JPS5821063Y2 - Jikainosayouchikeshisouchi - Google Patents

Jikainosayouchikeshisouchi

Info

Publication number
JPS5821063Y2
JPS5821063Y2 JP1975149259U JP14925975U JPS5821063Y2 JP S5821063 Y2 JPS5821063 Y2 JP S5821063Y2 JP 1975149259 U JP1975149259 U JP 1975149259U JP 14925975 U JP14925975 U JP 14925975U JP S5821063 Y2 JPS5821063 Y2 JP S5821063Y2
Authority
JP
Japan
Prior art keywords
magnetic field
coil
external magnetic
electron beam
external
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1975149259U
Other languages
Japanese (ja)
Other versions
JPS5262067U (en
Inventor
伊達玄
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP1975149259U priority Critical patent/JPS5821063Y2/en
Publication of JPS5262067U publication Critical patent/JPS5262067U/ja
Application granted granted Critical
Publication of JPS5821063Y2 publication Critical patent/JPS5821063Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electron Tubes For Measurement (AREA)

Description

【考案の詳細な説明】 本考案は走査型電子顕微鏡のような電子線ビームを用い
る型の装置における外部磁界の作用打消装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for canceling the effect of an external magnetic field in an apparatus of the type that uses an electron beam, such as a scanning electron microscope.

外部磁界としては直流的な磁界もあるが特に障害になる
のは室内の配電線とか電気機器を流れる電流によって作
られる商用周波数の交番磁界であり、本考案で影響を打
消そうとするのはこの交番磁界である。
External magnetic fields include direct current magnetic fields, but the most nuisance is the commercial frequency alternating magnetic fields created by currents flowing through indoor power lines and electrical equipment, and this invention aims to cancel the effects of this field. It is an alternating magnetic field.

通常電子顕微鏡等では外部磁界を遮蔽するには磁性体で
囲む方法が用いられるが、内部から何等かの物体を突出
させたり、光学的に内部を見得るようにしようとする場
合磁気シールド体に窓孔を穿たねばならぬから内部へ磁
界が侵入する。
Normally, in electron microscopes, etc., a method of surrounding it with a magnetic material is used to shield external magnetic fields, but if you want to make some object protrude from inside or make it possible to see inside optically, a magnetic shielding material is used. Because a window hole must be drilled, the magnetic field penetrates inside.

本考案は外部磁界の作用を除去したい空間を上述したよ
うに磁性体で構造的に密閉することなく、構造的には大
へん開放的に外部磁界の作用を消去しようとするもので
あり、同空間への構造物体の出入、光学系光路の出入等
が全(自由にできるものである。
The present invention attempts to eliminate the effect of external magnetic fields in a largely open structure without structurally sealing the space in which the effects of external magnetic fields are to be removed, as described above. It is possible to freely move structural objects in and out of the space, enter and exit the optical system light path, etc.

本考案は外部磁界を直接遮蔽するのではなく、外部漂遊
磁界による電子ビームの偏向を電子ビーム偏向コイルに
よる磁界の制御によって補償することによって外部磁界
の影響を打消すものである。
The present invention does not directly shield the external magnetic field, but cancels the influence of the external magnetic field by compensating for the deflection of the electron beam due to the external stray magnetic field by controlling the magnetic field using an electron beam deflection coil.

以下実施例によって本考案を説明する。The present invention will be explained below with reference to Examples.

本考案の目的及び原理について更に詳述する。The purpose and principle of the present invention will be explained in further detail.

電子顕微鏡内の外部磁界による漂遊磁界がどのようなも
のか考えてみる。
Consider what the stray magnetic field caused by an external magnetic field inside an electron microscope looks like.

外部磁界は商用交流によってトランスとか配電線によっ
て形成されており、成る程度広い室の中央辺りで比較的
小さい領域をとって考えるとその中では略均−或はゆる
やかな空間分布をしていると考えてもよく、このような
磁界を打消すなら、その領域の中或は領域に近接した周
辺で磁界を測定してその出力を制御信号にすればよい。
The external magnetic field is generated by commercial alternating current transformers and power distribution lines, and if we take a relatively small area around the center of a fairly large room, we can assume that it has an approximately uniform or gradual spatial distribution within that area. It may be possible to cancel such a magnetic field by measuring the magnetic field in or near the area and using the output as a control signal.

