JPS59127424A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS59127424A
JPS59127424A JP58003096A JP309683A JPS59127424A JP S59127424 A JPS59127424 A JP S59127424A JP 58003096 A JP58003096 A JP 58003096A JP 309683 A JP309683 A JP 309683A JP S59127424 A JPS59127424 A JP S59127424A
Authority
JP
Japan
Prior art keywords
circuit
transistor
shows
input
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58003096A
Other languages
Japanese (ja)
Inventor
Michio Ouchi
大内 陸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58003096A priority Critical patent/JPS59127424A/en
Publication of JPS59127424A publication Critical patent/JPS59127424A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00346Modifications for eliminating interference or parasitic voltages or currents
    • H03K19/00361Modifications for eliminating interference or parasitic voltages or currents in field effect transistor circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/0944Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET
    • H03K19/0948Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET using CMOS or complementary insulated gate field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To improve the noise tolerance of an integrated circuit device which uses a CMOS transistor (TR) and to reduce the switching speed difference by reducing the diffeence in the threshold voltage between the input terminal of a basic gate circuit and a corresponding composite gate circuit. CONSTITUTION:A series-connected TR groups of P or N channel MOSTRs and a series-connected TR group of the same number of TRs of the same kind are connected together in parallel; the gates are connected in crossing direction each other between the TR groups to constitute the base circuit and composite gate circuit as a load or driving element. Consequently, the difference in the circuit threshold value between the upper and lower stages is canceled, so the noise tolerance is improved.

Description

【発明の詳細な説明】 本発明は半導体装置に関する。[Detailed description of the invention] The present invention relates to a semiconductor device.

近年、低消費電力、高速動作という利点から相補型電界
効果トランジスタ(0MO8)を用いた集積回路装置(
IC)が市場に出回り民生機器市場で急成長を遂げてい
る。又市場拡大に供い、個人の携帯用電子機器への使用
が増加している為単一低電源駆動、高信頼性が必要条件
となっている。
In recent years, integrated circuit devices (
ICs) are now on the market and are rapidly growing in the consumer equipment market. In addition, as the market expands, use in personal portable electronic devices is increasing, so driving with a single low power source and high reliability are required conditions.

低電源における正確動作と(・う点で雑音余裕度が掲げ
られる。
Accurate operation at low power supply and noise tolerance are emphasized.

0MO8では、一般に直流靴音余裕保証値は電砕電圧の
30チであり、余裕度は高(・が、IC外部の雑音に対
する相対的余裕度は、低電源になるに従い、減少する。
In 0MO8, the DC shoe noise margin guaranteed value is generally 30 degrees of the electrolysis voltage, and the margin is high (.), but the relative margin against noise outside the IC decreases as the power source becomes lower.

0MO8の論理回路においてNOR。NOR in the logic circuit of 0MO8.

NANDなどの基本ゲートは第1.3.5図の様な構成
であり、第2.4.6図に示す様な伝達特性を有する。
A basic gate such as NAND has a configuration as shown in Fig. 1.3.5 and has a transfer characteristic as shown in Fig. 2.4.6.

(第2.4.6図の特性曲線の番号は第1.3.5図の
端子番号にそれぞれ対応する。)これらの伝達特性から
回路のしき(・値電圧の差が入力端子間にあり、又入力
数が増大すると、最大最小の回路のしきい値電圧の差が
増大することがわかる。回路のしきい値に差があること
から、スイッチング速度にも差が生じ、回路設計上、信
号のタイミング見積りに問題がある。以上のことから負
荷素子、駆動素子に直列接続のゲート群を・使用すると
、IC設計上難点があるということが′埋解できる。
(The numbers on the characteristic curves in Figure 2.4.6 correspond to the terminal numbers in Figure 1.3.5.) From these transfer characteristics, it can be determined that there is a difference in threshold voltage between the input terminals of the circuit. , It can also be seen that as the number of inputs increases, the difference in the maximum and minimum circuit threshold voltages increases.Due to the difference in the threshold voltages of the circuits, there is also a difference in switching speed, and in terms of circuit design, There is a problem in estimating the timing of the signal.From the above, it can be understood that using a series-connected gate group for the load element and drive element has a difficult point in IC design.

