JPS59123305A - Elastic surface wave filter - Google Patents

Elastic surface wave filter

Info

Publication number
JPS59123305A
JPS59123305A JP22791982A JP22791982A JPS59123305A JP S59123305 A JPS59123305 A JP S59123305A JP 22791982 A JP22791982 A JP 22791982A JP 22791982 A JP22791982 A JP 22791982A JP S59123305 A JPS59123305 A JP S59123305A
Authority
JP
Japan
Prior art keywords
electrode
interdigital
electrodes
surface wave
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22791982A
Other languages
Japanese (ja)
Other versions
JPH0318768B2 (en
Inventor
Michio Kadota
道雄 門田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP22791982A priority Critical patent/JPS59123305A/en
Priority to US06/504,271 priority patent/US4604595A/en
Priority to GB08316298A priority patent/GB2123637B/en
Priority to DE19833321843 priority patent/DE3321843A1/en
Publication of JPS59123305A publication Critical patent/JPS59123305A/en
Publication of JPH0318768B2 publication Critical patent/JPH0318768B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To reduce the size of a substrate of an elastic surface wave filter and to suppress the diffraction loss by setting an interdigital electrode so that an exciting source existing in the vicinity of another exciting source forming a maximum crossing width of other interdigital electrodes goes to zero. CONSTITUTION:Input/output side interdigital electrodes 21, 22 are formed on the elastic surface wave substrate 20 with a prescribed interval. The interdigital electrode 21 consists of interdigial electrodes 23, 24. The crossing width weighting is applied to the electrode 23 on the basis of an impulse response specifying an even number component, and an electrode section 23b of two common electrode sections 23a, 23b is formed so as to be placed nearly along with the envelope for weighting. The electrode 24 specifies an odd number component. After the electrode 24 is set in advance so that the exciting source positioned near the exciting source 23c forming the maximum crossing width of the electrode 23 goes to zero, the electrode 24 is formed at the non-crossing region of the even number component and on a propagating line of the other electrode 22.

Description

【発明の詳細な説明】 本発明は、中心周波数に対し非対称の周波数応答特性を
得るための電極パターンの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an electrode pattern to obtain a frequency response characteristic that is asymmetric with respect to a center frequency.

従来、単一のインターディジタルトランスジューサーで
非対称の周波数応答特性を得る方法の1つとしては、隣
接する電極フィンガーの中心間の距離(以下電極ピッチ
という)および電極の交差幅を弾性表面波伝播方向に沿
って変化させる手法が知られている。いわゆる可変ピッ
チ形インターディジタル電極で、次に述べるようなもの
である。
Conventionally, one way to obtain asymmetric frequency response characteristics with a single interdigital transducer is to set the distance between the centers of adjacent electrode fingers (hereinafter referred to as electrode pitch) and the crossing width of the electrodes in the surface acoustic wave propagation direction. There is a known method for changing it along the following lines. This is a so-called variable pitch interdigital electrode, as described below.

すなわち、周波数応答特性をフーリエ逆変換すると、例
えば、第1図に示すようなインパルス応答が得られる。
That is, when the frequency response characteristic is subjected to inverse Fourier transform, an impulse response as shown in FIG. 1, for example, is obtained.

このインパルス応答は、周波数応答特性が非対称である
ため、フーリエ逆変換の結果虚数部を含み、虚数部が零
となる各ピーク点間の時間間隔が不均一となる。そして
、得られたインパルス応答に対応させてインターディジ
タル電極を形成ずれば、この電極で所期の周波数応答特
性が実現できる。その対応のさせ方は、隣接する電49
ヌフィンガー間の交さ幅(表面波動受振領域)を、イン
パルス応答における各ピーク点く矢印で示す)の大ぎさ
に比例させ、かつ電極ピッチを、インパルス応答にお(
プるピーク点間の時間に比例させて行えばよい。ところ
が、ピーク点間の時間が不均一であるから、インターデ
ィジタル電極の電極ピッチも不均一となり、この結果イ
ンターディジタル電極は可変ピッチ形となる。
Since this impulse response has an asymmetric frequency response characteristic, it includes an imaginary part as a result of inverse Fourier transform, and the time intervals between peak points at which the imaginary part becomes zero are non-uniform. Then, by forming interdigital electrodes corresponding to the obtained impulse response, the desired frequency response characteristics can be achieved with these electrodes. The way to deal with this is to
The intersection width between the Nuffingers (surface wave receiving area) is made proportional to the size of each peak in the impulse response (indicated by the arrow), and the electrode pitch is adjusted to the impulse response (indicated by the arrow).
It may be done in proportion to the time between peak points. However, since the time between peak points is non-uniform, the electrode pitch of the interdigital electrodes is also non-uniform, and as a result, the interdigital electrodes have a variable pitch type.