電子顕微鏡の外筐は鉄でできているから、外部磁界は殆
んど遮蔽されているが、鉄材の導磁率は無限大ではなく
、また外筐は区分されて境目には非磁性材料がはさまっ
ているので、外筐は磁気遮蔽と見るときはあちこちに隙
間がおいている。
The outer casing of an electron microscope is made of iron, so it is shielded from most external magnetic fields, but the magnetic permeability of iron is not infinite, and the outer casing is divided into sections with non-magnetic material sandwiched between them. Therefore, when you look at the outer casing as a magnetic shield, there are gaps here and there.

従って外筐の各部は外部磁界によって磁化され、この磁
化によって生じた磁束がこれらの隙間から筐体内に漏出
しており電子顕微鏡内の漂遊磁界は局所的変化が大きい
ものである。
Therefore, each part of the outer casing is magnetized by an external magnetic field, and the magnetic flux generated by this magnetization leaks into the casing through these gaps, and the stray magnetic field within the electron microscope has large local changes.

その上外筐の外部は形が同じでなく、渦電流の流れ方が
同じでなく区分された各外筐間の隙間における各漏洩磁
束の時間的変化は材質の磁気ヒステリシス及び渦電流の
影響で各隙間毎に外部磁界とは異った波形になっている
Moreover, the external shapes of the outer casings are not the same, and the flow of eddy currents is not the same.The temporal changes in leakage magnetic flux in the gaps between the divided outer casings are due to the effects of the magnetic hysteresis of the material and the eddy currents. Each gap has a different waveform from the external magnetic field.

このように時間的にも空間的にも不同な磁界による電子
軌道の乱れを消去しようと云うのが本考案の目的である
The purpose of the present invention is to eliminate the disturbance of electron trajectories caused by such temporally and spatially disparate magnetic fields.

このような場合において電子顕微鏡のどこかで外部漂遊
磁界を検出してそれをそのまS制御信号としていたので
は到底上述したような時間的空間的不同の磁界作用を打
消すことはできない。
In such a case, if an external stray magnetic field is detected somewhere in the electron microscope and used directly as an S control signal, it is impossible to cancel out the effect of the temporally and spatially disparate magnetic field as described above.

本考案は上述した課題を次のように考えて解決した。The present invention has solved the above-mentioned problems by considering the following.

電子の通る空間の漂遊磁界は空間的に変化が大きく、空
間各部における時間的変化の波形も位相も同じでない。
The stray magnetic field in the space that electrons pass through varies greatly spatially, and the waveform and phase of the temporal changes in each part of the space are not the same.

しかしこのような磁界もその原因は装置外の適当な場所
の漂遊磁界と略同じものである。
However, the cause of such a magnetic field is almost the same as that of a stray magnetic field at a suitable location outside the device.

従って電子軌道空間の漂遊磁界も成分としては外部の磁
界と同じものから出来ていると見てよい。
Therefore, it can be seen that the stray magnetic field in the electron orbital space is made up of the same components as the external magnetic field.

従ってこのような漂遊磁界の影響を受けて電子が飛行す
るときの軌道の乱れの最終結果は結局の所外部磁界と同
じ成分より或っていると見てよい。
Therefore, it can be seen that the final result of orbital disturbance when electrons fly under the influence of such a stray magnetic field consists of the same component as the external magnetic field.

そこで電子軌道空間における漂遊磁界を各所毎に個別的
に打消さなくても、一つの磁界発生装置で軌道の乱れの
最終結果を補償するようにすればよく、そのような磁界
は上述した所から明かなように外部漂遊磁界に原因があ
るのだから、外部漂遊磁界の成分を適当に変倍、移相し
てやれば形成できる筈である。
Therefore, instead of canceling the stray magnetic field in each location individually in the electron orbit space, it is sufficient to use a single magnetic field generator to compensate for the final result of the orbit disturbance, and such a magnetic field can be generated from the above-mentioned locations. Since the cause is obviously the external stray magnetic field, it should be possible to form it by suitably scaling and phase shifting the components of the external stray magnetic field.

