JPH0244171B2 - DANSEIHYOMENHAFUIRUTA - Google Patents

DANSEIHYOMENHAFUIRUTA

Info

Publication number
JPH0244171B2
JPH0244171B2 JP10439182A JP10439182A JPH0244171B2 JP H0244171 B2 JPH0244171 B2 JP H0244171B2 JP 10439182 A JP10439182 A JP 10439182A JP 10439182 A JP10439182 A JP 10439182A JP H0244171 B2 JPH0244171 B2 JP H0244171B2
Authority
JP
Japan
Prior art keywords
electrode
interdigital
electrodes
common electrode
frequency response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10439182A
Other languages
Japanese (ja)
Other versions
JPS58220517A (en
Inventor
Michio Kadota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP10439182A priority Critical patent/JPH0244171B2/en
Priority to GB838315675A priority patent/GB8315675D0/en
Priority to US06/504,271 priority patent/US4604595A/en
Priority to GB08316298A priority patent/GB2123637B/en
Priority to DE19833321843 priority patent/DE3321843A1/en
Publication of JPS58220517A publication Critical patent/JPS58220517A/en
Publication of JPH0244171B2 publication Critical patent/JPH0244171B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、中心周波数に対し非対称の周波数応
答特性を得るための電極パターンの改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an electrode pattern to obtain a frequency response characteristic that is asymmetric with respect to a center frequency.

従来、単一のインターデイジタルトランスジユ
ーサーで非対称の周波数応答特性を得る方法の1
つとしては、隣接する電極フインガーの中心間の
距離(以下電極ピツチという)を弾性表面波伝播
方向に沿つて変化させる手法が知られている。い
わゆる可変ピツチ形インターデイジタル電極で、
次に述べるようなものである。すなわち、周波数
応答特性をフーリエ逆変換すると、例えば、第1
図に示すようなインパルス応答が得られる。この
インパルス応答は、周波数応答特性が非対称であ
るため、フーリエ逆変換の結果虚数部を含み、虚
数部が零となる各ピーク点間の時間間隔が不均一
となる。そして、得られたインパルス応答に対応
させてインターデイジタル電極を形成すれば、こ
の電極で所期の周波数応答特性が実現できる。そ
の対応のさせ方は、隣接する電極フインガー間の
交さ幅(表面波励受振領域)を、インパルス応答
における各ピーク点(矢印で示す)の大きさに比
例させ、かつ電極ピツチを、インパルス応答にお
けるピーク点間の時間に比例させて行えばよい。
ところが、ピーク点間の時間が不均一であるか
ら、インターデイジタル電極の電極ピツチも不均
一となり、この結果インターデイジタル電極は可
変ピツチ形となる。
Conventionally, one method of obtaining asymmetric frequency response characteristics with a single interdigital transducer is
One known method is to change the distance between the centers of adjacent electrode fingers (hereinafter referred to as electrode pitch) along the surface acoustic wave propagation direction. This is a so-called variable pitch interdigital electrode.
It is as described below. That is, when the frequency response characteristic is inversely Fourier transformed, for example, the first
The impulse response shown in the figure is obtained. Since this impulse response has an asymmetric frequency response characteristic, it includes an imaginary part as a result of inverse Fourier transform, and the time intervals between peak points at which the imaginary part becomes zero are non-uniform. Then, by forming interdigital electrodes corresponding to the obtained impulse response, the desired frequency response characteristics can be achieved with these electrodes. The way to do this is to make the intersection width between adjacent electrode fingers (surface wave excitation/reception area) proportional to the size of each peak point (indicated by an arrow) in the impulse response, and to adjust the electrode pitch to It may be done in proportion to the time between the peak points in .
However, since the time between peak points is non-uniform, the electrode pitch of the interdigital electrode is also non-uniform, and as a result, the interdigital electrode has a variable pitch type.

上述した従来の手法は、所期の特性を満足でき
るが、電極が不等ピツチであるため、電極パター
ンの設計が困難な上に、太い電極と細い電極が出
来るため高周波用に設計すると電極が短絡しやす
いという欠点を有している。
The conventional method described above can satisfy the desired characteristics, but since the electrodes are unevenly pitched, it is difficult to design the electrode pattern, and the electrodes are designed for high frequencies because they create thick and thin electrodes. It has the disadvantage of being easily short-circuited.