上述した従来の手法は、所期の特性を満足できるが、電
極が不等ピッチであるため、電極パターンの設計が困ガ
な上に、太い電極と細い電極か出来るため高周波用に設
泪すると′電極が短絡しやりいという欠点を有している
The conventional method described above can satisfy the desired characteristics, but since the electrodes have uneven pitches, it is difficult to design the electrode pattern, and it is difficult to design the electrode pattern for thick and thin electrodes. 'It has the disadvantage that the electrodes are easily short-circuited.

上述の問題点を解決Jるため等ピッチのインターディジ
タル電極で非対称の周波数応答特性を得ようとする試み
がなされ、後述づる奇−隅関数法ならびにミラー法又は
リフレクション法という手法が提案されている。
In order to solve the above-mentioned problems, attempts have been made to obtain asymmetric frequency response characteristics using interdigital electrodes of equal pitch, and techniques called the odd-corner function method and the mirror method or reflection method, which will be described later, have been proposed. .

前者の奇−偶関数法は、所望周波数応答特性をリニア表
示したものをHl (ω)とすると、Hl(ω−ωo 
) =H2(ω0−(/J)なるH2  (ω)を想定
する手法である。Hl (ω)と1−12(ω)との関
係は第2図のようになる。ここで偶成分を1」R(ω)
、青成分をHl (ω)とし、HR(ω)とHI (ω
)を次のように定義すると、それらの関数は第3図のに
うになる。
In the former odd-even function method, if Hl (ω) is a linear representation of the desired frequency response characteristic, then Hl(ω-ωo
) = H2(ω0-(/J)) This is a method that assumes H2 (ω). The relationship between Hl (ω) and 1-12(ω) is as shown in Figure 2. Here, the even component is 1”R(ω)
, the blue component is Hl (ω), and HR (ω) and HI (ω
) are defined as follows, their functions become as shown in Figure 3.

また、Hl (ω)は、式(1)、(2)よりf−h 
 (ω)=HR(ω)−jl−1+(ω)(3)となる
Also, Hl (ω) is f−h from equations (1) and (2)
(ω)=HR(ω)-jl-1+(ω) (3).

そして、インパルス応答は、式(3)をフーリとなる。Then, the impulse response becomes a Fourie expression (3).

式(4)の i?、(モ> Y−−3!z(え)で示づ
一インパル線と破線のにうになる。同図のふたつのイン
パル(波長で表示するとλo/2)で均一であり、かつ
両曲線のピーク点が互いに相手側のピーク点間の真中に
位置り゛る。実線のインパルス応答に対応するインター
ディジタル電極が偶成分を構成し、破線のインパルス応
答が青成分を構成Jる。 第4図のふたつのインパルス
応答に基いてインク−ディジタル電極を2段に分(プて
構成し、電気的に並列接続したのが第6図の電極パター
ンで、これは、中利、清水による[弾性表面波フィルタ
の一設計法j(1972年9月28日発行、東北大学電
気通信研究所第172回音費工学研究会負利)に開示さ
れている。第6図において、一方のインターディジタル
電極1が伝播方向と直角方向に配置された2つのインタ
ーディジタル電極2.3で構成され、電極3が偶成分を
、電極2が青成分を励受振するように構成され(この逆
でもよい)、2つの電極2.3の伝播路をカバーするよ
うに他方のインターディジタル電極4が形成されている
i in equation (4)? , (Mo> Y--3!z(E), which shows one impulse line and a broken line.The two impulses in the same figure (λo/2 when expressed in terms of wavelength) are uniform, and both curves are uniform. The peak points are located in the middle between the peak points of the opposite side.The interdigital electrodes corresponding to the impulse responses shown by the solid line constitute the even component, and the impulse responses shown by the dashed line constitute the blue component. The electrode pattern shown in Figure 6 consists of ink-digital electrodes divided into two stages based on the two impulse responses and electrically connected in parallel. A design method for wave filters J (published September 28, 1972, 172nd Sound Engineering Research Group, Institute of Electrical Communication, Tohoku University).In Fig. 6, one of the interdigital electrodes 1 is It consists of two interdigital electrodes 2.3 arranged perpendicular to the propagation direction, and is configured so that electrode 3 excites the even component and electrode 2 excites the blue component (the reverse is also possible). The other interdigital electrode 4 is formed to cover the propagation path of electrode 2.3.