第1図は本考案の一実施例装置の全体構成を示すブロッ
ク図である。
FIG. 1 is a block diagram showing the overall configuration of an apparatus according to an embodiment of the present invention.

X、Yは電子ビームにX方向、y方向の補償用偏向を与
える補償用偏向コイルであり、xs、ysは夫々X方向
、y方向の外部磁界を検出するコイルである。
X and Y are compensation deflection coils that give compensation deflections in the X and y directions to the electron beam, and xs and ys are coils that detect external magnetic fields in the X and y directions, respectively.

外部磁界は厳密には電子ビームの存在する空間で検出す
べきものであるが、外部磁界の空間的な変化は比較的ゆ
るやかであるから、Xs、ysは電子ビームに近接して
設ける必要はなく、偏向コイルX、Yからも離れていて
支障はなく、その位置はかなり自由である。
Strictly speaking, the external magnetic field should be detected in the space where the electron beam exists, but since spatial changes in the external magnetic field are relatively gradual, it is not necessary to provide Xs and ys close to the electron beam. There is no problem since it is far away from the deflection coils X and Y, and its position is quite flexible.

検出コイルxs、ysを外部磁界が貫通するとX S
+ysに誘導起電力が誘起され、この電圧は利得調節可
能なプリアンプAで増幅された後フィルタ回路Fx 、
Fyにおいて成分波に分解された後、各成分波は夫々移
相器Sx1 、Sx2 、Sx3及びSyl、Sy2.
Sy3によって移相が調整された後混合回路MX9My
で各成分波が再び合算され、電力増幅して偏向コイルX
、Yに流される。
When an external magnetic field penetrates the detection coils xs and ys, X S
An induced electromotive force is induced at +ys, and this voltage is amplified by a gain-adjustable preamplifier A, and then filtered by a filter circuit Fx,
After being decomposed into component waves in Fy, each component wave is passed through phase shifters Sx1, Sx2, Sx3 and Syl, Sy2 .
Mixing circuit MX9My after the phase shift is adjusted by Sy3
, each component wave is summed up again, the power is amplified, and the deflection coil
, swept away by Y.

フィルタ回路Fx 、Fyは共に複数のバントハスフィ
ルタf1.f2.f3よりなっており、flは商用周波
数を通し、flはその2倍の周波数を、f3は3倍の周
波数を通す。
The filter circuits Fx and Fy both include a plurality of Bandhus filters f1. f2. f3, where fl passes the commercial frequency, fl passes twice the frequency, and f3 passes the frequency three times the commercial frequency.

外部交番磁界は商用交流が原因ではあっても著るしく歪
んでいるので、補償偏向出力も商用電源周波数の単純正
弦波では不充分であり、歪波成分も加える必要があるの
である。
Since the external alternating magnetic field is significantly distorted even though it is caused by commercial alternating current, a simple sine wave at the commercial power frequency is insufficient for the compensation deflection output, and it is necessary to add a distorted wave component.

しかも検出コイルと補償用偏向コイルとが異る位置にあ
るので外的影響により成分波の位相関係も多少ずれてい
るから成分波への分解、移相。
Moreover, since the detection coil and the compensation deflection coil are in different positions, the phase relationship of the component waves is also slightly shifted due to external influences, so they are decomposed into component waves and phase shifted.

混合と云う過程を経させるのである。It undergoes a process called mixing.

この場合位相関係のみでなく、各高調波の基本波に対す
る比率も多少変っているから、混合回路で加算する際第
1.第2高調波に掛ける係数も調整可能としておく。
In this case, not only the phase relationship but also the ratio of each harmonic to the fundamental wave has changed somewhat, so when adding in the mixing circuit, the first. The coefficient multiplied by the second harmonic is also adjustable.

上述装置の調整は次のようにして行われる。Adjustment of the above device is performed as follows.

走査型電子顕微鏡の場合について述べると、標準試料の
映像を見ながらまずプリアンプの利得及び移相器Sx1
.Sylを調整して大まかな像の歪を直す。
Regarding the case of a scanning electron microscope, while looking at the image of the standard sample, first check the gain of the preamplifier and the phase shifter Sx1.
.. Adjust Syl to correct rough image distortion.

