JPS61220259A - Electron beam apparatus - Google Patents

Electron beam apparatus

Info

Publication number
JPS61220259A
JPS61220259A JP60061238A JP6123885A JPS61220259A JP S61220259 A JPS61220259 A JP S61220259A JP 60061238 A JP60061238 A JP 60061238A JP 6123885 A JP6123885 A JP 6123885A JP S61220259 A JPS61220259 A JP S61220259A
Authority
JP
Japan
Prior art keywords
electron beam
deflection
deflector
electrode
secondary electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60061238A
Other languages
Japanese (ja)
Other versions
JPH0586616B2 (en
Inventor
Akio Ito
昭夫 伊藤
Kazuo Okubo
大窪 和生
Yoshiaki Goto
後藤 善朗
Toshihiro Ishizuka
俊弘 石塚
Kazuyuki Ozaki
一幸 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60061238A priority Critical patent/JPS61220259A/en
Publication of JPS61220259A publication Critical patent/JPS61220259A/en
Publication of JPH0586616B2 publication Critical patent/JPH0586616B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To improve the accuracy by correcting deflection of secondary electrons due to the deflection of electron beam in an electron beam apparatus having an energy analyzer for detecting the potential of specimen comprising a take-out electrode, a deceleration electrode, a deflector, etc. arranged for an objective lens. CONSTITUTION:The secondary electrons emitted from a specimen 4 are passed through a take-out electrode 8 and a deceleration electrode 9 arranged for an objective lens 3 then detected through a detector 7. Here, deflection signals (x), (y) are fed through drivers 11, 12 to a deflector 5 while to the amplifiers 13, 14 to be amplified. Then predetermined constant voltage is added through adder/amplifiers 15, 16 to provide (x) and (y) signals to repspective grid 7a of a pair of detectors 7 arranged while crossing perpendicularly with the advancing axis of electron beam then the outputs are amplified through an amplifier 17 and fed to a CRT. Consequently, the deflection of secondary electrons caused through deflection of electron beam can be correct resulting in highly accurate potential measurement.

Description

【発明の詳細な説明】 〔概要〕 電子ビームを試料に照射し該試料が放出する2次電子を
検出する電子ビーム装置において、対物レンズを挟み試
料に対向する検出器に入力する2次電子が、電子ビーム
を振らせるための偏向器により偏向されることを補正す
る手段を具えたことによって、 空間的に均一な2次電子信号の検出を可能としたもので
ある。
[Detailed Description of the Invention] [Summary] In an electron beam device that irradiates a sample with an electron beam and detects secondary electrons emitted by the sample, the secondary electrons input to a detector facing the sample with an objective lens in between are detected. By providing means for correcting the deflection caused by the deflector used to swing the electron beam, it is possible to detect a spatially uniform secondary electron signal.

〔産業上の利用分野〕[Industrial application field]

本発明は電子ビームを試料に照射し、該試料が放出する
2次電子を検出する電子ビーム装置の改良に関する。
The present invention relates to an improvement in an electron beam device that irradiates a sample with an electron beam and detects secondary electrons emitted by the sample.

電子ビームを試料に照射したとき得られる2次電子信号
は、試料表面の電位情報を含む。そこで、かかる現象を
利用した電子ビーム・ブロービングは、走査型電子顕微
鏡の技術を母体とし、金属プローブを当接できない微細
パターンの電位と、その時間変化を測定する電子ビーム
装置として、既に実用されている。
A secondary electron signal obtained when a sample is irradiated with an electron beam includes potential information on the sample surface. Therefore, electron beam blobbing, which utilizes this phenomenon, is based on scanning electron microscope technology and has already been put into practical use as an electron beam device that measures the potential of minute patterns that cannot be touched by metal probes and its temporal changes. ing.

〔従来の技術〕[Conventional technology]

第6図は従来技術になる電子ビーム装置の要部を示す模
式図である。
FIG. 6 is a schematic diagram showing the main parts of an electron beam device according to the prior art.

第6図において、図示しない電子銃から発射された電子
ビーム1は、図示しないコンデンサレンズおよび鏡筒2
の対物レンズ3により試料4の表面に集束し、図示しな
い偏向電源に制御される偏向器5に偏向され該表面を走
査する。
In FIG. 6, an electron beam 1 emitted from an electron gun (not shown) is connected to a condenser lens (not shown) and a lens barrel 2.
The light is focused on the surface of the sample 4 by the objective lens 3, and is deflected by a deflector 5 controlled by a deflection power source (not shown) to scan the surface.