しかし、上記第6図の電極1では、省ピッチで非対称の
周波数応答特性を実現できるが、インターディジタル電
極を伝播方向と直角方向に2個配置するので、表面波の
励受j辰領域が広がり、表面波基板が広くなるという欠
点がある。また、表面波の励受振強度の大ぎい中心部分
が両側に分かれ、また電極の中央部が共通電極となるの
で、電極パターンとして好ましいものではない。
However, with electrode 1 shown in Fig. 6 above, asymmetric frequency response characteristics can be achieved with a small pitch, but since two interdigital electrodes are arranged in a direction perpendicular to the propagation direction, the excitation region of the surface wave is expanded. , the disadvantage is that the surface wave substrate becomes wider. Further, the center portion where the surface wave excitation/reception intensity is high is divided into both sides, and the center portion of the electrode becomes a common electrode, which is not a preferable electrode pattern.

上述の問題点を除去して 1つの等ピッチのインターデ
ィジタル電極で非対称の周波数応答特性を実現するため
、第4図の2つのインパルス応答を第5図のように合成
し、この合成したインパルス応答に基いて第7図(a 
)、(b)のように電極パターンを構成することができ
る。同図において、幅をもつ主電極フィンガー6.7.
8.9をl。
In order to eliminate the above-mentioned problem and realize an asymmetric frequency response characteristic with one equally pitched interdigital electrode, the two impulse responses in Fig. 4 are synthesized as shown in Fig. 5, and this synthesized impulse response is Based on Figure 7 (a
), the electrode pattern can be configured as shown in (b). In the same figure, the main electrode fingers 6.7.
8.9 l.

の電極ピッチで配置し、隣接する2個の主電極フインカ
ー6a′3よび7、Bi3よび9ずつ異電位の共通部で
接続しかつこれら2個の主電極フィンガーの長さを異な
らせ、しかも、各主電極フィンガーd・今 6.7.8.9の遊端と対外し、かつ異電位の共ンカー
10.11−2.13を工λoの電極ピッチで配置 置して形成される。このインターディジタル電極によれ
ば、隣接づる異電位の主電極フィンカーフ、8が交ざす
る領域(右上り斜線領域)で偶成分が励受振され、隣接
する主電極フィンガー6.9と補助電極フィンカー11
.12が交さする領域(右下λ り斜線領域> 1−奇成分が上記偶成分とは7の非削ず
れて励受振ひれる。このようなインターディジタル電極
を用いると、表面波伝播方向と直角方向の電極幅を狭く
でき、表面波基板を小さくCぎるが、゛電極フィンガー
6および8.7および9で交差する領域(クロス斜線)
でも表面波が励受振されるので、周波数応答特性に誤差
が生じ、またその誤差を予め考慮して設計するのは非常
に煩わしいものである。また、電極フィンガー6.8間
や7.9間の励受振による影響を無視できる程度に小さ
くするため、それらの間に位置する電極フィンガー7お
よび11.8j5よひ12のフィンガー先端を接近させ
てクロス斜線の領域を小ざくすると、パターン形成時に
両フィンガー 7および11.8および12が先端で短
絡してしまう危険性が生ずる。
The two adjacent main electrode fingers 6a'3 and 7 and Bi3 and 9 are connected at common parts of different potentials, and the lengths of these two main electrode fingers are different, and It is formed by arranging co-junkers 10.11-2.13, which are separated from the free end of each main electrode finger d and 6.7.8.9 and have different potentials, at an electrode pitch of λo. According to this interdigital electrode, an even component is excited and received in the region where adjacent main electrode fin kerfs 8 of different potentials intersect (shaded region on the upper right), and the adjacent main electrode fingers 6.9 and auxiliary electrode fin kerfs 11
.. The area where 12 intersect (lower right λ diagonal shaded area> 1-odd component is not offset from the even component of 7, and the excitation and reception fins are generated. When such interdigital electrodes are used, the direction of surface wave propagation and The electrode width in the perpendicular direction can be narrowed, and the surface wave substrate can be made too small.
However, since surface waves are excited and received, errors occur in the frequency response characteristics, and it is extremely troublesome to design with these errors taken into consideration in advance. In addition, in order to minimize the influence of excitation and reception between the electrode fingers 6.8 and 7.9 to a negligible extent, the finger tips of the electrode fingers 7 and 11.8j5 and 12 located between them are brought close together. If the cross-hatched area is made smaller, there is a risk that both fingers 7 and 11.8 and 12 will be short-circuited at their tips during pattern formation.

