raw material gas generation control device that precisely controls the flow rate of gas generated by a bubbler.

一般に、結晶成長装纒1、或いは薬品の合成装置におけ
るその原料ガスの発生、供給方法として窒素、水素など
の・ある気体(以下この気体をキャリアガスという)を
密封容器i(以下バ、プラという)に貯えた原料液体中
を通過させ、その気体中に原料液体蒸気を含ませて、反
応部に送シこむという方法がある。このときキャリアガ
ス中には原料液体の飽和蒸気圧に対応する濃度の原料液
体の蒸気が含まれる。
In general, as a method for generating and supplying raw material gas in crystal growth equipment 1 or chemical synthesis equipment, a certain gas such as nitrogen or hydrogen (hereinafter referred to as carrier gas) is placed in a sealed container i (hereinafter referred to as ba, plastic). There is a method in which the gas is passed through a raw material liquid stored in a tank, the raw material liquid vapor is included in the gas, and the gas is sent to the reaction section. At this time, the carrier gas contains vapor of the raw material liquid at a concentration corresponding to the saturated vapor pressure of the raw material liquid.

第1図は従来の原料ガスの発生および流量制御のための
装置の構成図を示す。この構成は、ノ(プラ12に原料
液体13が貯えられ、この中を矢印16の方向にキャリ
アガスを通すとする。このキャリアガスはバプラ12中
のパイプ出口15から原料液体13中を泡14となって
通過し、そのときにキャリアガス中に原料液体13の飽
和蒸気が含まれる。原料蒸気を含むキャリアガスは矢印
17の方向にバブ212からと9出され1次の反応部に
送りこまれる。このバプラ12は、温度を精密に制御さ
れた液体18(水、エチレングリコールなどが用いられ
る)を貯えた容器19に収容されてバプラ12を一定の
設定温度に保つ。バプラ中の原料液体の蒸気圧はこの設
定温度により決まる。
FIG. 1 shows a configuration diagram of a conventional device for generating raw material gas and controlling its flow rate. This configuration is based on the assumption that a raw material liquid 13 is stored in a bubbler 12 and a carrier gas is passed through it in the direction of an arrow 16. At that time, the carrier gas contains the saturated vapor of the raw material liquid 13.The carrier gas containing the raw material vapor is taken out from the bubble 212 in the direction of the arrow 17 and sent to the primary reaction section. This bubbler 12 is housed in a container 19 storing a liquid 18 (water, ethylene glycol, etc. is used) whose temperature is precisely controlled to keep the bubbler 12 at a constant set temperature. The vapor pressure is determined by this set temperature.

このキャリアガスの流量は気体の流量調節器11により
制御され、この気体の流量調節器11として(d、流量
計と流量調節バルブの組み合せ、或いはマス70−コン
トローラなどが用いられる。
The flow rate of this carrier gas is controlled by a gas flow rate regulator 11, which is a combination of a flow meter and a flow rate control valve, or a mass 70-controller.

ところで反応部に送りこまれる原料ガスの正味流量f、
は1次式により決まる。
By the way, the net flow rate f of the raw material gas sent to the reaction section is
is determined by a linear equation.

V 九=(fo+fs)×−・・・・・・・・(1)I)T ここでs foはキャリアガスの流量、原料蒸気を含む
キャリアガスの圧力をI)T、原料液体の飽和蒸気圧を
九とする。通常はfan> fs であるので、(1)
式は(2)式のように近似できる。
V9=(fo+fs)×−・・・・・・・・・(1)I)T Here, sfo is the flow rate of the carrier gas, and the pressure of the carrier gas containing the raw material vapor is I)T, the saturated vapor of the raw material liquid Set the pressure to 9. Since normally fan > fs, (1)
The equation can be approximated as shown in equation (2).

fs= fo x 色・・・−−(2)T この(1)式かられかるように原料ガスの流量制御は、
キャリアガス流量f。の制御、原料の飽和蒸気圧に制御
をすることにより行なわれる。さらに蒸気圧■の制御を
することによシ行なわれる。さらに、蒸気圧λの制御は
バブラ12の温度を制御して行なわれる。
fs=fox Color...---(2)T As can be seen from this equation (1), the flow rate control of the raw material gas is
Carrier gas flow rate f. This is done by controlling the saturated vapor pressure of the raw material. Furthermore, this is done by controlling the vapor pressure. Further, the vapor pressure λ is controlled by controlling the temperature of the bubbler 12.