上述の問題点を解決するため等ピツチのインタ
ーデイジタル電極で非対称の周波数応答特性を得
ようとする試みがなされ、後述する奇一偶関数法
ならびにミラー法又はリフレクシヨン法という手
法が提案されている。
In order to solve the above-mentioned problems, attempts have been made to obtain asymmetric frequency response characteristics using equally spaced interdigital electrodes, and techniques called the odd-even function method and the mirror method or reflection method, which will be described later, have been proposed. .

前者の奇一偶関数法は、所望周波数応答特性を
リニア表示したものをH1(ω)とすると、H1(ω
−ω0)=H2(ω0−ω)なるH2(ω)を想定する手
法である。H1(ω)とH2(ω)との関係は第2図
のようになる。ここで、偶成分をHR(ω)、奇成
分をHI(ω)とし、HR(ω)とHI(ω)を次のよ
うに定義すると、それらの関数は第3図のように
なる。
In the former odd-even function method, if H 1 (ω) is a linear representation of the desired frequency response characteristic, then H 1
This is a method that assumes H 2 (ω) such that -ω 0 )=H 20 -ω). The relationship between H 1 (ω) and H 2 (ω) is shown in Figure 2. Here, let the even component be H R (ω) and the odd component H I (ω), and if H R (ω) and H I (ω) are defined as follows, their functions are as shown in Figure 3. become.

HR(ω)=H1(ω)+H2(ω)/2 (1) HI(ω)=H2(ω)−H1(ω)/2j (2) また、H1(ω)は、式(1)、(2)より H1(ω)=HR(ω)−jHI(ω) (3) となる。 H R (ω)=H 1 (ω)+H 2 (ω)/2 (1) H I (ω)=H 2 (ω)−H 1 (ω)/2j (2) Also, H 1 (ω) From equations (1) and (2), H 1 (ω)=H R (ω)−jH I (ω) (3).

そして、インパルス応答は、式(3)をフーリエ変
換したもので、 h(t)=hR(t)−jhI(t) =∫HR(ω)ej2ftdf +∫−jHI(ω)ej2ftdf (4) となる。
The impulse response is the Fourier transform of equation (3), h(t)=h R (t)− j h I (t) =∫H R (ω)e j2ft df +∫− j H I (ω)e j2ft df (4).

式(4)のhR(t)と−jhI(t)で示すインパルス
応答はそれぞれ第4図の実線と破線のようにな
る。同図のふたつインパルス応答曲線はいずれも
ピーク点間の時間が1/2f0(波長で表示するとλ0/ 2)で均一であり、かつ両曲線のピーク点が互い
に相手側のピーク点間の真中に位置する。実線の
インパルス応答に対応するインターデイジタル電
極が偶成分を構成し、破線のインパルス応答が奇
成分を構成する。
The impulse responses represented by h R (t) and −j h I (t) in equation (4) are shown as the solid line and broken line in FIG. 4, respectively. The two impulse response curves in the same figure are uniform in that the time between their peak points is 1/2f 00 / 2 when expressed in terms of wavelength), and the peak points of both curves are equal to each other's peak points. Located in the middle. The interdigital electrodes corresponding to the impulse response shown by the solid line constitute the even component, and the impulse response represented by the dashed line constitute the odd component.

第4図のふたつのインパルス応答に基いてイン
ターデイジタル電極を2段に分けて構成し、電気
的に並列接続したのが第6図の電極パターンで、
これは、中村、清水による「弾性表面波フイルタ
の一設計法」(1972年9月28日発行、東北大学電
気通信研究所第172回音響工学研究会資料)に開
示されている。第6図において、一方のインター
デイジタル電極1が伝播方向と直角方向に配置さ
れた2つのインターデイジタル電極2,3で構成
され、電極2が偶成分を、電極3が奇成分を励受
振するように構成され、2つの電極2,3の伝播
路をカバーするように他方インターデイジタル電
極4が形成されている。
The electrode pattern shown in Fig. 6 consists of interdigital electrodes divided into two stages based on the two impulse responses shown in Fig. 4, and electrically connected in parallel.
This is disclosed in "A Design Method for Surface Acoustic Wave Filters" by Nakamura and Shimizu (issued September 28, 1972, materials from the 172nd Acoustic Engineering Research Meeting, Institute of Electrical Communication, Tohoku University). In FIG. 6, one interdigital electrode 1 is composed of two interdigital electrodes 2 and 3 arranged perpendicular to the propagation direction, with electrode 2 exciting and receiving the even component and electrode 3 exciting and receiving the odd component. The other interdigital electrode 4 is formed so as to cover the propagation path of the two electrodes 2 and 3.

