JPS5973840A - Object lens for scan electron microscope - Google Patents

Object lens for scan electron microscope

Info

Publication number
JPS5973840A
JPS5973840A JP18433382A JP18433382A JPS5973840A JP S5973840 A JPS5973840 A JP S5973840A JP 18433382 A JP18433382 A JP 18433382A JP 18433382 A JP18433382 A JP 18433382A JP S5973840 A JPS5973840 A JP S5973840A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic pole
lens
magnetic
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18433382A
Other languages
Japanese (ja)
Inventor
Nobuaki Tamura
田村 伸昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP18433382A priority Critical patent/JPS5973840A/en
Publication of JPS5973840A publication Critical patent/JPS5973840A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/14Lenses magnetic
    • H01J37/141Electromagnetic lenses

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)

Abstract

PURPOSE:To improve the secondary electron detection efficiency by fitting an air-core coil generating a magnetic field nearly offsetting the magnetic field leaking downward from a magnetic pole hole to a lower magnetic pole. CONSTITUTION:A thin air-core coil 9 is fitted symmetrically to the axis at the lower side of a lower magnetic pole 2 so as to generate a magnetic field offsetting the magnetic field leaked from the lower magnetic pole 2. This magnetic field (a) is generated in the opposite direction to a lens magnetic field and has a magnetic field distribution as shown in the diagram. According to this reverse magnetic field, the lens magnetic field with an original distribution as shown by a dotted line is corrected as shown by a solid line (b) and is barely generated under the lower magnetic pole 2. Since the air-core coil 9 is in contact with the lower magnetic pole 2 on one side, its magnetic resistance becomes one half of that when placed in a free space, thereby the strength of the generated magnetic field is doubled with the same exciting current. Accordingly, the secondary electron detection efficiency is improved, and the secondary electron sample with high resolution can be observed.

Description

【発明の詳細な説明】 本発明は2次電子検出効率を著しく向上できる走査電子
顕微鏡用対物レンズに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an objective lens for a scanning electron microscope that can significantly improve secondary electron detection efficiency.

走査電子顕微鏡では電子銃より発生した一電子線を対物
レンズによって試料表面上にフォーカスし、該電子線を
偏向コイルを用いて2次元的に走査することにより試料
から発生する各種信号を検出し、イの信号を前記走査と
同期した陰極線管に輝度変調信8として導入して試料面
の観察を行なっている。この様な装置において、試料(
よ通常対物レンズの下りに置かれるため該対物レンズは
一般的に非対称であり、上磁極の穴径が40〜50mm
に対し、下磁極の穴径は10〜2’Qmmである。下磁
極の穴径を大きくした方がレンズの収差は小さくできる
かコ該下磁極の穴径をあまり人さ″くりると該穴J、り
下方(試料方向)に漏洩づるレンズ磁界が増大す5ため
、試料からの低エネルギー電子(2次電子)で試料表面
像を1写る揚台には前記1liil洩磁界にJ、す2次
電子が拘束され検出効率が著しく低下する。又、ワーキ
ングディスタンス(下磁極と試料間距向(、以下WDど
一称Jる)を短くすると、レンズ収差は減少し分解能は
向上するが、試料表面での漏−洩磁界の強度が増大づる
ので、試料表面からの2次電子は該磁界に拘束され、−
ト磁揄或いは更に上方のレンズ部材に吸収されζしまい
、やはり検出効率は低下する。
In a scanning electron microscope, an electron beam generated by an electron gun is focused onto the sample surface using an objective lens, and various signals generated from the sample are detected by scanning the electron beam two-dimensionally using a deflection coil. The sample surface is observed by introducing the signal A as a brightness modulation signal 8 into a cathode ray tube synchronized with the scanning. In such a device, the sample (
The objective lens is generally asymmetrical because it is placed below the objective lens, and the hole diameter of the upper magnetic pole is 40 to 50 mm.
On the other hand, the hole diameter of the lower magnetic pole is 10 to 2'Qmm. Can lens aberration be reduced by increasing the diameter of the hole in the bottom magnetic pole? If the diameter of the hole in the bottom magnetic pole is made too small, the lens magnetic field leaking downward (toward the sample) through the hole J will increase. Therefore, on the platform where low-energy electrons (secondary electrons) from the sample form an image of the sample surface, the secondary electrons are restrained by the above-mentioned 1liil leakage magnetic field, resulting in a significant decrease in detection efficiency. (If the distance between the lower magnetic pole and the sample (hereinafter referred to as WD) is shortened, lens aberrations will decrease and resolution will improve, but the strength of the leakage magnetic field at the sample surface will increase, so The secondary electrons of are restrained by the magnetic field, −
The light is absorbed by the magnetic field or by the lens member located further above, and the detection efficiency is also reduced.