後者のりフレクシコン法あるいはミラー法は、所定の周
波数特性の中心周波数を[0とすると、2foに対して
線対称となる中心周波数が3fOの虚像を想定する手法
であり、得られるインパルス応答は上述の奇−偶関数法
の場合と同様となり、電極パターンも第6図および第7
図(a )、(b)ル のちのと同じように決定し、上述した同様の問題点を有
している。
The latter glue flexicon method or mirror method is a method that assumes a virtual image with a center frequency of 3fO that is line symmetric with respect to 2fo, assuming that the center frequency of a predetermined frequency characteristic is [0], and the resulting impulse response is as described above. The results are the same as in the odd-even function method, and the electrode patterns are as shown in Figures 6 and 7.
Figures (a) and (b) are determined in the same way as later and have the same problems as described above.

本発明者は、上述した従来技術の欠点を除去した弾性表
面波フィルタを特願昭57−104391号として先に
出願している。この内容は、偶成分を構成するインター
ディジタル電極の包絡線に沿って共通電極を設け、この
共通電極の片側あるいは両側に奇成分をもつインターデ
ィジタル電極を構成するようにしたものである。
The present inventor previously filed an application in Japanese Patent Application No. 57-104391 for a surface acoustic wave filter that eliminates the drawbacks of the prior art described above. In this case, a common electrode is provided along the envelope of interdigital electrodes constituting even components, and interdigital electrodes having odd components are constructed on one or both sides of this common electrode.

本発明は、上記先願をさらに改良したもので、先願で得
られる効果に加えて、基板寸法の縮小ならびに回折損の
抑制を達成Cぎるようにしたものである。
The present invention is a further improvement of the above-mentioned prior application, and in addition to the effects obtained in the prior application, it is possible to achieve reduction in substrate size and suppression of diffraction loss.

以下、本発明の実施例を図面を参照しつつ詳述する。Embodiments of the present invention will be described in detail below with reference to the drawings.

