JPS59127351A - Method and apparatus for stabilization of charged particle ray - Google Patents

Method and apparatus for stabilization of charged particle ray

Info

Publication number
JPS59127351A
JPS59127351A JP162283A JP162283A JPS59127351A JP S59127351 A JPS59127351 A JP S59127351A JP 162283 A JP162283 A JP 162283A JP 162283 A JP162283 A JP 162283A JP S59127351 A JPS59127351 A JP S59127351A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
magnetic field
deflecting
lens barrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP162283A
Other languages
Japanese (ja)
Inventor
Tadao Suganuma
忠雄 菅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ERIONIKUSU KK
Original Assignee
ERIONIKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ERIONIKUSU KK filed Critical ERIONIKUSU KK
Priority to JP162283A priority Critical patent/JPS59127351A/en
Publication of JPS59127351A publication Critical patent/JPS59127351A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To enable the vibration of the charged particle ray due to the stray magnetic field to be remarkably decreased without using a magnetic shielding member, by detecting the stray magnetic field at least at two places in X and Y directions in the vicinity of the body tube and supplying the detected signals to the deflecting means of the charged particle ray. CONSTITUTION:The correcting deflection system 8 is, for example, of an electrostatic arrangement having two sets of deflecting electrodes 8x, 8x, 8y, 8y. Each deflecting electrode set 8x, 8x, 8y, 8y of the correcting deflection system 8 is connected to the stabilaization circuit 20. The deflecting electrode set 8x, 8x is provided in the direction of the X axis of the rectangular (X-Y) coordinate and the deflecting electrode set 8y, 8y is provided in the direction of the Y axis. The stabilization circuit 20 calcultes the vibration amount of the charged particle ray 4 due to the stray magnetic field in accordance with the detected signals by the magnetic field detectors 10x, 10y, and generates and supplies the control signals to the deflecting electrodes 8x, 8x, 8y, 8y which are used by the correcting deflection system 8 for suppressing the vibration.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子線露光装置、電子顕微鏡、X線マイクロ
アナライザ、イオンマイクロプローブ等荷電粒子線を試
料に照射するいわゆる荷電粒子線照射装置における荷電
粒子線を安定化する方法と装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to charged particle beam irradiation equipment used in so-called charged particle beam irradiation equipment that irradiates a sample with a charged particle beam, such as an electron beam exposure equipment, an electron microscope, an X-ray microanalyzer, and an ion microprobe. METHODS AND APPARATUS FOR STABILIZING LINES.

従来技術 荷電粒子線照射装置においては、その周囲に存在する浮
遊磁場により荷電粒子線が偏向を受けて振動してしまう
ことが多い。このように荷電粒子線が振動すると、試料
上における荷電粒子線の照射位置が変動し、その結果特
に荷電粒子線を細く集束する装置では微小パターンが描
けず、分゛解能を向上することができず、あるいは微小
な一点を分析できない等の欠点を生じる。
In conventional charged particle beam irradiation devices, the charged particle beam is often deflected and oscillated by a floating magnetic field existing around the device. When the charged particle beam oscillates in this way, the irradiation position of the charged particle beam on the sample fluctuates, and as a result, it is difficult to draw minute patterns, especially with devices that focus the charged particle beam narrowly, making it difficult to improve resolution. However, there are disadvantages such as not being able to analyze a single minute point.

前記浮遊磁場は、建物内に配置された電気ケーブル、電
気装置、電灯等により発生するものであ 。
The floating magnetic field is generated by electric cables, electric devices, electric lights, etc. placed inside a building.

す、このような浮遊磁場の発生原因を無くすることはき
わめて困難である。
It is extremely difficult to eliminate the causes of such stray magnetic fields.

このようなことから、従来ではパーマロイ等透磁率の高
い材料で鏡筒、試料室等を覆って磁気シールドしていた
For this reason, in the past, the lens barrel, sample chamber, etc. were covered with a material with high magnetic permeability, such as permalloy, for magnetic shielding.