そして、電子ビームlの照射により試料4から放出する
2次電子6は:、2次電子電子6出し電場を与える引出
し電極8と、引出された2次電子6をエネルギの大きさ
に応じて選別する減速電極9を透過し、検出器7により
検出されたのち、増幅器(図示せず)で増幅しブラウン
管(図示せず)に、例えば試料4の配線パターンの電圧
値にほぼ反比例した値として表示されることになる。
The secondary electrons 6 emitted from the sample 4 by irradiation with the electron beam l are: an extraction electrode 8 that provides an electric field for emitting the secondary electrons 6, and the extracted secondary electrons 6 are sorted according to their energy levels. After being transmitted through the deceleration electrode 9 and detected by the detector 7, it is amplified by an amplifier (not shown) and displayed on a cathode ray tube (not shown) as a value that is approximately inversely proportional to the voltage value of the wiring pattern of the sample 4, for example. will be done.

なお、検出器7はグリッド7aとシンチレータ7bとラ
イトパイプ7cとフォトマルチプライア7d等にてなり
、対物レンズ3の前面(下面)に引出し電極8を設け、
対物レンズ3の後面(上面)に減速電極9を設け、減速
電極9の後方(上方)に検出器7が配設されている。
The detector 7 consists of a grid 7a, a scintillator 7b, a light pipe 7c, a photomultiplier 7d, etc., and an extraction electrode 8 is provided on the front (lower surface) of the objective lens 3.
A deceleration electrode 9 is provided on the rear surface (upper surface) of the objective lens 3, and a detector 7 is provided behind (above) the deceleration electrode 9.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来技術になる前記電子ビーム装置は、
試料4から放出される2次電子6のエネルギが電子ビー
ム1のエネルギより小さいこともあって、偏向器5の横
方向磁界の影響を大きく受けて偏向し、減速電極9への
入射位置が変化することになる。
However, the electron beam device, which is the prior art,
Since the energy of the secondary electrons 6 emitted from the sample 4 is smaller than the energy of the electron beam 1, the secondary electrons 6 are deflected under the influence of the horizontal magnetic field of the deflector 5, and the position of incidence on the deceleration electrode 9 changes. I will do it.

その結果、減速電極9を透過した2次電子6(2次電子
信号)の空間分布は、例えば第7図に示す如く、縦軸を
2次電子信号強度、横軸を試料4の中心(電子ビーム1
の直進中心)からの偏位量dとすれば、前記分布特性は
曲線Aで示すように山形となり、曲線Aのピークとd=
0とが一致しない。これは電子ビーム1の偏向により2
次電子も偏向し、2次電子の信号強度が変化するためで
あり、そのことで試料4の電位測定の精度が低下し、そ
の改善が要望されていた。
As a result, the spatial distribution of the secondary electrons 6 (secondary electron signal) transmitted through the deceleration electrode 9 is as shown in FIG. beam 1
If the amount of deviation is d from the straight line center of
0 does not match. This is due to the deflection of electron beam 1.
This is because the secondary electrons are also deflected and the signal strength of the secondary electrons changes, which reduces the accuracy of potential measurement of the sample 4, and an improvement has been desired.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、 電子ビーム(1)を試料(4)上に集束させる対物レン
ズ(3)、 前記対物レンズ(3)に配設した引出し電極(6)と減
速電極(9)と偏向器(5)等にてなる試料電位検出用
エネルギ分析器、 前記対物レンズ(3)の上方に設けた2次電子検出器(
7)、 および前記偏向器(5)による前記電子ビーム(1)の
偏向に伴う2次電子(6)の偏向を補正する手段を具え
たことを特徴とし、 さらには前記手段が前記電子ビーム(1)の偏向に同期
させ2次電子捕獲電界を変化させること、前記偏向器(
5)が静電偏向器(22)と電磁偏向器(2I)であり
、前記手段が前記2種の偏向器(2L22)による全偏
向量を一定に保ち偏向器(21、22)それぞれの偏向
量の比率を変化させること、前記対物レンズ(3)内で
前記偏向器(5)を挟んで前記引出し電極(8)に対向
する中間電極(31)を設け、前記手段が前記中間電極
(31)に2次電子速度調整電圧を印加すること、 を特徴とする電子ビーム装置により解決される。
The above problem consists of an objective lens (3) that focuses the electron beam (1) onto a sample (4), an extraction electrode (6) and a deceleration electrode (9) arranged on the objective lens (3), and a deflector ( 5), etc., and a secondary electron detector (
7), and means for correcting the deflection of the secondary electrons (6) accompanying the deflection of the electron beam (1) by the deflector (5); 1) changing the secondary electron trapping electric field in synchronization with the deflection of the deflector (
5) is an electrostatic deflector (22) and an electromagnetic deflector (2I), and the means keeps the total amount of deflection by the two types of deflectors (2L22) constant and deflects each of the deflectors (21, 22). an intermediate electrode (31) facing the extraction electrode (8) with the deflector (5) in between is provided within the objective lens (3); The problem is solved by an electron beam device characterized by: applying a secondary electron velocity adjustment voltage to ).