第8図にJ−3いて、l−i Nl) 03 、P’:
T、ガラス基板上のZnO膜などからなる表面波基板2
0上に、入出力側インターディジタル電極21.22が
所定路離隔てて形成されている。一方のインターディジ
タル電(々21は、第1+13よび第2のインター7−
インタル電極23.24で構成されている。第10雷(
令23は、第4図の偶成分を規定するインパルス応答(
実線)に基いて通常の方法で交差幅手イ<」りか施され
、2つの共通電極部23a、231)のうち一方23b
が重付りの包絡線にほぼ沿うように形成されている。第
2の電極24は、第4図の奇成分を規定づ“るインター
ディジタル電極であるが、第1の電極23の最大交ざ幅
となる振源23C近傍に位置覆る振源が零となるように
予め設定しl〔うえて、第1電8X23の共通電極部2
3bの外側すなわち偶成分の非交さ領域であって使方側
電極22の伝播路上に形成されている。この電極24は
、第1電極23の共通電極部23bと、第1の電極23
の最大交さ幅の振源23Cに接近して形成された別個の
共通電極部24aとから電極指を突出させて構成されて
いる。第2電極24の共通電極部24aと第1電極23
の共通電極部23aとは、シールド電極25によって結
合されている。端子電極26.21.28.29がたと
えば基板20の各隅に形成され、それぞれ所定の共通電
極部に接続されている。この実施例では、第1電極23
の最大交さ幅の1辰源23Cの外側には他の振源が配置
されず、その分だけ基板の幅寸法を小さくすることがで
き・る。
J-3 in Figure 8, l-i Nl) 03, P':
T, surface wave substrate 2 consisting of a ZnO film on a glass substrate, etc.
0, input/output side interdigital electrodes 21 and 22 are formed spaced apart by a predetermined distance. One interdigital voltage (21) is connected to the first +13 and second interdigital 7-
It is composed of intal electrodes 23 and 24. 10th thunder (
Order 23 is the impulse response (
Based on the solid line), one of the two common electrode portions 23a and 231), 23b, is
is formed so as to roughly follow the envelope of the weight. The second electrode 24 is an interdigital electrode that defines the odd component in FIG. [In addition, the common electrode part 2 of the first electrode 8X23
3b, that is, a non-intersecting region of even components, and is formed on the propagation path of the used electrode 22. This electrode 24 includes a common electrode portion 23b of the first electrode 23 and a common electrode portion 23b of the first electrode 23.
A separate common electrode portion 24a is formed close to the vibration source 23C with the maximum intersecting width of the electrode finger. Common electrode part 24a of second electrode 24 and first electrode 23
is coupled to the common electrode portion 23a by a shield electrode 25. Terminal electrodes 26, 21, 28, and 29 are formed, for example, at each corner of the substrate 20, and are respectively connected to a predetermined common electrode portion. In this embodiment, the first electrode 23
No other vibration sources are placed outside the single source 23C having the maximum intersecting width, and the width of the substrate can be reduced accordingly.

次に、第2電極24にお(プる第1電極23の最大交さ
幅の振fl!23G近傍に位置する振源を零にする方法
について簡単に)ボベる。
Next, the second electrode 24 is deflected (briefly about the method of zeroing out the vibration source located near the maximum crossing width fl!23G of the first electrode 23).

前述したように、所望の周波数特性を式(3)であられ
すと、そのインパルス応答は、h  (t  )=lI
R(t  )  −jhI(j  )となり、第12図
に示すような特性となる。第12図は説明の便宜上第1
.4.5図とは必ずしも一致りをサンプリングしく実線
矢印)、偶数番目に相当するデータに基いて偶成分のイ
ンターディジタル電極23を構成し、奇数番目に相当す
るデータに基いて白成分のインターディジタル電極24
を構成している。奇−偶関数法についても同じ電極構成
となる。しかし、本実施例では、サンプリングの時間間
隔をわずかに変えることにより、偶成分や白成分を変え
、例えば偶成分の最大1直近傍での白成分の振源を小さ
くする。すなわち、t′−4−(昔bf、の時間間隔で
サンプリングすると第12図の破線のように白成分の振
源が小さくなっていく。さらに、励振強度の最大値を相
対尺度で1とすると、例えば0.02以下の撮源を強制
的に零に設定する。もちろん、強制的に振源を零にした
場合には他の振源で補正しておく。このように構成する
ことにより、従来の電極パターンから第8図の電極構成
となり、これが上述した一実施例である。
As mentioned above, when the desired frequency characteristic is expressed by equation (3), the impulse response is h (t ) = lI
R(t)-jhI(j), and the characteristics are as shown in FIG. Figure 12 is for convenience of explanation.
.. 4.5 The sampling does not necessarily match the sample shown in Figure 5 (solid line arrow), the even component interdigital electrode 23 is formed based on the data corresponding to the even number, and the interdigital electrode 23 of the white component is formed based on the data corresponding to the odd number. electrode 24
It consists of The same electrode configuration is used for the odd-even function method. However, in this embodiment, by slightly changing the sampling time interval, the even component and the white component are changed, and, for example, the oscillation source of the white component at most one nearest neighbor of the even component is reduced. In other words, when sampling at a time interval of t'-4-(previously bf), the source of the white component becomes smaller as shown by the broken line in Fig. , for example, the source of 0.02 or less is forcibly set to zero.Of course, if the source is forcibly set to zero, it must be corrected with another source.By configuring in this way, The conventional electrode pattern results in the electrode configuration shown in FIG. 8, which is one embodiment described above.