しかし、磁気シールドは原理的にシールド率(効果)を
大きくすることが困難で、また鏡筒、試料−苗等を磁気
シールドしても、鏡筒や試料室には電気ケーブル、真空
にするための配管、各種の操作用つまみ等が設けられて
いるため、磁気シールド部材に孔を形成しな(プればな
らず、この孔もシールド率を低下させる原因になってお
り、結局従来の装置では浮遊磁場による荷電粒子線の振
動量を数分の1程度に減少することができるにすぎなか
った。また、従来の装置では鏡筒や試料室を磁気シール
ド部材で覆うため、それだけスペースを要するし、装置
が大型になり、しかも操作用のつまみ等が複雑になるし
、その操作性が低下していた。
However, it is theoretically difficult to increase the shielding rate (effectiveness) of magnetic shielding, and even if the lens barrel, sample, seedlings, etc. are magnetically shielded, there are electrical cables and vacuum in the lens barrel and sample chamber. piping, various operation knobs, etc., holes must be formed in the magnetic shielding member, and these holes also reduce the shielding rate, and in the end, conventional devices With this method, it was possible to reduce the amount of vibration of the charged particle beam due to the stray magnetic field to only a fraction of the amount.Furthermore, in conventional devices, the column and sample chamber are covered with magnetic shielding members, which requires a corresponding amount of space. However, the device becomes large, and the operating knobs and the like become complicated, reducing its operability.

発明の目的 本発明は、磁気シールド部材を用いることなしに浮″i
fi磁場による荷電粒子線の振動量を著しく減少するこ
とかできる荷電粒子線安定化方法及び装置を提供づるこ
とを目的とする。
Purpose of the Invention The present invention provides a floating device without using a magnetic shield member.
It is an object of the present invention to provide a charged particle beam stabilization method and apparatus that can significantly reduce the amount of vibration of a charged particle beam caused by an fi magnetic field.

発明の構成 本発明にJ:れば上記目的は、鏡筒の近傍の少なくとも
X方向とY方向の2箇所において浮遊磁場を検出し、そ
の検出信号を荷電粒子線の偏向手段に供給することによ
り達成される。
Structure of the Invention According to the present invention, the above object is to detect a stray magnetic field in at least two locations in the X direction and Y direction near the lens barrel, and to supply the detection signal to a charged particle beam deflection means. achieved.

実施例 第1図及び第2図において、1は荷電粒子線照射装置本
体であり、鏡筒2と、この鏡筒の下部に続く試料室3を
有している。鏡筒2には、荷電粒子線4を発生する粒子
線m5と、荷電粒子線4を試料9上に集束する集束レン
ズ6と、荷電粒子線4を偏向する主偏向装置7と、浮遊
磁場によ′る荷電粒子線4の振動を補正する補正用偏向
装置8が設けられており、また、鏡筒2の近傍のX方向
とY方向の2箇所には浮遊磁場用の磁場検出器10x、
10yが設けられている。
Embodiment In FIGS. 1 and 2, 1 is a main body of a charged particle beam irradiation apparatus, which has a lens barrel 2 and a sample chamber 3 continuing to the lower part of this lens barrel. The lens barrel 2 includes a particle beam m5 that generates a charged particle beam 4, a focusing lens 6 that focuses the charged particle beam 4 onto a sample 9, a main deflection device 7 that deflects the charged particle beam 4, and a particle beam m5 that generates a charged particle beam 4. A correction deflection device 8 is provided for correcting vibrations of the charged particle beam 4 caused by stray magnetic fields, and magnetic field detectors 10x for stray magnetic fields are provided at two locations near the lens barrel 2 in the X direction and the Y direction.
10y is provided.

粒子線源5、集束レンズ6及び主偏向装置7は既知の装
置であり、各々電源(図示せず)に接続されている。
The particle beam source 5, the focusing lens 6, and the main deflection device 7 are known devices, and are each connected to a power source (not shown).