この原料ガス制御装置において、#、量がある程度大き
い場合(標準状態でlcc/m1n(lscc/m1n
)以上)には流量は良好に制御される。ところが、流量
の小さな領域では、バブラ中の泡の発生個数が少なくな
るために原料ガス発生制御装置の出口でのガス流は脈動
し、一定流量を保つことが困難となる。有機金属を原料
とした半導体の気相成長法(以下No−VPg という
)では、水素をキャリアガスとして有機金属原料を原料
ガス制御装置により反応部に送り込む。例えば、低濃度
(p(1018c77L−3)に亜鉛をドープしたGa
Asの薄膜を成長させる際、ドーパント原料として用い
るジ〃チル亜鉛(DgZn)を本原料ガス発生制御装置
にょジ1反応部に送りこむ場合を考える。この時DEZ
nをバプラ12に貯え、バプラ温度を0 ’Oとしたと
き、キャリアガス(水素)の流量を標準状態で0.1c
c/mi n (0,1scc/min )以下にしな
ければならない。これは、バブラ中で発生する泡の径を
1mmとしたとしても毎分24個程度の泡の発生に対応
する。このような条件で結晶成長を行なうと、ドーパン
トガスDEZnの流量は第2図(a)のグラフのように
時間変化し、その結果成長した半導体層のホール濃度は
、成長層方向に第2図(blOグラフのように変動して
いる。
In this raw material gas control device, #, when the amount is large to some extent (lcc/m1n (lscc/m1n in standard state)
) and above) the flow rate is well controlled. However, in a region where the flow rate is small, the number of bubbles generated in the bubbler decreases, so the gas flow at the outlet of the source gas generation control device pulsates, making it difficult to maintain a constant flow rate. In the vapor phase growth method of semiconductors using organometallic raw materials (hereinafter referred to as No-VPg), the organometallic raw materials are fed into a reaction part by a raw material gas control device using hydrogen as a carrier gas. For example, Ga doped with zinc at a low concentration (p(1018c77L-3))
Let us consider the case where dithyl zinc (DgZn), which is used as a dopant raw material, is fed into the first reaction section of the present raw material gas generation control device when growing a thin film of As. At this time DEZ
When n is stored in the bubbler 12 and the bubbler temperature is 0'O, the flow rate of the carrier gas (hydrogen) is 0.1c under standard conditions.
c/min (0.1 scc/min) or less. This corresponds to the generation of about 24 bubbles per minute even if the diameter of the bubbles generated in the bubbler is 1 mm. When crystal growth is performed under these conditions, the flow rate of the dopant gas DEZn changes over time as shown in the graph in Figure 2 (a), and as a result, the hole concentration in the grown semiconductor layer changes as shown in Figure 2 (a) in the direction of the growth layer. (It fluctuates like the BLO graph.

本発明の目的は、このような従来の欠点を克服し、バブ
ラより発生する原料ガスの流量を小流量でも精密にかつ
安定に制御できる原料ガス発生制御装置を提供すること
にある。
An object of the present invention is to overcome these conventional drawbacks and provide a source gas generation control device that can precisely and stably control the flow rate of source gas generated from a bubbler even at a small flow rate.