この実施例をさらに進めて、第2の電極24の各振源を
、表面波伝播方向と直交する電極指方向において励振強
度の最大となる位置例えば中央部へ遅角けて配置させる
ことによって、第9図の電極構成が実現できる。このよ
うに配置することにより、第1電極23の最大交さ幅の
振源23Gの外側には他の振諒が配置されず、その分だ
け基板の幅寸法を小さく覆ることができる。しかも、第
2電極24が元々励振強度の大きい中央部に集中するの
で回折損などの影響がなくなる。他の構成は第8図記載
の実施例とほぼ同様であるから、その説明を省略する。
This embodiment can be further advanced by arranging each vibration source of the second electrode 24 at a retarded position, for example, at the center, where the excitation intensity is maximum in the electrode finger direction perpendicular to the surface wave propagation direction. The electrode configuration shown in FIG. 9 can be realized. By arranging it in this manner, other vibrations are not arranged outside the vibration source 23G having the maximum intersecting width of the first electrode 23, and the width of the substrate can be reduced accordingly. Furthermore, since the second electrode 24 is concentrated in the center where the excitation intensity is originally high, the influence of diffraction loss and the like is eliminated. Since the other configurations are almost the same as the embodiment shown in FIG. 8, the explanation thereof will be omitted.

第10図は他の実施例を示し、上記実施例との相違点は
、白成分を構成する第2電極が第1電極23の両側に分
けて形成されたことにある。すなわち、第1電極23の
もう一つの共通電極部23aも重付けの包絡線にほぼ沿
うように湾曲させられ、第1電極23の最大交差幅イ」
近にのびる別の共通電極部24a′が設けられ、共通電
極部23aと24a′から電極指を突出さけてインター
ディジタル電極24′が構成されている。共通電極部2
3bと共通電極部248′とが電極の外側を通しで接続
されている。電極24ど電極24′とで白成分を規定(
る第2電極が構成される。
FIG. 10 shows another embodiment, which differs from the above embodiment in that the second electrodes constituting the white component are formed separately on both sides of the first electrode 23. That is, the other common electrode portion 23a of the first electrode 23 is also curved so as to substantially follow the weighted envelope, and the maximum crossing width of the first electrode 23 is
Another common electrode section 24a' is provided extending nearby, and an interdigital electrode 24' is formed by protruding electrode fingers from the common electrode sections 23a and 24a'. Common electrode part 2
3b and the common electrode portion 248' are connected through the outside of the electrode. The white component is defined by the electrodes 24 and 24' (
A second electrode is configured.

上記各実施例では、シングル形の電極C非対称の周波数
特性を構成できるので、従来のバリアプルピッチ法や第
7図のミラー法(又はリフレクション法)と比較して、
同じ電極幅ではるかに高い周波数のフィルタが実現でき
る。
In each of the above embodiments, it is possible to configure asymmetric frequency characteristics of the single electrode C, so compared to the conventional barrier pull pitch method and the mirror method (or reflection method) shown in FIG.
A much higher frequency filter can be realized with the same electrode width.

第11図はざらに他の実施例を示し、上記2つの実施例
との相違点は、rTE除去の効果をもたけるために、電
極23.24をスプリット電極形に構成したことにある
。この実施例によれば、スプリット電極の対の電極指を
同一長さで構成でき、従来のミラー法(又はリフレクシ
ョン法)と比較してgl算誤差が少なくなる。
FIG. 11 roughly shows another embodiment, and the difference from the above two embodiments is that the electrodes 23 and 24 are configured in a split electrode type in order to enhance the rTE removal effect. According to this embodiment, the electrode fingers of the pair of split electrodes can be configured to have the same length, and the gl calculation error is reduced compared to the conventional mirror method (or reflection method).