第1図は従来の走査電子顕微鏡の対物レンズの一例の断
面図、第2図は該レンズの軸上磁界分布を示しである。
FIG. 1 is a cross-sectional view of an example of an objective lens of a conventional scanning electron microscope, and FIG. 2 shows the axial magnetic field distribution of the lens.

図中、1は対物レンズの下磁極、2は下磁極であり、両
磁極は−1−り3により陽気的に結合されCいる。4は
励磁コイルであり、El−り内に収納され所定゛の電流
を供給することにより前記試料磁極の間隙内にレンズ(
6界を形成づるためのものである。5は試料であり、前
記下磁極の近傍−又はぞの下方に置かれ、図示しないが
既知の試料移動機構により電子線軸に対し直角な平面内
で自由に移動でき、更には(用斜や回転等が与えられる
ようになっている。6は光電子増倍管等の2次電子検出
器C′あり、試料の横方向に設′薗してあり、該検出器
には2次電子を加速覆るための高電圧が印加しである。
In the figure, 1 is the lower magnetic pole of the objective lens, 2 is the lower magnetic pole, and both magnetic poles are positively coupled by -1 and 3. Reference numeral 4 denotes an excitation coil, which is housed in an Element and supplies a predetermined current to a lens (
It is for forming the 6 realms. Reference numeral 5 denotes a sample, which is placed in the vicinity of or below the lower magnetic pole, and can be freely moved in a plane perpendicular to the electron beam axis by a known sample moving mechanism (not shown), 6 is a secondary electron detector C' such as a photomultiplier tube, which is installed in the horizontal direction of the sample. A high voltage is applied for this purpose.

従って、該電圧による電界によって試料から発生した2
次電子7は矢印の如く偏向されながら加速され検出器の
シンチレータに衝突Jることになる。しかし乍ら、第2
図から解るようにレンズ磁界は下tiIi極の下方まで
かなり尾を引いており、実際に対物レンズ磁界のピーク
値が500ガウスの場合、WD=Omm(下磁極部)で
約100ガウス、W[)=5mmで約30力ウス、WD
=1On+01で約10カウスの漏洩号支界が(r在し
、この磁界の拘束力が強いため前記検出器による電界の
il+きにも拘わらず2次電子σ片部は矢印8て示すよ
うに上方に飛翔するため、イの検出効率は低いわけであ
る。
Therefore, the electric field generated by the voltage generates 2
The next electron 7 is accelerated while being deflected as shown by the arrow, and collides with the scintillator of the detector. However, the second
As can be seen from the figure, the lens magnetic field traces its tail considerably below the lower tiIi pole, and when the peak value of the objective lens magnetic field is actually 500 Gauss, WD=Omm (lower magnetic pole) is approximately 100 Gauss, W[ )=about 30 force at 5mm, WD
= 1 On + 01, there is a leakage branch field of about 10 cous (r), and the restraining force of this magnetic field is strong, so despite the electric field il+ from the detector, the secondary electron σ part is as shown by arrow 8. Because it flies upwards, its detection efficiency is low.

而しC1木発明は上記の欠点を解決覆ることを目的どり
る6のであり、イの構成」−の特徴は上磁極、下磁極、
両磁極を磁気的に結合Jる]−り及び両In間隙内に゛
レンズ磁場を形成するための励(君〕イルからなり、前
記下磁極の近傍又は下方に試料を配置したレンズにおい
て、前記下磁極の陽極穴から下方に漏洩づる磁界を略相
殺りるよう4イ(inをもつ磁界を発生づる空心コイル
を前記下′f41極に取付りた走査電子顕微鏡用対物レ
ンズに存する1゜第3図は本発明の一実施例の断面図で
あり、第1図と同j′、T合は同一の構成部材を示して
いる01本発明では下磁極の下側に薄い空心のコイル9
を軸対称に取付けてあり、この空心コイルにより前記下
磁極からの漏洩磁界を相殺する磁界を発生さゼている。
However, the invention of the C1 tree aims to solve and overcome the above-mentioned drawbacks.
In the lens, which comprises an excitation coil for magnetically coupling the two magnetic poles and forming a lens magnetic field in the gap between the two, the sample is placed near or below the lower magnetic pole. An air-core coil that generates a magnetic field of 4 inches is attached to the lower pole to substantially cancel out the magnetic field leaking downward from the anode hole of the lower magnetic pole. Figure 3 is a cross-sectional view of one embodiment of the present invention, and the same components as in Figure 1 are indicated at j' and T.
are installed axially symmetrically, and this air-core coil generates a magnetic field that offsets the leakage magnetic field from the lower magnetic pole.