補正用偏向装置8は、主偏向装置7と同様に既知の電界
型あるいは磁界型の偏向装置であり、図示の例では第2
図に示すように2組の偏向電極8X、8x、8y、8y
を有する電界型の装置を用いている。補正用偏向装置8
の各偏向電極8×。
The correction deflection device 8 is a known electric field type or magnetic field type deflection device like the main deflection device 7, and in the illustrated example, a second deflection device 8 is used.
As shown in the figure, two sets of deflection electrodes 8X, 8x, 8y, 8y
An electric field type device is used. Correction deflection device 8
each deflection electrode 8×.

8x、8y、8yは各々安定化回路20に接続されてい
る。偏向電極8x 、 8xは直交するXY座標のX方
向に設けられており、偏向電極8y、8yはY方向に設
けられている。前記XY座標は、荷電粒子線4の中心を
原点とするものであり、主偏向装置7のXY座標と必ず
しも一致していなくてもよいが、一致させると装置の調
節がやり易いから好適である。
8x, 8y, and 8y are each connected to a stabilizing circuit 20. The deflection electrodes 8x, 8x are provided in the X direction of orthogonal XY coordinates, and the deflection electrodes 8y, 8y are provided in the Y direction. The XY coordinates have their origin at the center of the charged particle beam 4, and do not necessarily have to match the XY coordinates of the main deflection device 7, but it is preferable that they match because it makes it easier to adjust the device. .

試料室2には、2次電子や反射電子等の荷電粒子を検出
する荷電粒子検出器11が設けられてあり、この荷電粒
子検出器11の検出信号は陰極線管を用いた表示装置1
2に供給される。
The sample chamber 2 is provided with a charged particle detector 11 that detects charged particles such as secondary electrons and backscattered electrons, and the detection signal of this charged particle detector 11 is transmitted to a display device 1 using a cathode ray tube.
2.

各磁場検出器1Qx、10Vは、ボール効果を利用した
いわゆるホール素子あるいは複数巻きのコイルであり、
鏡筒2に近接して設りられている。
Each magnetic field detector 1Qx, 10V is a so-called Hall element or a multi-turn coil that utilizes the ball effect.
It is provided close to the lens barrel 2.

磁場検出器10Xは、補正用偏向装置8のXY座標のX
方向に位置されかつX方向の磁場を検出する状態に設け
られ、また磁場検出器10Vは補正用偏向装置8のXY
!標のY方向に位置されかつY方向の磁場を検出する状
態に設けられている。
The magnetic field detector 10X detects the
The magnetic field detector 10V is located in the XY direction of the correction deflection device 8.
! It is located in the Y direction of the target and is provided to detect the magnetic field in the Y direction.

磁場検出器10x、10yをこのように設けるには、た
とえば磁場検出器1QX、101/が複数巻きのコイル
であればその中心軸線がX方向、Y方向に位置するよう
にすればよい。
To provide the magnetic field detectors 10x, 10y in this manner, for example, if the magnetic field detectors 1QX, 101/ are coils with multiple turns, their central axes may be located in the X direction and the Y direction.

安定化回路20は、磁場検出器10X、10Vの検出信
号を基に浮遊磁場による荷電粒子線4の振動量を算出し
、この振動を補正用偏向装置8で抑制するための制御信
号を発生し、その制御信号を偏向電極8x、8x、8y
、8yに供給づる。
The stabilization circuit 20 calculates the amount of vibration of the charged particle beam 4 due to the floating magnetic field based on the detection signals of the magnetic field detectors 10X and 10V, and generates a control signal for suppressing this vibration with the correction deflection device 8. , the control signals are transmitted to the deflection electrodes 8x, 8x, 8y
, 8y.