〔作用〕[Effect]

上記手段によれば、引出しされた2次電子の空間分布特
性のピークを2次電子検出器が検出することになり、そ
の結果、高精度且つ効率的な電位情報を検出可能となる
According to the above means, the secondary electron detector detects the peak of the spatial distribution characteristic of the extracted secondary electrons, and as a result, highly accurate and efficient potential information can be detected.

〔実施例〕〔Example〕

以下に、本発明の実施例を添付図面に従って説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明の第1の実施例になる電子ビーム装置の
要部を示す模式図、第2図は本発明の第1の実施例にな
る電子ビーム装置の要部を示す模式図、第3図は本発明
の第3の実施例になる電子ビーム装置の要部を示す模式
図、第4図<4) 、 (U)は前記第3の実施例にお
ける電子ビームの偏向と2次電子の偏向を説明するため
の模式図、第5図は本発明の第4の実施例になる電子ビ
ーム装置の要部を示す模式図である。ただし、前出図と
共通部分には同一符号を使用している。
FIG. 1 is a schematic diagram showing the main parts of an electron beam device according to the first embodiment of the present invention, and FIG. 2 is a schematic diagram showing the main parts of the electron beam device according to the first embodiment of the present invention. FIG. 3 is a schematic diagram showing the main parts of an electron beam device according to a third embodiment of the present invention, and FIG. FIG. 5 is a schematic diagram for explaining the deflection of electrons, and is a schematic diagram showing the main parts of an electron beam device according to a fourth embodiment of the present invention. However, the same symbols are used for parts common to the previous figure.

第1図において、11と12は偏向器ドライバ、13と
14は増幅器、15と16と17は加算増幅器であり、
一対の検出器7は電子ビーム直進軸と直交する同一面内
で直交するように設けられている。偏向信号Xはドライ
バ11と増幅器13に入力し、偏向信号yはドライバ1
2と増幅器14に入力し、ドライバ11゜12に入力し
た偏向信号x、yが偏向器5を駆動させる。
In FIG. 1, 11 and 12 are deflector drivers, 13 and 14 are amplifiers, and 15, 16, and 17 are summing amplifiers.
A pair of detectors 7 are provided so as to be orthogonal to each other in the same plane orthogonal to the electron beam rectilinear axis. Deflection signal X is input to driver 11 and amplifier 13, and deflection signal y is input to driver 1
2 and the amplifier 14, and the deflection signals x and y input to the drivers 11 and 12 drive the deflector 5.

一方、増幅器13.14に入力した信号x、yは、それ
ぞれが一定倍(a倍)されax、ayとなり、一対の各
検出器7のグリッドに接続された加算増幅器I5または
16に入力される。そこで、加算増幅器15.16には
所定の電圧が印加されており、一方の検出器7のグリッ
ドには前記所定電圧と信号aXの電圧とが増幅器15で
加算増幅され印加される反面、他方の検出器7のグリッ
ドには前記所定電圧と信号ayの電圧とが増幅器16で
加算増幅されて印加され、各検出器7の検出信号は増幅
器17にて加算増幅され図示しないブラウン管に入力さ
れる。
On the other hand, the signals x and y input to the amplifiers 13 and 14 are respectively multiplied by a fixed value (a times) to become ax and ay, which are input to the summing amplifier I5 or 16 connected to the grid of each of the pair of detectors 7. . Therefore, a predetermined voltage is applied to the summing amplifiers 15 and 16, and the predetermined voltage and the voltage of the signal aX are added and amplified by the amplifier 15 and applied to the grid of one detector 7, while the other The predetermined voltage and the voltage of the signal ay are added and amplified by an amplifier 16 and applied to the grid of the detector 7, and the detection signals of each detector 7 are added and amplified by the amplifier 17 and input to a cathode ray tube (not shown).