該磁界はレンズ磁界と逆向ぎに発生され第4図のaに示
づような磁界分イロを右づる3、この逆磁界のためレン
ズ磁界は第4図に実線1)で示り−如く、本来点線のよ
うな分布をな4磁弄が修i「され、下磁極の下方には殆
/υどが生じなくなる。前記空心コイルは片側を下磁極
に接し−(いるの−cfl気抵抗抵抗由空間に置いた場
合の約」−分となり、従っC発it−する磁界の強度は
同一の励磁電流でも218になる。
The magnetic field is generated in the opposite direction to the lens magnetic field, and the magnetic field is shifted to the right as shown in a in FIG. The four magnetic fluxes, which originally have a distribution like the dotted line, are modified, and almost no /υ is generated below the bottom magnetic pole.The air-core coil has one side in contact with the bottom magnetic pole, When placed in a free space, the strength of the magnetic field generated by C is approximately 218 minutes even with the same excitation current.

今、」イルの巻数を40ターン、供給電流を1△、コイ
ルの半径をIcm、I’Fさを201nlとした場合、
補正磁界の強度はW D = 1 m+J=J近で約5
0刀ウスであり、WD=5mmイ」近では約30ガウス
とlより、該補正磁界の極性をレンズ磁界のそれど逆に
覆ることにJ、すW D = 5 m1Mt近において
対物レンズからの漏洩磁界を略キャンレルCぎることに
なる。
Now, if the number of turns of the coil is 40 turns, the supply current is 1△, the radius of the coil is Icm, and the I'F is 201nl,
The strength of the correction magnetic field is approximately 5 near W D = 1 m + J = J
Since the polarity of the correction magnetic field is opposite to that of the lens magnetic field, since WD = 5 mm, the polarity of the correction magnetic field is opposite to that of the lens magnetic field. This means that the leakage magnetic field is approximately equal to Canrel C.

従って、試料から発生した2次電子は対物レンズからの
漏洩磁界に殆/υど拘束されることがなくなり、検出器
からの電界のみにより吸引されることになり、その検出
効率は砿しく向上する。
Therefore, the secondary electrons generated from the sample are hardly restrained by the leakage magnetic field from the objective lens, and are attracted only by the electric field from the detector, greatly improving the detection efficiency. .

上記空心コイルによる補i[(1!j界(第4図a)は
uJ変でさることか々fましく、従つCコイル9の電源
(図示L!ヂ)は可変とhっCいる。而し゛(、任ハ、
なWDにり・]シ該電源を可変し試料面何升にJ’i 
Rるス・j物しンスの漏洩14i界と補正(・Ii界と
のXか略語になるJ、うに1行に調整づれLU W D
の大小に関係なく商い2次電子の検出効率を保持りるこ
とかできる。
The supplementary i [(1! .But (, Ninha,
The power supply is varied and the sample surface is
Leakage of Rurusu j object 14i field and correction (・Ii world and X or abbreviation J, sea urchin adjusted to one line LU W D
It is possible to maintain the detection efficiency of secondary electrons regardless of the size of the secondary electrons.

以」−のJ、うに空心コイル9を設置Jることにより、
ZOいW Dで!、)2次電子を有効に捕捉づることか
CきるわりCあるか、W Dを短くりるどス・1物レン
スの収差か減少するためより細い電子プローブを試料に
照射できるようになる。従っC,畠麻買ど共に高分解能
の2次電子試料像か観察できるという効果も生ずる。
By installing the air-core coil 9,
ZOi W D! ,) In order to effectively capture secondary electrons, it becomes possible to irradiate the sample with a thinner electron probe because the WD is shortened and the aberration of the single-object lens is reduced. Therefore, there is an effect that high-resolution secondary electron sample images can be observed in both C and Hatake.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の対物レンズを承り断面図、第2図はその
軸上磁界分布を示づ図、第3図は本発明の対物レンズの
断面図、第4図はイの軸上磁界分布を示づ図である。 1:tt+i極、2:下f!&極、3:三j−り、4:
励磁コイル、5:試料、6:2次電子検出器、7:2次
電子、9:空心コイル。 特許出願人 ■本電子株式会社 代表右 伊藤 −人 区 区 寸
Figure 1 is a sectional view of a conventional objective lens, Figure 2 is a diagram showing its axial magnetic field distribution, Figure 3 is a sectional view of the objective lens of the present invention, and Figure 4 is an axial magnetic field distribution of A. FIG. 1: tt+i pole, 2: lower f! & pole, 3: 3 j-ri, 4:
Excitation coil, 5: sample, 6: secondary electron detector, 7: secondary electron, 9: air-core coil. Patent applicant ■Representative of Hondenshi Co., Ltd. Right Ito