本発明の構成は、バブラに蓄えられた液体原料中にキャ
リアガスを導入する配管途中に第1のガス流量調節器を
備えた原料ガス発生制御装置において、前記バプラよ夕
発生されるキャリアガスと原料ガスとの混合ガスが出力
配管の出口において二分岐され、これら分岐された出力
配管の一万に第2のガス流量調節器を備え、その分岐配
管の他方にガス流量に抵抗を与えるガス抵抗手段を備え
たことを特徴とする。
The configuration of the present invention provides a raw material gas generation control device that includes a first gas flow rate regulator in the middle of a pipe that introduces a carrier gas into a liquid raw material stored in a bubbler. The mixed gas with the raw material gas is branched into two at the outlet of the output pipe, and each of these branched output pipes is equipped with a second gas flow rate regulator, and the other branch pipe is equipped with a gas resistor that provides resistance to the gas flow rate. It is characterized by having a means.

以下本発明の実施例について図面を用いて説明する。Embodiments of the present invention will be described below with reference to the drawings.

第3図の本発明の実施例の構成図を示す。図中、番号1
1から19迄の構成は第1図に示した従来と同じ構成と
なっている。この実施例は、従来の構成のキャリアガス
の出口を二分岐器20によシ分岐し、その−万に第1の
ガス流量調整器11と同様の第2のガス流量調整器21
を設けて出口22からとシ出し、その分岐のもう一万に
はガス流量に抵抗を与えるガス抵抗手段23を設けて出
口23からとシ出すようにしたものである。このガス抵
抗手段23としては、ガス流量の調整できるパルプや配
管を細くして抵抗を与えるようにしたものなどを用いる
ことができる。この第2のガス流量調節器21により流
量を調整された原料ガスは出口22を通って送り出され
る。一方、バプラ12よQ発生した原料ガスのうち、出
口22より送り出されたものの残りは、ガス抵抗手段2
3を通って出口24からと9出される。このようにして
、バブラ12に供給するキャリアガスの流量と、原料ガ
スを含むキャリアガスの流量とを独立に制御できる。
The block diagram of the embodiment of the present invention shown in FIG. 3 is shown. Number 1 in the diagram
The configurations 1 to 19 are the same as the conventional configuration shown in FIG. In this embodiment, the outlet of the carrier gas having a conventional configuration is branched into two branches by a bifurcater 20, and a second gas flow regulator 21 similar to the first gas flow regulator 11 is connected to the outlet.
The gas is discharged from the outlet 22 by providing a gas resistance means 23 for providing resistance to the gas flow rate at the other end of the branch. As the gas resistance means 23, it is possible to use pulp whose gas flow rate can be adjusted or a material made of thin pipes to provide resistance. The raw material gas whose flow rate is adjusted by the second gas flow rate regulator 21 is sent out through the outlet 22. On the other hand, out of the raw material gas generated by the bubbler 12, the remainder of what is sent out from the outlet 22 is transferred to the gas resistance means 2.
3 through exits 24 and 9. In this way, the flow rate of the carrier gas supplied to the bubbler 12 and the flow rate of the carrier gas containing the raw material gas can be independently controlled.

この構成の実施例を使用する場合二つの使用法がある。There are two uses when using this embodiment of the configuration.

第1の使用法は、出口22から送ジ出される原料ガスを
次の反応部にとりこむものである。
The first usage is to take the raw material gas delivered from the outlet 22 into the next reaction section.

この実施例の装置をMO−VPE法によるGaAsの成
長において亜鉛をドーパントとして導入するためのDE
Zn蒸気発生流業制御装洒として用い、原料液体13と
してIJBZni用い、キャリアガスとして水素を用い
るが、DgZnを含むキャリアガスは出口22を通して
次の結晶成長炉に送シ込まれる。
The device of this example is used for DE to introduce zinc as a dopant in the growth of GaAs by the MO-VPE method.
It is used as a Zn vapor generation process control system, IJBZni is used as the raw material liquid 13, and hydrogen is used as the carrier gas. The carrier gas containing DgZn is sent to the next crystal growth furnace through the outlet 22.