かかる装置において、減速電極9の上方にできる2次電
子捕獲電界は、電子ビーム1の偏向と同期して変化する
ため、第7図に示す2次電子検出効率の変動を相殺し、
高精度な電位情報が検知できる。
In such a device, since the secondary electron trapping electric field created above the deceleration electrode 9 changes in synchronization with the deflection of the electron beam 1, it cancels out the fluctuations in the secondary electron detection efficiency shown in FIG.
Highly accurate potential information can be detected.

第2図において、18は電子ビーム1を挟み検出器7と
対向する電極、19は所定の電圧と信号axの電圧とが
入力しその加算増幅信号を電極18に印加する加算増幅
器であり、偏向器ドライバ11と12゜増幅器13と1
4.加算増幅器16と17とが、第1図の装置と同様に
配設しである。
In FIG. 2, 18 is an electrode facing the detector 7 with the electron beam 1 in between, and 19 is a summing amplifier that receives a predetermined voltage and the voltage of the signal ax and applies the summing amplified signal to the electrode 18. device drivers 11 and 12° amplifiers 13 and 1
4. Summing amplifiers 16 and 17 are arranged similarly to the device of FIG.

かかる装置において、対物レンズ3と偏向器5と検出器
7は第1図の装置と同様に信号x、  yにて動作する
と共に、増幅器13が信号Xをa倍した信号axは、増
幅器19にて所定電圧を加算増幅し電極18に印加され
る。その結果、減速電極9の上方にできる2次電子捕獲
電界は、電子ビームlの偏向と同期して変化可能となり
、第7図に示す2次電子検出効率の変動を相殺し、高精
度な電位情報が検知できるようになる。
In this device, the objective lens 3, deflector 5, and detector 7 operate on signals x and y in the same way as in the device shown in FIG. A predetermined voltage is added and amplified and applied to the electrode 18. As a result, the secondary electron trapping electric field created above the deceleration electrode 9 can be changed in synchronization with the deflection of the electron beam l, canceling out the fluctuations in the secondary electron detection efficiency shown in FIG. Information becomes detectable.

第3図において、21は電磁偏向器、22は静電偏向器
、23は演算回路、24.25はマルチ乗算器(MDA
C)、26は電磁偏向器ドライバ、27は静電偏向器ド
ライバであり、偏向信号Xは一対のMDAC24、25
に入力する。
In FIG. 3, 21 is an electromagnetic deflector, 22 is an electrostatic deflector, 23 is an arithmetic circuit, and 24.25 is a multiplier (MDA).
C), 26 is an electromagnetic deflector driver, 27 is an electrostatic deflector driver, and the deflection signal X is transmitted to a pair of MDACs 24, 25.
Enter.

いま、静電偏向器22による偏向量をXl、電磁偏向器
21による偏向量をX2、電磁偏向器21に印加される
所要の励磁電流をId、静電偏向器22に印加される所
要の電圧をv4とし、k、、ktを定数としたとき電子
ビーム1の全偏向1xは、X=X++Xt =に、  ・V、+に、  ・■。
Now, the amount of deflection by the electrostatic deflector 22 is Xl, the amount of deflection by the electromagnetic deflector 21 is X2, the required excitation current to be applied to the electromagnetic deflector 21 is Id, and the required voltage to be applied to the electrostatic deflector 22. When v4 and k,,kt are constants, the total deflection 1x of the electron beam 1 is: X=X++Xt =, ・V, +, ・■.

となる。becomes.

そこで、静電偏向量に、・■4と全偏向量Xとの比をα
とすれば、 α=に、  ・■d/X であり、全偏向量Xを確保するには、 V、=α・X / k I Ia = (1−α)・X / k zとすればよい。
Therefore, for the amount of electrostatic deflection, the ratio of ・■4 to the total amount of deflection
Then, α = ・■d/X, and to ensure the total deflection amount X, V, = α・X / k I Ia = (1-α)・X / k good.

従って、比率定数αを入力した演算回路23は、静電偏
向器用MDAC24と電磁偏向器用MDAC25に、そ
れぞれα/に+、(1−α)/に2のデータを送出する
Therefore, the arithmetic circuit 23 inputting the ratio constant α sends data of + to α/ and 2 to (1−α)/ to the MDAC 24 for electrostatic deflector and the MDAC 25 for electromagnetic deflector, respectively.