−り記名実施例におりる電極は非常にシンプルな包絡線
をもつものを例示しているが、本発明はいがなる包絡線
をもつ電極であっても適用可能なものである。また、水
量II書でいうところの偶成分および白成分は、奇−偶
関数法における偶成分および白成分、リフレクション法
における対称成分d3よび非対称成分などを総称してい
る。さらに、位相が゛補正されて設計される場合には、
交差幅の最大値が奇関数側にある場合もあり、その場合
には偶関数の方で上述の手法をとればよい。
Although the electrodes in the above-mentioned embodiments have very simple envelopes, the present invention is also applicable to electrodes with different envelopes. Furthermore, the even component and white component in the Water Quantity II book collectively refer to the even component and white component in the odd-even function method, the symmetrical component d3 and the asymmetrical component in the reflection method, and the like. Furthermore, if the design is designed with the phase corrected,
There are cases where the maximum value of the intersection width is on the odd function side, in which case the above-mentioned method may be applied on the even function side.

以上説明したように、本弁明によれば、ミラー法と同程
度又はそれ以下の基板寸法でもって、所望周波数特性が
誤差なく確実に得られ、また設計時の煩雑な計綽も軽減
され、しかしシングル電極でもスプリット電極でも構成
でき、さらには回折損の影響も極力小さくすることがで
きる。
As explained above, according to the present defense, the desired frequency characteristics can be reliably obtained without error with a substrate size comparable to or smaller than that of the mirror method, and the complicated planning at the time of design can be reduced. It can be configured with either a single electrode or a split electrode, and furthermore, the influence of diffraction loss can be minimized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の可変ピッチ型電極におけるインパルス応
答特性図、第2〜5図は従来例及び本発明の説明に用い
る図で、第2図はt−h  (ω)とH2(ω)の周波
数特性図、第3図はHR(ω)とjHx(ω)の周波数
特性図、第4図はHR(ω)とjHI (ω)のインパ
ルス応答特性図、第5図はHR(ω)とJHI(ω)と
を合成したインパルス応答特性図、第6図は従来のフィ
ルタを示1図、第7図(a )は他の従来フィルタを示
す図、同図(b)は部分拡大図、第8図、第9図、第1
0図および第11図はそれぞれ本発明によるフィルタを
示づ図、第12図は本発明の31明に用いるインパルス
応答特性図である。 特  許  出  願  人 株式会社村1(J製作所 第2図 第3図 第4図 覗 第5図 i 第6図 う 第7図 第8図 第7図 第10図 第11図 具寂(擦
Figure 1 is an impulse response characteristic diagram of a conventional variable pitch electrode, Figures 2 to 5 are diagrams used to explain the conventional example and the present invention, and Figure 2 is a diagram of th (ω) and H2 (ω). Frequency characteristic diagram, Figure 3 is the frequency characteristic diagram of HR (ω) and jHx (ω), Figure 4 is the impulse response characteristic diagram of HR (ω) and jHI (ω), Figure 5 is the HR (ω) and An impulse response characteristic diagram synthesized with JHI(ω), FIG. 6 shows a conventional filter, FIG. 7 (a) shows another conventional filter, and FIG. 7 (b) shows a partially enlarged view. Figure 8, Figure 9, Figure 1
0 and 11 are diagrams showing filters according to the present invention, respectively, and FIG. 12 is an impulse response characteristic diagram used in the 31st filter of the present invention. Patent application Mura 1 Co., Ltd. (J Manufacturing Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)中心周波数に対し非対称の周波数応答特性を得る
ための、少なくとも入出力側電極を有する弾性表面波フ
ィルタであって、 少なくとも一方の電極は、交さ幅重付けを施して周波数
応答特性の偶成分(または奇成分)を規定する第1のイ
ンターディジタル電極と、主として上記第1のインター
ディジタル電極の非交さ領域に配置される、交さ幅重付
けを施して周波数応答特性の奇成分(または偶成分)を
規定する第2のインターディジタル電極とで構成され、
前記第2のインターディジタル電極は、前記第1のイン
ターディジタル電極の最大交さ幅となる振源近傍に存す
る、少なくとも1個の振源が零となるように設定された
ことを特徴とする弾性表面波フィルタ。
(1) A surface acoustic wave filter having at least input and output side electrodes for obtaining a frequency response characteristic asymmetrical with respect to the center frequency, in which at least one electrode is weighted with an intersection width to obtain a frequency response characteristic. A first interdigital electrode that defines an even component (or an odd component) and an odd component of the frequency response characteristic that is arranged mainly in a non-intersecting region of the first interdigital electrode and weighted by the intersection width. (or an even component);
The elasticity of the second interdigital electrode is set such that at least one vibration source near the vibration source, which is the maximum crossing width of the first interdigital electrode, becomes zero. surface wave filter.
(2)前記第2のインターディジタル電極の残りの振源
が、前記第1のインターディジタル電極の表面波伝播方
向と直交する方向において励振強度の最大となる位置へ
近付けて配置された、特許請求の範囲第(1)項記載の
弾性表面波フィルタ。
(2) The remaining vibration sources of the second interdigital electrode are arranged close to the position where the excitation intensity is maximum in the direction orthogonal to the surface wave propagation direction of the first interdigital electrode. The surface acoustic wave filter according to item (1).
JP22791982A 1982-06-16 1982-12-29 Elastic surface wave filter Granted JPS59123305A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP22791982A JPS59123305A (en) 1982-12-29 1982-12-29 Elastic surface wave filter
US06/504,271 US4604595A (en) 1982-06-16 1983-06-14 Surface acoustic wave device having interdigitated comb electrodes weighted for odd/even response
GB08316298A GB2123637B (en) 1982-06-16 1983-06-15 Surface acoustic wave device
DE19833321843 DE3321843A1 (en) 1982-06-16 1983-06-16 COMPONENT WITH USE OF ACOUSTIC SURFACE WAVES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22791982A JPS59123305A (en) 1982-12-29 1982-12-29 Elastic surface wave filter