しかし、上記第6図の電極1では、等ピツチで
非対称の周波数応答特性を実現できるが、インタ
ーデイジタル電極を伝播方向と直角方向に2個配
置するので、表面波の励受振領域が広がり、表面
波基板が広くなるという欠点がある。また、表面
波の励受振強度の大きい中心部分が両側に分か
れ、また電極の中央部が共通電極となるので、電
極パターンとして好ましいものではない。
However, with the electrode 1 shown in Fig. 6 above, it is possible to realize an asymmetrical frequency response characteristic with equal pitch, but since two interdigital electrodes are arranged in a direction perpendicular to the propagation direction, the surface wave excitation and reception area is expanded, and the surface wave The disadvantage is that the wave board becomes wider. Further, the central portion where the surface wave excitation/reception intensity is high is divided into both sides, and the central portion of the electrode serves as a common electrode, which is not a preferable electrode pattern.

上述の問題点を除去して1つの等ピツチのイン
ターデイジタル電極で非対称の周波数応答特性を
実現するため、第4図の2つのインパルス応答を
第5図のように合成し、この合成したインパルス
応答に基いて第7図a,bのように電極パターン
を構成することができる。同図において、一方の
インターデイジタル電極5が、1/8λ0の電極幅を
もつ主電極フインガー6,7,8,9を1/4λ0
電極ピツチで配置し、隣接する2個の主電極フイ
ンガー6および7,8および9ずつ異電位の共通
部で接続しかつこれら2個の主電極フインガーの
長さを異ならせ、しかも、各主電極フインガー
6,7,8,9の遊端と対峠し、かつ異電位の共
通部に接続される1/8λ0の幅をもつ補助電極フイ
ンガー10,11,12,13を1/4λ0の電極ピ
ツチで配置して形成される。このインターデイジ
タル電極によれば、隣接する異電位の主電極フイ
ンガー7,8が交さする領域(右上り領域)で偶
成分が励受振され、隣接する主電極フインガー
6,9と補助電極フインガー11,12が交さす
る領域(右下り領域)で奇成分が上記偶成分とは
λ/4の距離ずれて励受振される。このようなイン
ターデイジタル電極を用いると、表面波伝播方向
と直角方向の電極幅を狭くでき、表面波基板を小
さくできるが、電極フインガー6および8,7お
よび9で交差する領域(クロス斜線)でも表面波
が励受振されるので、周波数応答特性に誤差が生
じ、またその誤差を予め考慮して設計するのは非
常に煩わしいものである。また、電極フインガー
6,8間や7,9間の励受振による影響を無視で
きる程度に小さくするため、それらの間に位置す
る電極フインガー7および11,8および12の
フインガー先端を接近させてクロス斜線の領域を
小さくすると、パターン形成時に両フイガー7お
よび11,8および12が先端で短絡してしまう
危険性が生ずる。
In order to eliminate the above-mentioned problem and realize an asymmetric frequency response characteristic with one equally pitched interdigital electrode, the two impulse responses in Fig. 4 are synthesized as shown in Fig. 5, and this synthesized impulse response is Based on this, an electrode pattern can be constructed as shown in FIGS. 7a and 7b. In the figure, one interdigital electrode 5 has main electrode fingers 6, 7, 8, 9 with an electrode width of 1/8λ 0 arranged at an electrode pitch of 1/4λ 0 , and two adjacent main electrodes Fingers 6 and 7, 8 and 9 are connected at common parts with different potentials, and the lengths of these two main electrode fingers are different. It is formed by arranging auxiliary electrode fingers 10, 11, 12, and 13 having a width of 1/8λ 0 at an electrode pitch of 1/4λ 0 and connected to a common part of different potentials. According to this interdigital electrode, an even component is excited and received in the region where the adjacent main electrode fingers 7 and 8 of different potentials intersect (upper right region), and the adjacent main electrode fingers 6 and 9 and the auxiliary electrode finger 11 , 12 (down-right region), the odd component is excited and received with a distance of λ/4 from the even component. By using such interdigital electrodes, the electrode width in the direction perpendicular to the surface wave propagation direction can be narrowed, and the surface wave substrate can be made smaller. Since surface waves are excited and received, errors occur in the frequency response characteristics, and it is extremely troublesome to design with these errors taken into consideration in advance. In addition, in order to reduce the influence of excitation and vibration between electrode fingers 6 and 8 and between electrode fingers 7 and 9 to a negligible extent, the finger tips of electrode fingers 7, 11, 8, and 12 located between them are brought close to each other and crossed. If the shaded area is made smaller, there is a risk that both figures 7 and 11, 8 and 12 will be short-circuited at their tips during pattern formation.