すなわち、浮遊磁場は、時間もとともに変化しているか
ら、X方向の浮遊磁場をBy、Y方向の浮遊磁場をBy
とすると、 j3x =fx(t )・・・・・・・・・・・・・・
・・・・(1)By =fy(t )・・・・・・・・
・・・・・・・・・・(2)で表わすことができる。ま
た鏡筒2内の荷電粒子線4の浮遊磁場による変位は、磁
場3x 、 BVに依存し、かつこれらの合成になるか
ら、X方向の変位をΔx、Y方向の変位をΔyとすると
、ΔX =A IFX  (T+T O>+A 2FV
  (T+T o) ・・・・・・・・・ (3)八V
  −A  3 FX  (T+T  O)+A4FV
  (T+To)  ・・・・・・・・・ (4)で表
される。ここにA1ないしA4は磁場にたいする変位の
比例定数、TOは鏡筒2を構成する材オ′」の磁気応答
速度が遅い場合に生ずる遅れ時間であり鏡筒の構造によ
ってはTOはほぼ零の場合もある。
In other words, since the stray magnetic field changes with time, the stray magnetic field in the X direction is By, and the stray magnetic field in the Y direction is By.
Then, j3x = fx(t)・・・・・・・・・・・・・・・
...(1) By =fy(t)...
It can be expressed as (2). In addition, the displacement of the charged particle beam 4 in the lens barrel 2 due to the floating magnetic field depends on the magnetic fields 3x and BV and is a composite of these, so if the displacement in the X direction is Δx and the displacement in the Y direction is Δy, then ΔX =A IFX (T+T O>+A 2FV
(T+T o) ・・・・・・・・・ (3) Eight V
-A 3 FX (T+T O)+A4FV
(T+To) ...... Represented by (4). Here, A1 to A4 are proportional constants of displacement with respect to the magnetic field, and TO is the delay time that occurs when the magnetic response speed of the material O' that makes up the lens barrel 2 is slow. Depending on the structure of the lens barrel, TO may be almost zero. There is also.

上記変位Δ×、△yを零にし、荷電粒子線の照射位置を
安定化づ−るには3式、4式で表わされる変位と反対の
極性を有する変位を荷電粒子線に加えればよく、補正用
偏向装置8に加える電圧Vx。
In order to make the above displacements Δx and Δy zero and stabilize the irradiation position of the charged particle beam, it is sufficient to add a displacement having the opposite polarity to the displacement expressed by equations 3 and 4 to the charged particle beam, Voltage Vx applied to correction deflection device 8.

V yは、補正用偏向装置8の偏向感度をCI、C2と
すると Vx =−A ICIFX  (T+T O>−A 2
G +Fy  (T+T o)・・・・・・・・・(5
)vy =−A 302Fx  (T+T O>−八 
40 2FV   (T+T   o)   ・・・ 
・・・ ・・・  (6)となる。従って、安定化回路
20は、磁場検出器10x、10yの検出信号を基に5
式と6式の演算を行ない、電圧VXを偏向電極3x 、
8xに、電圧Vyを偏向電極sy、syに各々供給する
Vy is Vx = -A ICIFX (T+T O>-A 2
G +Fy (T+T o)・・・・・・・・・(5
)vy =-A 302Fx (T+T O>-8
40 2FV (T+T o)...
... ... (6). Therefore, the stabilizing circuit 20 uses the detection signals of the magnetic field detectors 10x and 10y to
By calculating the formula and formula 6, the voltage VX is applied to the deflection electrode 3x,
8x, a voltage Vy is supplied to the deflection electrodes sy, sy, respectively.

このため、安定化回路20は磁場検出器10×の検出信
号を各々増幅する2個の増幅器21.22と、磁場検出
器10yの検出信号を増幅する2個の増幅器23.24
と、増幅器21と23の出力を加算する加算回路25と
、増幅器22と24の出力を加算する加算回路26と、
加算回路25゜26の出力を個々に遅延する2個の遅延
回路27゜28とを有しており、遅延回路27の出力を
偏向電極8V 、8Vに、遅延回路28の出力を偏向電
極8x、8xに各々供給している。
Therefore, the stabilization circuit 20 includes two amplifiers 21 and 22 that amplify the detection signals of the magnetic field detector 10x, and two amplifiers 23 and 24 that amplify the detection signals of the magnetic field detector 10y.
, an adder circuit 25 that adds the outputs of amplifiers 21 and 23, and an adder circuit 26 that adds the outputs of amplifiers 22 and 24,
It has two delay circuits 27 and 28 that individually delay the outputs of the adder circuits 25 and 26. 8x, respectively.