Claims (1)

【特許請求の範囲】[Claims] 上磁極、下磁極、両磁極を磁気的に結合Jるヨーク及び
両磁極間隙内にレンズrii&場を形成りるための励磁
コイルからなり、前記下磁極の近傍又は下方に試料を配
置したレンズにおいて、前記下磁極の磁極穴から下方に
漏洩する磁界を略相殺づるような値をもつ磁界を発生ず
る空心コイルを前記下磁極に取付けたことを特徴どJる
走査電子顕微鏡用対物レンズ゛。
In a lens consisting of an upper magnetic pole, a lower magnetic pole, a yoke for magnetically coupling both magnetic poles, and an excitation coil for forming a lens rii & field in the gap between the two magnetic poles, the sample is placed near or below the lower magnetic pole. An objective lens for a scanning electron microscope, characterized in that an air-core coil is attached to the lower magnetic pole to generate a magnetic field having a value that substantially cancels out a magnetic field leaking downward from the magnetic pole hole of the lower magnetic pole.
JP18433382A 1982-10-20 1982-10-20 Object lens for scan electron microscope Pending JPS5973840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18433382A JPS5973840A (en) 1982-10-20 1982-10-20 Object lens for scan electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18433382A JPS5973840A (en) 1982-10-20 1982-10-20 Object lens for scan electron microscope

Publications (1)

Publication Number Publication Date
JPS5973840A true JPS5973840A (en) 1984-04-26

Family

ID=16151470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18433382A Pending JPS5973840A (en) 1982-10-20 1982-10-20 Object lens for scan electron microscope

Country Status (1)

Country Link
JP (1) JPS5973840A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5038045A (en) * 1989-03-21 1991-08-06 Cameca Composite electromagnetic lens with variable focal distance
JP2008147013A (en) * 2006-12-11 2008-06-26 Hitachi High-Technologies Corp Scanning electron microscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5038045A (en) * 1989-03-21 1991-08-06 Cameca Composite electromagnetic lens with variable focal distance
JP2008147013A (en) * 2006-12-11 2008-06-26 Hitachi High-Technologies Corp Scanning electron microscope

Similar Documents

Publication Publication Date Title
JP3081393B2 (en) Scanning electron microscope
KR850001390B1 (en) Device for detecting secondary electron in a scanning electron microscope
US4714833A (en) Arrangement for detecting secondary and/or backscatter electrons in an electron beam apparatus
US4658136A (en) Secondary electron detecting apparatus
JPH0536371A (en) Corpuscular ray device
JP3942108B2 (en) Particle-optical device with a secondary electron detector.
US3717761A (en) Scanning electron microscope
GB2092365A (en) Electron lens with three magnetic polepieces
US5045705A (en) Charged particle beam apparatus with charge-up compensation
US5780859A (en) Electrostatic-magnetic lens arrangement
GB2081501A (en) Device for detecting secondary electrons in a scanning electron microscope
US6653632B2 (en) Scanning-type instrument utilizing charged-particle beam and method of controlling same
JPH10302705A (en) Scanning electron microscope
JPS5973840A (en) Object lens for scan electron microscope
JP2002324510A (en) Scanning electron microscope
JP3432091B2 (en) Scanning electron microscope
US5185530A (en) Electron beam instrument
JP3351647B2 (en) Scanning electron microscope
US4145678A (en) Pickup tube structure with an improved magnetic shield
JP2005032588A (en) Magnetic field objective lens for electron microscope
KR910001401B1 (en) Deflection yoke
JPS6256623B2 (en)
JP2001057172A (en) Scanning electron microscope
JPS6364255A (en) Particle beam radiating device
EP0470300A1 (en) Electron beam apparatus with a monopole magnetic lens field