CMOSマスタースラスイス方式のゲートアレイなどで
は、チャネル幅、チャネル長、しきい値電圧が画一化し
たP形及びN形のトランジスタが一対になっている基本
セルの接続によって論理を構成する為、専用半導体集積
回路に比べ、基本ゲート回路の最大、入力数がより限定
される。
In gate arrays using the CMOS master slice switching method, the logic is constructed by connecting basic cells, each consisting of a pair of P-type and N-type transistors with uniform channel width, channel length, and threshold voltage. Compared to dedicated semiconductor integrated circuits, the maximum number of basic gate circuits and the number of inputs are more limited.

本発明の目的は、負荷素子及び駆動素子に直列接続した
P形及びN形のMOS)ランジスタを使用した場合の基
本ゲート回路、及び準する複合ゲート回路における入力
端子間の回路のしきい値電圧の差を減少させることで、
雑音余裕度を向上させ、又、入力端子間のスイッチング
速度の差の減少させることで、半導体集積回路の設計を
簡便化することにある。
The object of the present invention is to provide a threshold voltage of a circuit between input terminals in a basic gate circuit and a similar composite gate circuit when using P-type and N-type MOS transistors connected in series with a load element and a drive element. By reducing the difference between
The object of the present invention is to simplify the design of a semiconductor integrated circuit by improving noise tolerance and reducing the difference in switching speed between input terminals.

本発明の特徴は、複数個のPチャネル形MOSトランジ
スタ又はNチャネル型MOS)ランジスタの直列接続で
構成されたトランジスタ群1と、同種、同数の直列接続
で構成されたトランジスタ群2を並列に、接続し、それ
ぞれのゲートをトランジスタ群間で和文わる方向に接続
し、負荷素子又は駆動素子として基本ゲート回路、及び
複合ゲート回路を構成する回路方式を使用した半導体装
置にある。そして、この半導体装置が、マスタースライ
ス方式にて設計されることが望ましい。
A feature of the present invention is that a transistor group 1 consisting of a plurality of P-channel MOS transistors or N-channel MOS transistors connected in series and a transistor group 2 consisting of the same type and number of series connections are connected in parallel. The semiconductor device uses a circuit system in which the respective gates are connected in the opposite direction between transistor groups to form a basic gate circuit and a composite gate circuit as a load element or a driving element. It is desirable that this semiconductor device be designed using a master slice method.

以下、本発明の一実施例を図面と共に説明する。An embodiment of the present invention will be described below with reference to the drawings.

MOS)ランジスタの直列接続を多用するCMOSの基
本ゲート回路を例にする。NAND型回路の場合、第8
図に示す2人力NANDの様にNチキンネル形MO8)
ランジスタを入力数分の2個直列接続したトランジスタ
群を2つ並列に出カーGND間に接続し、それぞれのゲ
ートをトランジスタ群間で和文わる方向に接続し、電源
−出力間に並列に接続したPチャンネル形MO8)ラン
ジスタのゲートと接続することによって、Nチャンネル
形トランジスタの上段、下段の回路しきい僅差を相殺す
る。又NOR型回路の場合、第7図に示す2人力NOR
の様にPチャネル形トランジスタを入力数分の2個直列
接続したトランジスタ群を2つ並列に電源−出力間に並
列に接続し、それぞれのゲートをトランジスタ群間で和
文わる方向に接続し、出カーGND間に接続したNチャ
ネル形MO8トランジスタのゲートと接続し、Pチャネ
ル形トランジスタの上段、下段の入力に対する回路のし
きい値着を相殺する。第9図に3人力NOR回路の場合
を示す。直列接続の3個のPチャネル形M08トランジ
スタ群と同一のトランジスタ群を並列に電源出力間に接
続し、2人力NOR回路の場合同様、ゲートを2個のト
ランジスタ群間で和文わる方向に接続し、出カーGND
間に並列に接続したNチャネル形MOSトランジスタと
接続する。
Let us take as an example a basic CMOS gate circuit that often uses series connections of transistors (MOS). In the case of a NAND type circuit, the eighth
Like the two-man NAND shown in the figure, N-channel type MO8)
Two transistor groups, each consisting of two transistors connected in series for the number of inputs, are connected in parallel between the output terminal and GND, each gate is connected in the opposite direction between the transistor groups, and connected in parallel between the power supply and the output. By connecting to the gate of the P-channel type MO transistor (8), the slight difference in circuit threshold between the upper and lower stages of the N-channel type transistor is canceled out. In the case of a NOR type circuit, the two-person NOR circuit shown in Figure 7
Connect two transistor groups in parallel between the power supply and the output, each consisting of two P-channel transistors connected in series for the number of inputs, and connect the gates of each transistor in the opposite direction between the transistor groups. It is connected to the gate of the N-channel type MO8 transistor connected between the car GND and cancels out the threshold value of the circuit for the inputs of the upper and lower stages of the P-channel transistors. Figure 9 shows the case of a three-person powered NOR circuit. Three P-channel M08 transistors connected in series and the same transistor group are connected in parallel between the power supply outputs, and the gates are connected in the opposite direction between the two transistor groups, as in the case of a two-power NOR circuit. , output car GND
It is connected to an N-channel MOS transistor connected in parallel between them.