この装置において浮遊−磁場による影響を除去するには
、先ず磁場検出器10x、1oyをオフにした状態で荷
電粒子線4を主偏向装置7により試料9上において2次
元的に走査し、荷電粒子検出器11の出力を表示装置1
2に供給して走査像を表示装置12に表示する。このJ
:うにづれば、浮遊磁場による荷電粒子線4の振動にと
もなって前記走査像のゆれが観察される。
In order to remove the influence of the floating magnetic field in this device, first, with the magnetic field detectors 10x and 1oy turned off, the charged particle beam 4 is two-dimensionally scanned over the sample 9 by the main deflection device 7, and the charged particle The output of the detector 11 is displayed on the display device 1
2 to display the scanned image on the display device 12. This J
In other words, a fluctuation in the scanned image is observed as the charged particle beam 4 vibrates due to the floating magnetic field.

次に、磁場検出器10X、10yをオンにし、前記走査
像のX方向におけるゆれが最小になるように増幅器22
.24の増幅率と遅延回路28の遅延時間を調節する。
Next, the magnetic field detectors 10X and 10y are turned on, and the amplifier 22 is set so that the vibration of the scanned image in the X direction is minimized.
.. The amplification factor of 24 and the delay time of delay circuit 28 are adjusted.

これにより、5式におけるAlCl、A2Cl、TOが
設定されて、増幅器22からは −A+C+Fx  (T) に対応する信号が出力され、増幅器24からは−A2C
IFV  (T) に対応する信号が出力されて、そして遅延回路28から
は5式のVxに対応する信号が出力される。
As a result, AlCl, A2Cl, and TO in equation 5 are set, the amplifier 22 outputs a signal corresponding to -A+C+Fx (T), and the amplifier 24 outputs -A2C
A signal corresponding to IFV (T) is output, and a signal corresponding to Vx of formula 5 is output from the delay circuit 28.

次に、前記走査像のY方向におけるゆれが最小になるよ
うに増幅器21.23の増幅率と遅延回路27の遅延時
間を調節する。これにより、6式におけるA3C2,A
4C2,T Oが設定されて、増幅器21から(ニ ー△3C2FX  (T) に対応する信号が出力され、増幅器24からは−AaC
2Fy  (T) に対応する信号が出力され、そして遅延回路27からは
6式のVyに対応する信号が出力される。
Next, the amplification factors of the amplifiers 21 and 23 and the delay time of the delay circuit 27 are adjusted so that the fluctuation of the scanned image in the Y direction is minimized. As a result, A3C2,A in formula 6
4C2,T O is set, the amplifier 21 outputs a signal corresponding to (nee △3C2FX (T), and the amplifier 24 outputs -AaC
A signal corresponding to 2Fy (T) is output, and a signal corresponding to Vy of equation 6 is output from the delay circuit 27.

その後は、前記走査像の倍率を上げて、増幅器22.2
4の増幅率と遅延回路28の遅延時間の調節及び増幅器
21.23の増幅率と遅延回路27の遅延時間の調節を
更に精密に行なえばよい。
Thereafter, the magnification of the scanned image is increased and the amplifier 22.2
The amplification factor of 4 and the delay time of the delay circuit 28 and the amplification factor of the amplifiers 21 and 23 and the delay time of the delay circuit 27 may be adjusted more precisely.