例えば、ホール濃度IQ”(m”以下のドーピングを行
なう場合、前述のように、 DEZnのバプラ温度を0
℃としDgZnを含むキャリアガスの流量を約Q、l 
SCC/lTl1n以下にしなければならない。この場
合、バプラ12の前段にある第1の流量調節器11でキ
ャリアガス水素の流量を1sec/minとすると、こ
の程度の流量では、バプラ12の出口において脈流がみ
られず一定流量のガスを発生できる。さらに第2の流量
調節器21にょすDEZnを含むキャリアガスの流量を
0.1 scc/mi n 、以下の所定流量に制御し
、出口22に送り出し、残シのガスは出口24より外部
に放出される。
For example, when doping with a hole concentration of IQ"(m" or less), the bubbler temperature of DEZn is set to 0 as described above.
℃, and the flow rate of the carrier gas containing DgZn is approximately Q, l.
It must be less than or equal to SCC/lTl1n. In this case, if the flow rate of the carrier gas hydrogen is set to 1 sec/min in the first flow rate regulator 11 located upstream of the bubbler 12, at this level of flow rate, no pulsating flow is observed at the outlet of the bubbler 12 and a constant flow rate of gas is generated. can occur. Further, the flow rate of the carrier gas containing DEZn in the second flow rate regulator 21 is controlled to a predetermined flow rate of 0.1 scc/min or less, and is sent to the outlet 22, and the remaining gas is released to the outside from the outlet 24. be done.

本実施例によジ得られたDEZnを含むキャリアガスの
流量を第4図(alのグラフに、また得られたG aA
 s結晶の成長層方向ホール濃度分布を第4図(blの
グラフに示す。
The flow rate of the carrier gas containing DEZn obtained in this example is shown in FIG.
The hole concentration distribution in the growth layer direction of the s-crystal is shown in the graph of FIG. 4 (bl).

次に、第2の使用法は、ガス抵抗手段23を通し第2の
流Jij:調整器21を通さない出口24側のガスを反
応部に送るものである。つマク、第2の流量調整器21
で流量調整されたガスは出口22全通して外部に捨て、
残りのガスを出口24を通して反応部に送シこむもので
ある。このように第1の流量調節器11で設定されたバ
ブラ12から発生するガス流量と出口22から捨てられ
るガス流量:との差の流量のガスが反応部に送られる。
Next, the second usage is to send the second flow Jij: the gas on the outlet 24 side, which does not pass through the regulator 21, to the reaction section through the gas resistance means 23. Second flow regulator 21
The gas whose flow rate has been adjusted is passed through the entire outlet 22 and discarded to the outside.
The remaining gas is sent to the reaction section through the outlet 24. In this way, the difference in the flow rate between the gas flow rate generated from the bubbler 12 set by the first flow rate regulator 11 and the gas flow rate discarded from the outlet 22 is sent to the reaction section.

流量調節器11.21として用いられるマスフローコン
トローラは、通常ヒータと熱電対の組み合わせで流量を
制御ものである。このマスフローコントローラに原料ガ
スとしてトリエチルインジウム(TEIn) やトリエ
チルガリウム(TEGa)を含むガスを逆すと、そのヒ
ータによジガスが熱分解を受けることがある。この第2
の使用法を用いることによシ、反応に用いる原料ガスが
7スフローコントローラを通らないのでこの問題を免れ
ることができる。この場合、原料液体としてDEZnを
用い、第2の流量調節器21を通らないガスの出口24
よ勺とジ出されるDEZnを含むキャリアガスの流量が
0.1 sec/m I nになるようにして(すなわ
ち、第2の流量調整器21から0.9 c c/m i
 n流出する)、第1の使用法と同様のG aA sへ
の亜鉛ドーピングを行なった結果、第2の使用法でもほ
ぼ同様の結果が得られた。
The mass flow controller used as the flow rate regulator 11.21 usually controls the flow rate using a combination of a heater and a thermocouple. When a gas containing triethyl indium (TEIn) or triethyl gallium (TEGa) is supplied to this mass flow controller as a raw material gas, the digas may be thermally decomposed by the heater. This second
By using this method, this problem can be avoided because the raw material gas used for the reaction does not pass through the flow controller. In this case, DEZn is used as the raw material liquid, and the gas outlet 24 that does not pass through the second flow rate regulator 21 is used.
The flow rate of the carrier gas containing DEZn that is rapidly discharged is set to 0.1 sec/m I n (i.e., 0.9 cc/m I from the second flow rate regulator 21).
As a result of doping GaAs with zinc in the same way as in the first method, almost the same results were obtained in the second method.