すると、偏向信号Xが入力されたMDAC25は、偏向
信号Xをα711倍した信号を静電偏向器ドライバ27
に送出し、偏向信号Xが入力されたMDAC24は、偏
向信号Xを(l−α)/に2倍した信号を電磁偏向器ド
ライバ24に送出し、ドライバ24.25はそれぞれが
接続された偏向器22.21を駆動する。
Then, the MDAC 25 to which the deflection signal X has been input sends a signal obtained by multiplying the deflection signal X by α711 to the electrostatic deflector driver 27.
The MDAC 24, to which the deflection signal X is input, sends a signal obtained by doubling the deflection signal 22.21.

第4図(イ)において、電子ビーム1は静電偏向器22
と電磁偏向器21にて2段に偏向する。
In FIG. 4(a), the electron beam 1 is connected to the electrostatic deflector 22.
and is deflected in two stages by an electromagnetic deflector 21.

第4図(ロ)において、実線で示す2次電子6は偏向器
ドライバ24.25を前述のように駆動したときの偏向
であり、電磁偏向器21と静電偏向器22にて2段に偏
向し、減速電極9のほぼ中心を通過する。
In FIG. 4(b), the secondary electrons 6 shown by solid lines are deflected when the deflector drivers 24 and 25 are driven as described above, and are divided into two stages by the electromagnetic deflector 21 and the electrostatic deflector 22. It is deflected and passes approximately through the center of the deceleration electrode 9.

しかし、比例定数α=0にすると一点鎖線で示す如く、
静電偏向器22に偏向されないため、前記実線径路から
外れ、減速電極9より下方で減速電極9の中心軸に交差
する反面、比例定数α=1にすると二点鎖線で示す如く
、電磁偏向器2工に偏向されないため、前記実線径路か
ら外れ減速電極9の中心軸と交差することなく、減速電
極9を通過することになる。
However, if the proportionality constant α=0, as shown by the dashed line,
Since it is not deflected by the electrostatic deflector 22, it deviates from the solid line path and intersects the central axis of the deceleration electrode 9 below the deceleration electrode 9. On the other hand, when the proportionality constant α is set to 1, the electromagnetic deflector Since it is not deflected in the second direction, it deviates from the solid line path and passes through the deceleration electrode 9 without intersecting the central axis of the deceleration electrode 9.

従って、かかる装置は2種類の偏向器を使用してその偏
向特性の違いを利用し、2次電子6の偏向方向を制御す
ることで安定、かつ効率的な電位情報が得られる。
Therefore, such a device uses two types of deflectors and utilizes the difference in their deflection characteristics to control the deflection direction of the secondary electrons 6, thereby obtaining stable and efficient potential information.

第5図において、31は偏向器5と減速電極9との中間
に設けた中間電極であり、一般に、引出し電極8にIK
V程度の引出し電圧(Ve)、減速電極9に一1Ov〜
+IOVの可変電圧を印加するに対し、中間電極31に
数100V〜IKV程度の電圧を印加するようになって
いる。
In FIG. 5, 31 is an intermediate electrode provided between the deflector 5 and the deceleration electrode 9.
Extraction voltage (Ve) of about V, -1 Ov to deceleration electrode 9
While a variable voltage of +IOV is applied, a voltage of approximately several hundred volts to IKV is applied to the intermediate electrode 31.

従って、試料4から放出する2次電子6は引出し電極8
により垂直方向に加速たれ、対物レンズ3と偏向器5の
発生する磁界中に入射する。そこで、中間電極31がな
いと引出し電極8を通過した2次電子6は急激に減速さ
れ、偏向器5の偏向磁界により大きく偏向されるが、中
間電極31により前記減速を調整することで対物レンズ
3内で偏向量が変わり、減速電極9のほぼ中心を通過さ
せることが可能になる。
Therefore, the secondary electrons 6 emitted from the sample 4 are transferred to the extraction electrode 8.
The beam is accelerated in the vertical direction and enters the magnetic field generated by the objective lens 3 and deflector 5. Therefore, without the intermediate electrode 31, the secondary electrons 6 passing through the extraction electrode 8 are rapidly decelerated and are largely deflected by the deflection magnetic field of the deflector 5. However, by adjusting the deceleration with the intermediate electrode 31, the objective lens The amount of deflection changes within 3, making it possible to pass approximately the center of the deceleration electrode 9.