このようにすれば、最終的に増幅器21は6式中の−A
 302Fx  (T)に対応する信号を、増幅器22
は5式中の−AICIFx(T>に対応する信号を、増
幅器23は6式中の−A 4C2Fy  (T)に対応
する信号を、増幅器24は5式中の−A2CIFV  
(T)に対応する信号を各々出力し、また遅延回路27
.28は前段の加算回路25.26の出力を前記遅れ時
間TOだけ遅延させて、5式、6式のVx 、Vyに対
応する信号を出力する。
By doing this, the amplifier 21 will finally be
The signal corresponding to 302Fx (T) is sent to the amplifier 22
is the signal corresponding to -AICIFx(T> in equation 5, the amplifier 23 is the signal corresponding to -A 4C2Fy (T) in equation 6, and the amplifier 24 is the signal corresponding to -A2CIFV in equation 5.
(T), and the delay circuit 27
.. 28 delays the outputs of the adder circuits 25 and 26 in the preceding stage by the delay time TO, and outputs signals corresponding to Vx and Vy of equations 5 and 6.

なお、上述の実施例では、主偏向装置7と別個に補正用
偏向装置8を設りているが、主偏向装置7を補正用偏向
装置に共用にしてもよい。この場台、補正用電圧は、主
偏向電圧と電気回路により加算されて主偏向装置7に供
給される。
In the above embodiment, the correction deflection device 8 is provided separately from the main deflection device 7, but the main deflection device 7 may also be used as the correction deflection device. In this case, the correction voltage is added to the main deflection voltage by an electric circuit and supplied to the main deflection device 7.

発明の効果 以上のように本発明は、鏡筒の近傍の少なくとも′×力
方向Yh向の2個所で浮遊磁場を検出し、その検出信号
を基に荷電粒子線の変位が最小になるように補正するか
ら、前記変位が実用上零になり、荷電粒子線を正確かつ
安定に一点に照射することができ、その結果電子線露光
装置の場合は微細なパターンを正確に描くことができ、
走査型電子顕微鏡の場合は分解能が著しく向上し、X線
マイクロアナライザの場合は微小な一点を分析すること
ができる。また、本発明は、鏡筒等を磁気シールド部材
で覆う必要がないから、荷電粒子線照射装置か大型にな
ることがないのみならず、操作用のつまみ等が簡単な構
成でよいし、その操作性が低下することもない。
Effects of the Invention As described above, the present invention detects stray magnetic fields at at least two locations in the vicinity of the lens barrel in the force direction Yh, and uses the detected signals to minimize the displacement of the charged particle beam. Because of the correction, the displacement becomes practically zero, and the charged particle beam can be irradiated accurately and stably to a single point.As a result, in the case of an electron beam exposure device, fine patterns can be accurately drawn.
In the case of a scanning electron microscope, the resolution is significantly improved, and in the case of an X-ray microanalyzer, a single minute point can be analyzed. Further, since the present invention does not require covering the lens barrel etc. with a magnetic shielding member, not only does the charged particle beam irradiation device not need to be bulky, but the operating knobs etc. can be of simple configuration. There is no reduction in operability.

【図面の簡単な説明】[Brief explanation of drawings]

第′1図は本発明にかかる安定化装置を備えた荷電粒子
線照射装置を示す図、第2図は安定化装置の電気回路の
一実施例を示すブロック図である。 1:荷電粒子線照射装置、2:鏡筒、3:試料室、4:
荷電粒子線、5:粒子線源、6:集束レンズ、7:主偏
向装置、8:補正用偏向装置、9:試料、10:磁場検
出器、11:粒子線検出器、12:陰極線管表示装置、
20:安定化回路。
FIG. 1 is a diagram showing a charged particle beam irradiation device equipped with a stabilizing device according to the present invention, and FIG. 2 is a block diagram showing an embodiment of the electric circuit of the stabilizing device. 1: Charged particle beam irradiation device, 2: Lens barrel, 3: Sample chamber, 4:
Charged particle beam, 5: Particle beam source, 6: Focusing lens, 7: Main deflection device, 8: Correction deflection device, 9: Sample, 10: Magnetic field detector, 11: Particle beam detector, 12: Cathode ray tube display Device,
20: Stabilization circuit.