最上段と最下段のPチャネル形MO8)ランジスタのゲ
ートを結んだ2組は、回路のしきい値電圧が相殺される
が、中段−中段のゲート接続の場合は相殺されない。こ
の為3人力NOHの場合は、2つの入力端子に対する回
路しき(・値が生じる。
In the two sets in which the gates of the P-channel type MO8) transistors in the top and bottom stages are connected, the threshold voltages of the circuits cancel each other out, but in the case of the gate connections in the middle stage and the middle stage, they do not cancel out. For this reason, in the case of a three-person powered NOH, a circuit threshold (・value occurs) for the two input terminals.

第10図に3人力NAND回路の場合を示す。直列接続
の3個のNチャネル形MO8)ランジスタ群と同一のト
ランジスタ群を並列に出力=GND間に接続し、2人力
NAND回路同様ゲートを2個のトランジスタ群間で和
文わる方向に接続し、電源−出力間に並列に接続したP
チャネル形MOSトランジスタと接続する。この場合も
、前述の3人力NOR回路同様2つの入力端子に対する
回路のしき(・値電圧を生じる。奇数個の入力の基本ゲ
ートの場合、(n+1)72個の回路しきい値電圧を生
じる。第11図に4人力NOR回路の場合を示す。この
場合は2個の回路しき(・値が存在する。
FIG. 10 shows the case of a three-person powered NAND circuit. Three series-connected N-channel type MO8) transistors and the same transistor group are connected in parallel between the output and GND, and the gates are connected in the opposite direction between the two transistor groups as in a two-man NAND circuit. P connected in parallel between power supply and output
Connect to channel type MOS transistor. In this case as well, similar to the three-power NOR circuit described above, a circuit threshold voltage is generated for two input terminals. In the case of a basic gate with an odd number of inputs, (n+1)72 circuit threshold voltages are generated. Figure 11 shows the case of a four-person NOR circuit. In this case, there are two circuit thresholds.

第12図に4人力NAND回路の場合を示す。この場 
4人力NOR,回路同様2個の回路しきい値をもつ。偶
数入力の場合n 72個の回路しきい値をもつ。通常の
CMOSマスタースライス方式のゲートアレイでは第1
4図の様に2ゲートのPチャネル形MO8)ランジスタ
とNチャネル形MOSトランジスタを一対にしたものを
基本セルとして構成する場合が多(・。
FIG. 12 shows the case of a four-person powered NAND circuit. this place
It has two circuit thresholds like the four-man power NOR circuit. In the case of an even number of inputs, there are n 72 circuit thresholds. In a normal CMOS master slice gate array, the first
As shown in Figure 4, the basic cell is often configured as a pair of a two-gate P-channel type MO8) transistor and an N-channel type MOS transistor.

Pチャネル形MO8)ランジスタのチャネル長を3.0
μm、Nチャネル形MO8)ランジスタのチャ木ル長を
2.5μm、Pチャネル形及びNチャネルMOSトラン
ジスタのチャネル幅を54μm。
P channel type MO8) Channel length of transistor is 3.0
The length of the transistor is 2.5 μm, and the channel width of the P-channel and N-channel MOS transistors is 54 μm.