Publications (2)

Publication Number Publication Date
JPS59123305A true JPS59123305A (en) 1984-07-17
JPH0318768B2 JPH0318768B2 (en) 1991-03-13

Family

ID=16868351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22791982A Granted JPS59123305A (en) 1982-06-16 1982-12-29 Elastic surface wave filter

Country Status (1)

Country Link
JP (1) JPS59123305A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376513A (en) * 1986-09-19 1988-04-06 Hitachi Ltd Elastic surface wave device
WO2010000122A1 (en) * 2008-07-04 2010-01-07 无锡市好达电子有限公司 A dual channel saw filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376513A (en) * 1986-09-19 1988-04-06 Hitachi Ltd Elastic surface wave device
WO2010000122A1 (en) * 2008-07-04 2010-01-07 无锡市好达电子有限公司 A dual channel saw filter
US8232852B2 (en) 2008-07-04 2012-07-31 Shoulder Electronics Co., Ltd. Dual-track surface-wave filter

Also Published As

Publication number Publication date
JPH0318768B2 (en) 1991-03-13

Similar Documents

Publication Publication Date Title
US4604595A (en) Surface acoustic wave device having interdigitated comb electrodes weighted for odd/even response
US5818146A (en) Surface acoustic wave resonator filter apparatus
US5175711A (en) Surface acoustic wave apparatus and method of productivity and adjustment of the same
US5521565A (en) Surface wave interdigital transducer and surface wave filter with symmetric or predeterminable asymmetric transfer characteristic between input and output
JPS59123305A (en) Elastic surface wave filter
US6313563B1 (en) Edge reflection type surface acoustic wave device
JPS5847090B2 (en) surface acoustic wave filter
JPH0351133B2 (en)
JPS63194406A (en) Surface acoustic wave resonator
JPH03139008A (en) Surface acoustic wave filter
JPH0244171B2 (en) DANSEIHYOMENHAFUIRUTA
JPH0563961B2 (en)
JPH0815249B2 (en) Surface acoustic wave filter
JP2714189B2 (en) Surface acoustic wave filter and communication device using the same
JPH02260908A (en) Surface acoustic wave device
US5808524A (en) Surface wave filter with a specified transducer impulse train that reduces diffraction
JPS5830216A (en) Acoustic wave device
JPS62286305A (en) Surface acoustic wave device
JPS59201512A (en) Surface acoustic wave device
JPH01225211A (en) Surface acoustic wave element
JPS58182312A (en) Surface acoustic wave device
JPH01226207A (en) Surface acoustic wave element
JPS6210046B2 (en)
JPS639216A (en) Unidirectional surface acoustic wave filter
JPS5848516A (en) Surface acoustic wave device