電子ビームの走査速度は商用周波数に合せであるので、
外部磁界の影響があっても像はゆれることな(、静的に
歪んでいるだけである。
Since the scanning speed of the electron beam is matched to the commercial frequency,
The image does not waver even under the influence of an external magnetic field (it is only statically distorted).

そこで大きな歪がとれたら次にSX2.Sy2を調節し
、次にSx3 、Sy3を調節して次第に細かい歪を消
して行く。
Once the large distortion is removed, next is SX2. Adjust Sy2, then adjust Sx3 and Sy3 to gradually eliminate fine distortions.

第2図はフィルタFx、移相器Sxl 、Sx2゜Sx
3.混合回路Mxの部分を示す回路図で、外部磁界のy
方向成分に対する回路も全く同じ構造である。
Figure 2 shows filter Fx, phase shifter Sxl, Sx2°Sx
3. This is a circuit diagram showing a part of the mixing circuit Mx, where y of the external magnetic field
The circuit for the direction component has exactly the same structure.

増幅器AI 、A3 、A5によってフィルタf1 、
fl、f3が構成され、増幅器A2.A4゜A6によっ
て移相器Sx1 、Sx2 、Sx3が構成される。
Filters f1, by amplifiers AI, A3, A5
fl, f3 are configured, and amplifiers A2 . A4 and A6 constitute phase shifters Sx1, Sx2, and Sx3.

混合回路Mxは増幅器AIにより構成された加算回路で
、可変抵抗rによって第1.第2高調波成分に掛ける係
数が調節される。
The mixing circuit Mx is an adder circuit constituted by an amplifier AI, and the first . The coefficient multiplied by the second harmonic component is adjusted.

第3図は他の実施例を簡略化して示したもので、−高調
波成分についての回路を示す。
FIG. 3 is a simplified diagram of another embodiment, showing a circuit for -harmonic components.

xs、ysはX方向、y方向の外部磁界検出コイル、X
、Yは補償偏向コイルで、Ax s Ayは第1図にお
ける一高調波についてのプリアンプからフィルタを経て
移相器までを合せた部分である。
xs, ys are external magnetic field detection coils in the X direction and y direction,
, Y is a compensation deflection coil, and Ax s Ay is a part including a preamplifier, a filter, and a phase shifter for the first harmonic in FIG.

Ax’ 、 Ay’は出力アンプで、夫々は加算回路に
なっており、共にAx vAyの出力を適当に分は取っ
て混合している。
Ax' and Ay' are output amplifiers, each of which is an adder circuit, and both take an appropriate amount of the output of Ax vAy and mix it.

この構成にするとコイルXとxs 、Yとysの軸の方
向を一致させておく必要はない。
With this configuration, it is not necessary to match the directions of the axes of the coils X and xs and Y and ys.

以上2つの実施例においては補償用偏向コイルX、Yは
電子ビームの走査偏向用コイルとは別になっているが、
この両者を兼用し、一つのコイルに走査信号と補償信号
とを加算して流すようにしてもよいことは云うまでもな
い。
In the above two embodiments, the compensation deflection coils X and Y are separate from the electron beam scanning deflection coil.
It goes without saying that both of these signals may be used, and the scanning signal and the compensation signal may be added and sent through one coil.