Claims (2)

【特許請求の範囲】[Claims] (1)荷電粒子線照射装置の鏡筒の近傍の少なくともX
方向とY方向の2箇所で浮遊磁場を電気信号として検出
し、その検出信号を荷電粒子線偏向手段に供給して照射
位置を安定化させることを特徴とする荷電粒子線の安定
化方法。
(1) At least X near the lens barrel of the charged particle beam irradiation device
A method for stabilizing a charged particle beam, comprising detecting a stray magnetic field as an electric signal at two locations in the direction and the Y direction, and supplying the detection signal to a charged particle beam deflection means to stabilize the irradiation position.
(2)荷電粒子線照射装置の鏡筒の近傍の少なくともX
方向とY方向の2箇所に磁場検出器を各々設け、かつ前
記検出器の出力信号を基に荷電粒子線の照射位置を安定
化する制御信号を発生して荷電粒子線偏向手段に供給す
る安定化回路を設けてなる荷電粒子線の安定化装置。
(2) At least X near the lens barrel of the charged particle beam irradiation device
Magnetic field detectors are provided at two locations in the direction and the Y direction, and a control signal is generated to stabilize the irradiation position of the charged particle beam based on the output signal of the detector, and is supplied to the charged particle beam deflection means. A charged particle beam stabilization device equipped with a conversion circuit.
JP162283A 1983-01-08 1983-01-08 Method and apparatus for stabilization of charged particle ray Pending JPS59127351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP162283A JPS59127351A (en) 1983-01-08 1983-01-08 Method and apparatus for stabilization of charged particle ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP162283A JPS59127351A (en) 1983-01-08 1983-01-08 Method and apparatus for stabilization of charged particle ray

Publications (1)

Publication Number Publication Date
JPS59127351A true JPS59127351A (en) 1984-07-23

Family

ID=11506626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP162283A Pending JPS59127351A (en) 1983-01-08 1983-01-08 Method and apparatus for stabilization of charged particle ray

Country Status (1)

Country Link
JP (1) JPS59127351A (en)

Similar Documents

Publication Publication Date Title
US10424459B2 (en) Charged particle beam device
US7411192B2 (en) Focused ion beam apparatus and focused ion beam irradiation method
JP4273141B2 (en) Focused ion beam device
WO2010024105A1 (en) Charged corpuscular particle beam irradiating method, and charged corpuscular particle beam apparatus
JPH071686B2 (en) Ion micro analyzer
US6653632B2 (en) Scanning-type instrument utilizing charged-particle beam and method of controlling same
KR890005568A (en) Compensation Methods for Eddy Current Effects in Charge Beam and Exposure Systems
JPS59127351A (en) Method and apparatus for stabilization of charged particle ray
US7060985B2 (en) Multipole field-producing apparatus in charged-particle optical system and aberration corrector
US20030038243A1 (en) Charged-particle-beam (CPB) optical systems, and CPB Microlithography systems comprising same, that cancel external magnetic fields
US6717141B1 (en) Reduction of aberrations produced by Wien filter in a scanning electron microscope and the like
JPS60160791A (en) Cathode-ray tube
JPH04149945A (en) Charged beam cross section machining/observing device
JP2015072843A (en) Charged particle beam device
JP3378369B2 (en) Charged beam irradiation device and irradiation method
JPS58214256A (en) Electron beam radiation device
JPS61220259A (en) Electron beam apparatus
JPS5821063Y2 (en) Jikainosayouchikeshisouchi
EP0262614A1 (en) Automatic compensation for image-intensifier tube distortion
JP2667674B2 (en) Charged particle beam equipment
JPS5811073B2 (en) Sample scanning type sample image display device using particle beam
JP2004047492A (en) Charged particle microscope
JPH03176955A (en) Scanning type electron beam device
JPS5973840A (en) Object lens for scan electron microscope
JPS63266753A (en) Scanning type electron beam device