その結果、検出器から安定で効率的な電位情報が得られ
る。
As a result, stable and efficient potential information can be obtained from the detector.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、電子ビームの偏向に
よる2次電子の偏向を補正し、高精度の電位測定が広範
囲のフィールドに渡り可能となり、例えばLSIの高性
能化や信頼性の改善に寄与し得た効果は極めて大きい。
As explained above, according to the present invention, it is possible to correct the deflection of secondary electrons due to the deflection of the electron beam, and to perform high-precision potential measurement over a wide range of fields, which is useful for example in improving the performance and reliability of LSI. The effect that this contributed to was extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例になる電子ビーム装置の
要部を示す模式図、 第2図は本発明の第1の実施例になる電子ビーム装置の
要部を示す模式図、 第3図は本発明の第3の実施例になる電子ビーム装置の
要部を示す模式図、 第4図は前記第3の実施例における電子ビームと2次電
子を説明するための模式図、 第5図は本発明の第4の実施例になる電子ビーム装置の
要部を示す模式図、 第6図は従来技術になる電子ビーム装置の要部を示す模
式図、 第7図は前記従来装置における2次電子の空間分布例を
示す図、 である。 図中において、 1は電子ビーム、3は対物レンズ、 4は試料、   5.22は偏向器、 6は2次電子、 7は2次電子検出器、8は引出し電極
、9は減速電極、 11−14は増幅器、15〜17は加算増幅器、22は
静電偏向器、31は中間電極、 を示す。 i−先e恥拓3禮沌倒9倚向説明図 第 4 図 ILIGF4 q、!64q寅iL i#番1茅 5 
図 2ン欠電子f)空1%’le;今イ列 晃7図
FIG. 1 is a schematic diagram showing the main parts of an electron beam device according to the first embodiment of the present invention, FIG. 2 is a schematic diagram showing the main parts of the electron beam device according to the first embodiment of the present invention, FIG. 3 is a schematic diagram showing the main parts of an electron beam device according to a third embodiment of the present invention; FIG. 4 is a schematic diagram for explaining the electron beam and secondary electrons in the third embodiment; FIG. 5 is a schematic diagram showing the main parts of an electron beam device according to a fourth embodiment of the present invention. FIG. 6 is a schematic diagram showing the main parts of an electron beam device according to the prior art. FIG. 2 is a diagram showing an example of the spatial distribution of secondary electrons in the device. In the figure, 1 is an electron beam, 3 is an objective lens, 4 is a sample, 5.22 is a deflector, 6 is a secondary electron, 7 is a secondary electron detector, 8 is an extraction electrode, 9 is a deceleration electrode, 11 -14 is an amplifier, 15 to 17 are summing amplifiers, 22 is an electrostatic deflector, and 31 is an intermediate electrode. Explanatory diagram of i-first e shame development 3 禮 Chaos defeat 9 倚 4 Figure ILIGF4 q,! 64q Tora iL i # No. 1 Kaya 5
Fig. 2 missing electron f) Empty 1%'le;

Claims (4)