本考案は上述したような構成で、外部磁界そのものを遮
蔽し或は消去するのではなく、外部磁界によって生ずる
電子ビームの不要な偏向を偏向コイルの補償出力で打消
すものであるから、電子ビームの周りが磁気的に密閉さ
れるのに比し電子ビームの周りが開放的であり、電子ビ
ーム周りに光学顕微鏡、X線分光装置等の各種装置、物
体を配置し、装置本体に窓を設ける等の自由度が著るし
く拡大される。
The present invention has the above-mentioned configuration, and instead of shielding or erasing the external magnetic field itself, the unnecessary deflection of the electron beam caused by the external magnetic field is canceled out by the compensation output of the deflection coil. The area around the electron beam is magnetically sealed, but the area around the electron beam is open, and various devices and objects such as optical microscopes and X-ray spectrometers are placed around the electron beam, and windows are provided in the device body. etc., the degree of freedom is significantly expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例装置の構成を示すブロック図
、第2図は上記の一部の回路図、第3図は本考案の他の
実施例の回路図である。 X、Y・・・・・・X方向及びy方向の偏向コイル、x
s 、 ys・・・・・・X方向、y方向の外部磁界を
検出するコイル。
FIG. 1 is a block diagram showing the configuration of an apparatus according to an embodiment of the present invention, FIG. 2 is a circuit diagram of a part of the above, and FIG. 3 is a circuit diagram of another embodiment of the present invention. X, Y... Deflection coil in the X direction and the y direction, x
s, ys... Coils that detect external magnetic fields in the X and Y directions.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 電子ビームを偏向させるコイルと、漂遊磁界を検出する
コイルとを有し、この検出コイルの出力を基本波及び高
調波に分解し、移相器によって上記各部の位相を調節可
能に移相すると共に、各々の波の振幅を適宜調節可能に
調節した後加算した出力によって上記偏向コイルに流す
電流を制御し、電子ビームの漂遊磁界による偏向を上記
偏向コイルによって補償するようにした電子顕微鏡にお
ける外部磁界の作用打消装置。
It has a coil that deflects the electron beam and a coil that detects a stray magnetic field.The output of this detection coil is decomposed into a fundamental wave and harmonics, and the phase of each of the above parts is adjustable by a phase shifter. , an external magnetic field in an electron microscope in which the amplitude of each wave is appropriately adjusted and then the summed output controls the current flowing through the deflection coil, and the deflection of the electron beam due to a stray magnetic field is compensated by the deflection coil. device to cancel the effect of
JP1975149259U 1975-10-31 1975-10-31 Jikainosayouchikeshisouchi Expired JPS5821063Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1975149259U JPS5821063Y2 (en) 1975-10-31 1975-10-31 Jikainosayouchikeshisouchi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1975149259U JPS5821063Y2 (en) 1975-10-31 1975-10-31 Jikainosayouchikeshisouchi

Publications (2)

Publication Number Publication Date
JPS5262067U JPS5262067U (en) 1977-05-07
JPS5821063Y2 true JPS5821063Y2 (en) 1983-05-04

Family

ID=28628748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1975149259U Expired JPS5821063Y2 (en) 1975-10-31 1975-10-31 Jikainosayouchikeshisouchi

Country Status (1)

Country Link
JP (1) JPS5821063Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4979151U (en) * 1972-10-26 1974-07-09

Also Published As

Publication number Publication date
JPS5262067U (en) 1977-05-07

Similar Documents

Publication Publication Date Title
JP4969048B2 (en) Magnetic field compensation method in the operating region
US6208135B1 (en) Inductive noise cancellation circuit for electromagnetic pickups
US4809578A (en) Magnetic field shaping in an acoustic pick-up assembly
US5465012A (en) Active feedback system for suppression of alternating magnetic fields
KR20010012184A (en) Method and device for active compensation of magnetic and electromagnetic disturbance fields
ter Brake et al. Improvement of the performance of a mu-metal magnetically shielded room by means of active compensation (biomagnetic applications)
EP3030915B1 (en) Adjustable compensation ratio feedback system
US5686836A (en) Apparatus for reducing noise due to sensor vibration during measurement of a weak magnetic field
US5952734A (en) Apparatus and method for magnetic systems
JP2002257914A (en) Active magnetic shield device
JPS5821063Y2 (en) Jikainosayouchikeshisouchi
JPS6217844B2 (en)
US5214383A (en) MRI apparatus with external magnetic field compensation
JP3261018B2 (en) Auger electron spectrometer
US6734353B2 (en) Method for attenuating interference in a magnetically shielded room
WO2022255354A1 (en) Magnetism measuring device
JP2003273565A (en) Active magnetic shield device
JP2002033262A (en) Method for magnetically shielding charged particle beam exposure system
JP2001281311A (en) Disturbance magnetic field canceling device
JPH02500957A (en) Imaging equipment using nuclear magnetic resonance
JPH0697690A (en) Magnetic shield device
JPS60160791A (en) Cathode-ray tube
JPS58214256A (en) Electron beam radiation device
JPH02159595A (en) Window for magnetic shield room
JPH0415576B2 (en)