後者のリフレクシヨン法あるいはミラー法は、
所定の周波数特性の中心周波数をf0とすると、
2f0に対して線対称となる。中心周波数が3f0の虚
像を想定する手法であり、得られるインパルス応
答は上述の奇一偶関数法の場合と同様となり、電
極パターンも第6図および第7図a,bのものと
同じように決定し、上述したと同様の問題点を有
している。
The latter reflection method or mirror method is
Letting the center frequency of a given frequency characteristic be f 0 ,
Line symmetry with respect to 2f 0 . This method assumes a virtual image with a center frequency of 3f 0 , and the impulse response obtained is the same as in the case of the odd-even function method described above, and the electrode pattern is also the same as in Figures 6 and 7 a and b. It has been decided to do so, and has the same problems as mentioned above.

本発明は、上述した従来技術の欠点をことごと
く除去したもので、上記第7図記載の場合と同程
度の基板寸法で構成でき、インパルス応答に基づ
いてそのまま電極パターンを設定しても所望特性
が得られ、しかもミラー法の大きな欠点であつた
計算の煩雑さもなく、さらにはスプリツト電極で
もシングル電極でも構成できる弾性表面波フイル
タを提供することを目的とする。
The present invention eliminates all the drawbacks of the prior art described above, can be configured with the same substrate dimensions as the case shown in FIG. It is an object of the present invention to provide a surface acoustic wave filter which can be obtained using a split electrode or a single electrode without the complexity of calculation which was a major drawback of the mirror method.

すなわち本発明は、中心周波数に対し非対称の
周波数応答特性を得るための、少なくとも入出力
側電極を有する弾性表面波フイルタであつて、上
記入出力側電極のうち少なくとも一方の電極が、
交さ幅重み付けを施して周波数応答特性の偶成分
を規定する第1のインターデイジタル電極と、第
1のインターデイジタル電極の包絡線に沿つて形
成された共通電極と、この共通電極を挟んで第1
のインターデイジタル電極と反対側において、相
対的に大部分が第1のインターデイジタル電極の
非交さ領域に配置されており、交さ幅重み付けが
施されて周波数応答特性の奇成分を規定する第2
のインターデイジタル電極とを備え、上記共通電
極に、第1、第2のインターデイジタル電極の一
方電位に接続される電極指が接続されており、か
つ第1、第2のインターデイジタル電極の他方電
位に接続される電極指が互いに電気的に接続され
ているものである。
That is, the present invention provides a surface acoustic wave filter having at least input and output side electrodes for obtaining a frequency response characteristic asymmetrical with respect to a center frequency, wherein at least one of the input and output side electrodes is
A first interdigital electrode that performs intersection width weighting to define an even component of the frequency response characteristic, a common electrode formed along the envelope of the first interdigital electrode, and a second interdigital electrode with this common electrode sandwiched therebetween. 1
On the side opposite to the first interdigital electrode, a relatively large portion of the first interdigital electrode is disposed in the non-intersecting region, and the first interdigital electrode is weighted by the intersection width and defines the odd component of the frequency response characteristic. 2
an interdigital electrode, an electrode finger connected to one potential of the first and second interdigital electrodes is connected to the common electrode, and the other potential of the first and second interdigital electrodes is connected to the common electrode. The electrode fingers connected to each other are electrically connected to each other.