以上本発明をG aA sのMO−VPEによる成長時
における亜鉛ドープの′ための装置に適用した場合につ
いて説明したが、他の半導体材料の成長装置、或いは他
の化学薬品の合成装置にも適用できることはいうまでも
ない。
The present invention has been described above in the case where it is applied to an apparatus for doping zinc during growth of GaAs by MO-VPE, but it can also be applied to an apparatus for growing other semiconductor materials or an apparatus for synthesizing other chemicals. It goes without saying that it can be done.

以上、詳細に説明したように本発明を適用することによ
ハバブラより発生する原料ガスの流量を小流量でも精密
かつ安全に制御する装置が実現できる。
As described above in detail, by applying the present invention, it is possible to realize a device that precisely and safely controls the flow rate of the raw material gas generated from the hubbler even at a small flow rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の原料ガス発生制御装置の断面図、第2図
(al 、 (blは第1図の装置から送出されるDE
Zn流量の時間変化を示すグラフおよびうのDEZnを
ドーパントとして成長したG aA sのホール濃度の
成長層方向分布図、嬉3図は本発明の実施例の断面図、
第4図(a) 、 (1)lは本発明の実施例によ勺得
られた第2図(a) 、 (b)と同様のグラフおよび
分布図である。図において 11.21・・・・・・流量調整器、12・・・・・・
バブラ、13・・・・・・原料液体、14・・・・・・
キャリアガスの泡、15・・・・・・キャリアガスの出
口、16.17・・・・・・ガスの流れ方向の矢印、1
8・・・・・・液体、19・・・・・・液体の容器、2
0・・・・・・二分岐器、22.24・・・・・・出口
、23・・・・・・ガス抵抗手段 である。 代理人 弁理士  内 原   晋
Figure 1 is a sectional view of a conventional raw material gas generation control device, and Figure 2 (al, (bl) is the DE sent out from the device in Figure 1.
A graph showing changes in Zn flow rate over time, a distribution diagram of the hole concentration in the growth layer direction of GaAs grown using DEZn as a dopant, and Figure 3 is a cross-sectional view of an example of the present invention.
FIGS. 4(a) and 4(1) are graphs and distribution charts similar to FIGS. 2(a) and 2(b) obtained in accordance with the examples of the present invention. In the figure, 11.21...Flow rate regulator, 12...
Bubbler, 13... Raw material liquid, 14...
Carrier gas bubbles, 15... Carrier gas outlet, 16.17... Gas flow direction arrow, 1
8...liquid, 19...liquid container, 2
0...Bifurcater, 22.24...Outlet, 23...Gas resistance means. Agent Patent Attorney Susumu Uchihara

Claims (1)