【特許請求の範囲】[Claims] (1)電子ビーム(1)を試料(4)上に集束させる対
物レンズ(3)、 前記対物レンズ(3)に配設した引出し電極(8)と減
速電極(9)と偏向器(5)等にてなる試料電位検出用
エネルギ分析器、 前記対物レンズ(3)の上方に設けた2次電子検出器(
7)、 および前記偏向器(5)による前記電子ビーム(1)の
偏向に伴う2次電子(6)の偏向を補正する手段を具え
たことを特徴とする電子ビーム装置。
(1) An objective lens (3) that focuses the electron beam (1) onto the sample (4), an extraction electrode (8), a deceleration electrode (9), and a deflector (5) arranged on the objective lens (3). A secondary electron detector (
7), and an electron beam device comprising means for correcting the deflection of secondary electrons (6) accompanying the deflection of the electron beam (1) by the deflector (5).
(2)前記手段が前記電子ビーム(1)の偏向に同期さ
せ2次電子捕獲電界を変化させること、を特徴とする前
記特許請求の範囲第1項記載の電子ビーム装置。
(2) The electron beam device according to claim 1, wherein the means changes the secondary electron trapping electric field in synchronization with the deflection of the electron beam (1).
(3)前記偏向器(5)が静電偏向器(22)と電磁偏
向器(21)であり、 前記手段が前記2種の偏向器(21、22)による全偏
向量を一定に保ち偏向器(21、22)それぞれの偏向
量の比率を変化させること、を特徴とする前記特許請求
の範囲第1項記載の電子ビーム装置。
(3) The deflector (5) is an electrostatic deflector (22) and an electromagnetic deflector (21), and the means maintains the total amount of deflection by the two types of deflectors (21, 22) constant and deflects the deflector. 2. The electron beam apparatus according to claim 1, wherein the ratio of the deflection amount of each of the beams (21, 22) is changed.
(4)前記対物レンズ(3)内で前記偏向器(5)を挟
んで前記引出し電極(8)に対向する中間電極(31)
を設け、 前記手段が前記中間電極(31)に2次電子速度調整電
圧を印加すること、を特徴とする前記特許請求の範囲第
1項記載の電子ビーム装置。
(4) An intermediate electrode (31) that faces the extraction electrode (8) across the deflector (5) within the objective lens (3).
An electron beam device according to claim 1, characterized in that said means applies a secondary electron velocity adjusting voltage to said intermediate electrode (31).
JP60061238A 1985-03-26 1985-03-26 Electron beam apparatus Granted JPS61220259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60061238A JPS61220259A (en) 1985-03-26 1985-03-26 Electron beam apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60061238A JPS61220259A (en) 1985-03-26 1985-03-26 Electron beam apparatus

Publications (2)

Publication Number Publication Date
JPS61220259A true JPS61220259A (en) 1986-09-30
JPH0586616B2 JPH0586616B2 (en) 1993-12-13

Family

ID=13165447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60061238A Granted JPS61220259A (en) 1985-03-26 1985-03-26 Electron beam apparatus

Country Status (1)

Country Link
JP (1) JPS61220259A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999046798A1 (en) * 1998-03-09 1999-09-16 Hitachi, Ltd. Scanning electron microscope
EP1244132A1 (en) * 1993-12-28 2002-09-25 Hitachi, Ltd. Scanning electron microscope

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1244132A1 (en) * 1993-12-28 2002-09-25 Hitachi, Ltd. Scanning electron microscope
WO1999046798A1 (en) * 1998-03-09 1999-09-16 Hitachi, Ltd. Scanning electron microscope
US6667476B2 (en) 1998-03-09 2003-12-23 Hitachi, Ltd. Scanning electron microscope
US6872944B2 (en) 1998-03-09 2005-03-29 Hitachi, Ltd. Scanning electron microscope
JP4302316B2 (en) * 1998-03-09 2009-07-22 株式会社日立製作所 Scanning electron microscope

Also Published As

Publication number Publication date
JPH0586616B2 (en) 1993-12-13

Similar Documents

Publication Publication Date Title
KR100776067B1 (en) Analysing system and charged particle beam device
JP4920385B2 (en) Charged particle beam apparatus, scanning electron microscope, and sample observation method
JPS61190839A (en) Charged particle ray device
WO2010024105A1 (en) Charged corpuscular particle beam irradiating method, and charged corpuscular particle beam apparatus
GB1564526A (en) Mass spectrometer
US3714424A (en) Apparatus for improving the signal information in the examination of samples by scanning electron microscopy or electron probe microanalysis
JP2641437B2 (en) Charged particle beam equipment
JPS61220259A (en) Electron beam apparatus
JP2678059B2 (en) Electron beam equipment
JPS6039748A (en) Ion beam focusing device
US4882480A (en) Apparatus for detecting the position of incidence of particle beams including a microchannel plate having a strip conductor with combed teeth
JPS63205041A (en) Electron beam device
JPH07142022A (en) Converging ion beam device and charged particle detector
JPS63119147A (en) Focus condition detecting device of changed corpuscular beams
JPS62172649A (en) Focusing ion beam device
JP2538623B2 (en) Mass spectrometer
JP2528906B2 (en) Voltage measuring device
JPH01296555A (en) Convergent ion beam device
JPH08273587A (en) High frequency induction coupling plasma mass spectrometer
JPS61232544A (en) Potential detector
JPH0341402Y2 (en)
JP3032397B2 (en) Field emission scanning electron microscope
JP2949753B2 (en) Quadrupole mass spectrometer
JPS637655B2 (en)
JPH04363851A (en) Ion beam machining device