Pチャネル形MO8)ランジスタのしき(・値電圧を−
1,IV、Nfヤネル形MO8)ランジスタのしき(・
値電圧を0.75Vとした場合の5人力NAND回路、
5入力NOR回路の前述の一般的基本セル上のレイアウ
トをそれぞれ第15図、第16図に示し、その伝達特性
を第19図、第21図にそれぞれ示す。第19図、第2
1図からそれぞれ、回路のしきい値電圧の最大最小の差
が5人力NAN D回路で0.4V、5入力NOR回路
で0.2■である。
P channel type MO8) transistor threshold (・value voltage -
1, IV, Nf Jarnel type MO8) transistor threshold (・
5-person power NAND circuit when the value voltage is 0.75V,
The layout of the 5-input NOR circuit on the aforementioned general basic cell is shown in FIGS. 15 and 16, respectively, and its transfer characteristics are shown in FIGS. 19 and 21, respectively. Figure 19, 2nd
From Figure 1, the maximum and minimum differences in the threshold voltages of the circuits are 0.4V for the 5-input NAND circuit and 0.2V for the 5-input NOR circuit.

又ACシュミレーションによる電源5.OV時17)X
イツチング速度の最大、最小の差は、52人力NAN 
D回路の立ち上り時間で1.6 N S、立ち下り時間
で0、5 N Sであり、又5入力NOR回路の立ち上
り時間で2.8NS、立ち下り時間で0.5 N Sで
ある。
Also, power supply based on AC simulation5. OV time 17)
The difference between the maximum and minimum itching speed is 52 manual NAN
The rise time of the D circuit is 1.6 NS, the fall time is 0.5 NS, and the rise time of the 5-input NOR circuit is 2.8 NS, and the fall time is 0.5 NS.

マスタースライス方式のCMOSゲートアレイで本発明
を実現する為のレイアウト例を館17図、第18図に示
す。第17図は5人力NAND回路で第18図は、5入
力NOR回路である。前述のYランジスタパラメータの
中でPチャネル形及びNチャネル形MO8)ランジスタ
のチャネル長のみHの27μmで構成して、このレイア
ウト例第17図、第18図を実現した場合の伝達特性を
第20図、第22図に示す。
Layout examples for implementing the present invention using a master slice type CMOS gate array are shown in Figures 17 and 18. FIG. 17 shows a five-input NAND circuit, and FIG. 18 shows a five-input NOR circuit. Among the Y transistor parameters mentioned above, only the channel length of the P-channel type and N-channel type MO8) transistor is configured to H, which is 27 μm, and the transfer characteristics when this layout example FIGS. 17 and 18 are realized are shown in FIG. 22.

回路のしきい値電圧の最大と最小の差は5人力NAND
回路で0.07V、5入力NOR回路の場合、0.03
Vとなる。又Aeシュミレーションによる電源電圧5.
Ovの場合のスイッチング速度の最大と最小の差は、5
人力NAND回路の場合、立ち上り時間で0.2NS、
立ち下り時間で0.2NSであり、5入力NOR回路の
場合、立ち上り時間で0.4NS、立ち下り時間で0.
2NSと非常に改善される。
The difference between the maximum and minimum threshold voltage of the circuit is 5 manual NAND
0.07V in the circuit, 0.03 in the case of a 5-input NOR circuit
It becomes V. Also, power supply voltage based on Ae simulation 5.
The difference between the maximum and minimum switching speed for Ov is 5
In the case of a human-powered NAND circuit, the rise time is 0.2NS,
The fall time is 0.2NS, and in the case of a 5-input NOR circuit, the rise time is 0.4NS and the fall time is 0.2NS.
It is greatly improved to 2NS.

CMO8以外でも、MOSトランジスタを直列に接続し
たNAND回路にも応用できる。応用例として、第23
図にNチャネル形MOSトランジスタのエンハンス・デ
プレッション構成の 2人力NAND回路を示す。
In addition to CMO8, it can also be applied to NAND circuits in which MOS transistors are connected in series. As an application example, the 23rd
The figure shows a two-person NAND circuit with an enhanced depletion configuration of N-channel MOS transistors.