【特許請求の範囲】[Claims] バプラに蓄えられた液体原料中にキャリアガスを導入す
る配管途中に第1のガス流量調節器を備えた原料ガス発
生制御装置において、前記バプラより発生されるキャリ
アガスと原料ガスとの、混合ガスが出力配管の出口にお
いて二分岐され、これら分岐された配管の一万に第2の
ガス流量調節器を備え、その分岐配管のもう一万にガス
流量に抵抗を与えるガス抵抗手段を備えていることを特
徴とする原料ガス発生制御装置。
In a raw material gas generation control device equipped with a first gas flow rate regulator in the middle of a pipe that introduces a carrier gas into a liquid raw material stored in a bubbler, a mixed gas of a carrier gas and a raw material gas generated by the bubbler is produced. is branched into two at the outlet of the output pipe, 10,000 of these branched pipes are equipped with a second gas flow rate regulator, and 10,000 of the branched pipes are equipped with gas resistance means for providing resistance to the gas flow rate. A raw material gas generation control device characterized by:
JP65783A 1983-01-06 1983-01-06 Apparatus for controlling generation of stock gas Pending JPS59127644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP65783A JPS59127644A (en) 1983-01-06 1983-01-06 Apparatus for controlling generation of stock gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP65783A JPS59127644A (en) 1983-01-06 1983-01-06 Apparatus for controlling generation of stock gas

Publications (1)

Publication Number Publication Date
JPS59127644A true JPS59127644A (en) 1984-07-23

Family

ID=11479790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP65783A Pending JPS59127644A (en) 1983-01-06 1983-01-06 Apparatus for controlling generation of stock gas

Country Status (1)

Country Link
JP (1) JPS59127644A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171832A (en) * 1984-09-17 1986-04-12 Sumitomo Electric Ind Ltd Stock material supply apparatus
JPH0624895A (en) * 1992-07-06 1994-02-01 Fujikura Ltd Cvd raw material evaporating device
JPH0621740U (en) * 1992-08-21 1994-03-22 徳山曹達株式会社 Mixed gas monomer feeder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6171832A (en) * 1984-09-17 1986-04-12 Sumitomo Electric Ind Ltd Stock material supply apparatus
JPH0212142B2 (en) * 1984-09-17 1990-03-19 Sumitomo Electric Industries
JPH0624895A (en) * 1992-07-06 1994-02-01 Fujikura Ltd Cvd raw material evaporating device
JPH0621740U (en) * 1992-08-21 1994-03-22 徳山曹達株式会社 Mixed gas monomer feeder

Similar Documents

Publication Publication Date Title
US4517220A (en) Deposition and diffusion source control means and method
US20060121193A1 (en) Process and apparatus for depositing semiconductor layers using two process gases, one of which is preconditioned
US3701682A (en) Thin film deposition system
JPS634625A (en) Low temperature chemical evaporation of metal organic material of group ii-vi
JPS59127644A (en) Apparatus for controlling generation of stock gas
JPWO2005024926A1 (en) Substrate processing apparatus and semiconductor device manufacturing method
JPS5645899A (en) Vapor phase growing method for gallium nitride
JPS61242013A (en) Raw gas generating and feeding device
JPH06196415A (en) Method and device for supplying gas for vapor growth
JPH0379436B2 (en)
Shirai et al. Growth of amorphous, microcrystalline and epitaxial silicon at the same substrate temperature under control of atomic hydrogen
JPS5648237A (en) Evacuated gaseous phase reactor
JPH0335376Y2 (en)
JPS60131968A (en) Vapor growth deposition device
JPH0499312A (en) Organometallic vapor growth apparatus
JP3112445B2 (en) Gallium nitride based compound semiconductor vapor phase growth equipment
JPH0697081A (en) Vapor growth apparatus
JPS5856964B2 (en) Compound semiconductor liquid phase growth method
JPS6273619A (en) Vaporization device for volatile matter
JPS59170000A (en) Device for crystal growth
JPH069191B2 (en) Semiconductor manufacturing equipment by vapor phase growth method
JPS63278224A (en) Method of introducing reactive gas in vapor growth
JPS60730A (en) Bubbler
JPS5518024A (en) Vapor phase reactor
JPS5838928B2 (en) 3-5 Hands-on-hand tie-up