本発明を半導体集積回路に応用すれば、その効果は明ら
かで、有効的である。
If the present invention is applied to a semiconductor integrated circuit, its effects will be obvious and effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の0MO8の2人力NAND回路図、第2
図は第1図の0MO8の2人力NAND回路の一般的伝
達特性、第3図は従来の0MO8の2入力NOR回路図
、第4図は第3図の0MO8の2入力NOR回路の一般
的伝達特性、第5図は従来の0MO8の4人力NAND
回路図、第6図は第5図の0MO8の4人力NAND回
路の一般的伝達特性、第7図は本発明実施例の0MO8
の2入力NOR回路、第8図は本発明実施例のC−MO
8の2/VINAND回路、第9図は本発明実施例の0
MO8の3入力NOR。 回路、第10図は本発明実施例の0MO8の3人力NA
ND回路、第11図は本発明実施例の0MO8の4入力
NOR回路、第12図は本発明実施例の0MO8の4人
力NAND回路、第13図は本発明実施例の0MO8の
5人力NAND回“路、第14図はマスタースライス方
式ゲートアレイに用いる一般的CMOS基本セルの部分
平面図、第15図は従来の一般的CMOSマスタースラ
イス基本セルを用(・た5人力NAND回路レイアウト
、第16図は従来の一般的CMOSマスタースライス基
本セルを用いた5入力NOR回路レイアウト、第17図
は本発明を実現する為に構成したCMOSマスタースラ
イス基本セルを用(・た5人力NAND回路レイアウト
、第18図は本発明を実現する為に構成したCMOSマ
スタースライス基本セルを用いた5入力NOR回路レイ
アウト、(特許例)第19図は第15図の5人力NAN
D回路の伝達特性、第20図は第17図の5人力NAN
D回路の伝達特性、第21図は第16図の5入力NOR
回路の伝達特性、第22図は第18図の5入力NOR回
路の伝達特性、第23図は本発明実施例のNチャネル形
MO8,E/D構成の2人力NAND回路、である。 なお図にお(・て、1・・・・・・電源アルミニウム配
線、2・・・・・・P型拡散層、3・・・・・・N型拡
散層、4・・・・・・GNDアルミニウム配線、5・・
・・・・コンタクト部、6・・・・・・ゲートポリシリ
コン、である。 VDD 第1図          第2図 第3図        第4聞 第7図       第■ 第2 図 第1/図 め79図 第72図 6 第77図 第18図 Vin(〆2 ペサ  7. てλ Vin(V〕 Vin(V) 第27図 tプ(〆り 病?2図
Figure 1 is a conventional 0MO8 two-man NAND circuit diagram, Figure 2
The figure shows the general transfer characteristics of the 0MO8 2-input NAND circuit shown in Fig. 1, Fig. 3 shows the conventional 0MO8 2-input NOR circuit diagram, and Fig. 4 shows the general transfer characteristic of the 0MO8 2-input NOR circuit shown in Fig. 3. Characteristics, Figure 5 shows the conventional 0MO8 4-person NAND
Circuit diagram, FIG. 6 shows the general transfer characteristics of the 0MO8 four-power NAND circuit shown in FIG. 5, and FIG. 7 shows the 0MO8 according to the embodiment of the present invention.
2-input NOR circuit, FIG. 8 shows a C-MO according to an embodiment of the present invention.
2/VINAND circuit of 8, FIG. 9 is 0 of the embodiment of the present invention.
MO8 3-input NOR. Circuit, Figure 10 is a three-man power NA of 0MO8 of the embodiment of the present invention.
ND circuit, Fig. 11 shows a 0MO8 4-input NOR circuit according to an embodiment of the present invention, Fig. 12 shows a 0MO8 4-manpower NAND circuit according to an embodiment of the invention, and Fig. 13 shows a 0MO8 5-manpower NAND circuit according to an embodiment of the invention. Figure 14 is a partial plan view of a general CMOS basic cell used in a master slice type gate array, and Figure 15 is a partial plan view of a conventional general CMOS master slice basic cell. The figure shows a 5-input NOR circuit layout using a conventional general CMOS master slice basic cell, and Figure 17 shows a 5-input NAND circuit layout using a CMOS master slice basic cell configured to realize the present invention. Figure 18 shows the layout of a 5-input NOR circuit using a CMOS master slice basic cell configured to realize the present invention, (patent example) Figure 19 shows the 5-manpower NAN shown in Figure 15.
The transfer characteristics of the D circuit, Figure 20 is the 5-man power NAN of Figure 17.
The transfer characteristics of the D circuit, Figure 21 is the 5-input NOR shown in Figure 16.
FIG. 22 shows the transfer characteristics of the 5-input NOR circuit shown in FIG. 18, and FIG. 23 shows the two-man power NAND circuit of the N-channel type MO8, E/D configuration according to the embodiment of the present invention. In addition, in the figure (1... power supply aluminum wiring, 2... P-type diffusion layer, 3... N-type diffusion layer, 4... GND aluminum wiring, 5...
. . . Contact portion, 6 . . . Gate polysilicon. VDD Fig. 1 Fig. 2 Fig. 3 Fig. 4 No. 7 Fig. ■ Fig. 2 Fig. 1/Fig. 79 Fig. 72 Fig. 6 Fig. 77 Fig. 18 V] Vin (V) Figure 27

Claims (1)

【特許請求の範囲】[Claims] 複数個のトランジスタの直列接続で構成された第1のト
ランジスタ群と、複数個のトランジスタの直列接続で構
成された第2のトランジスタ群とを並列に接続し、それ
ぞれのゲートをトランジスタ群間で和文わる方向に接続
し、負荷素子又は、駆動素子として基本ゲート回路及び
複合ゲート回路を構成することを特徴とする半導体装置
A first transistor group consisting of a series connection of a plurality of transistors and a second transistor group consisting of a series connection of a plurality of transistors are connected in parallel, and each gate is connected between the transistor groups. A semiconductor device characterized in that the semiconductor device is connected in opposite directions to form a basic gate circuit and a composite gate circuit as a load element or a driving element.
JP58003096A 1983-01-12 1983-01-12 Semiconductor device Pending JPS59127424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58003096A JPS59127424A (en) 1983-01-12 1983-01-12 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58003096A JPS59127424A (en) 1983-01-12 1983-01-12 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS59127424A true JPS59127424A (en) 1984-07-23

Family

ID=11547807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58003096A Pending JPS59127424A (en) 1983-01-12 1983-01-12 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS59127424A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218053A (en) * 1985-07-17 1987-01-27 Mitsubishi Electric Corp Semiconductor integrated circuit device
JPS62104153A (en) * 1985-10-30 1987-05-14 インターナショナル・ビジネス・マシーンズ・コーポレーション Integrated logic circuit
US4835419A (en) * 1987-10-30 1989-05-30 International Business Machines Corporation Source-follower emitter-coupled-logic receiver circuit
JPH02309815A (en) * 1989-05-25 1990-12-25 Nec Corp Multi-input cmos gate circuit
US5347178A (en) * 1992-01-23 1994-09-13 Mitsubishi Denki Kaisha Kitaitami Seisakusho CMOS semiconductor logic circuit with multiple input gates

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218053A (en) * 1985-07-17 1987-01-27 Mitsubishi Electric Corp Semiconductor integrated circuit device
JPS62104153A (en) * 1985-10-30 1987-05-14 インターナショナル・ビジネス・マシーンズ・コーポレーション Integrated logic circuit
JPH0556864B2 (en) * 1985-10-30 1993-08-20 Ibm
US4835419A (en) * 1987-10-30 1989-05-30 International Business Machines Corporation Source-follower emitter-coupled-logic receiver circuit
JPH02309815A (en) * 1989-05-25 1990-12-25 Nec Corp Multi-input cmos gate circuit
US5347178A (en) * 1992-01-23 1994-09-13 Mitsubishi Denki Kaisha Kitaitami Seisakusho CMOS semiconductor logic circuit with multiple input gates

Similar Documents

Publication Publication Date Title
JP2917957B2 (en) Oscillator circuit and delay circuit
JPH0695570B2 (en) Semiconductor integrated circuit device
JP2007042797A (en) Semiconductor integrated circuit
JPS59127424A (en) Semiconductor device
JPH11163713A (en) Semiconductor integrated circuit device
JPS63292647A (en) Semiconductor integrated circuit device
JP2741712B2 (en) Semiconductor integrated circuit device
JPS62208715A (en) Semiconductor integrated circuit
US20230135349A1 (en) Multi-row height composite cell with multiple logic functions
JPS6057724A (en) Semiconductor integrated circuit
JPH04151870A (en) Cmos gate array
JP6544093B2 (en) Power supply circuit and voltage control method
JPH0327529A (en) Semiconductor integrated circuit device
JPS62120064A (en) Integrated circuit
JPH0586865B2 (en)
JPH07109859B2 (en) MOS type semiconductor integrated circuit device
WO1980002470A1 (en) Output buffer circuit for cmos integrated circuit
JPH02174316A (en) Semiconductor integrated circuit
JPH04132748U (en) Output buffer circuit
JPH03231462A (en) Semiconductor integrated circuit
JPH04367264A (en) Semiconductor element and its manufacture
JPH0491455A (en) Gate array type lsi
JPH0491467A (en) Semiconductor integrated circuit
JPS60227516A (en) Semiconductor integrated circuit
JPS62119960A (en) Complementary semiconductor integrated circuit device