以下、本発明の実施例を図面を参照しつつ詳述
する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第8図において、LiNbO3、PZT、ガラス基板
上のZnO膜などからなる表面波基板20上に、入
出力側インターデイジタル電極21,22が所定
距離隔てて形成されている。一方インターデイジ
タル電極21は、第1および第2のインターデイ
ジタル電極23,24で構成されている。第1電
極23は、第4図の偶成分を規定するインパルス
応答(実線)に基いて通常の方法で交差幅重付け
が施され、2つの共通電極部23a,23bのう
ち一方23bが重付けの包絡線にほぼ沿うように
形成されている。第2電極24は、第1電極23
の共通電極部23bの外側すなわち非交差領域で
あつて、第1電極23の伝播路上もしくは少しは
み出る範囲を含む領域に形成されている。この第
2電極24は、第1電極23の共通電極部23b
と、第1電極23の最大交差幅の部分に接近して
形成された別個の共通電極部24aとから電極指
を突出させて構成され、第4図の奇成分(破線)
を規定するインパルス応答に基いて通常の方法で
交差幅重付けが施されている。第2電極24の共
通電極部24aと第1電極23の共通電極部23
aとは、シールド電極25によつて結合されてい
る。端子電極26,27,28,29が基板20
の四隅に形成され、それぞれ所定の共通電極部に
接続されている。
In FIG. 8, input/output side interdigital electrodes 21 and 22 are formed at a predetermined distance apart on a surface wave substrate 20 made of LiNbO 3 , PZT, a ZnO film on a glass substrate, or the like. On the other hand, the interdigital electrode 21 is composed of first and second interdigital electrodes 23 and 24. The first electrode 23 is cross-width weighted in the usual manner based on the impulse response (solid line) that defines the even component in FIG. It is formed approximately along the envelope of The second electrode 24 is the first electrode 23
It is formed outside the common electrode portion 23b, that is, in a non-intersecting region, and in a region including the propagation path of the first electrode 23 or a range slightly protruding from it. This second electrode 24 is a common electrode part 23b of the first electrode 23.
and a separate common electrode part 24a formed close to the maximum crossing width part of the first electrode 23, with electrode fingers protruding from the odd component (dashed line) in FIG.
Cross-width weighting is applied in the usual way based on the impulse response that defines . Common electrode part 24a of the second electrode 24 and common electrode part 23 of the first electrode 23
a and is coupled to each other by a shield electrode 25. Terminal electrodes 26, 27, 28, 29 are connected to the substrate 20
, and are connected to predetermined common electrode portions, respectively.

第9図は他の実施例を示し、上記実施例との相
違点は、奇成分を構成する第2電極が第1電極2
3の両側に分けて形成されたことにある。すなわ
ち、第1電極23のもう一つの共通電極部23a
も重付けの包絡線にほぼ沿うように湾曲させら
れ、第1電極23の最大交差幅付近にのびる別の
共通電極部24a′が設けられ、共通電極部23a
と24a′から電極指を突出させてインターデイジ
タル電極24′が構成されている。共通電極部2
3bと共通電極部24a′とが電極の外側を通して
接続されている。電極24と電極24′とで、奇
成分を規定する第2電極が構成されている。すな
わち、第9図実施例においては、第1電極23の
一方の包絡線に沿う共通電極部23bに着目した
場合、共通電極部23bとは異なる電位に接続さ
れる第1、第2電極23,24の電極指は、共通
電極部23a及び共通電極部24aに接続され、
これらの共通電極部23a,24aはシールド電
極25を介して互いに接続され、さらに端子電極
26に電気的に接続されている。また、第1電極
23の他方の包絡線に沿う共通電極部23aに着
目した場合には、該共通電極部23aの両側に配
置される第1、第2の電極23,24′の共通電
極部23aとは異なる電位に接続される電極指
が、共通電極部23b及び共通電極部24a′を介
して端子電極27において互いに電気的に接続さ
れている。すなわち、第9図実施例では、第1電
極23のもう一方の包絡線に沿つて設けられた共
通電極部23a側においても、本発明の構成が設
けられている。
FIG. 9 shows another embodiment, and the difference from the above embodiment is that the second electrode constituting the odd component is
This is because it was formed on both sides of 3. That is, another common electrode portion 23a of the first electrode 23
Another common electrode part 24a' is provided which is curved so as to almost follow the weighted envelope and extends near the maximum crossing width of the first electrode 23.
An interdigital electrode 24' is constructed by having electrode fingers protrude from and 24a'. Common electrode part 2
3b and the common electrode portion 24a' are connected through the outside of the electrode. The electrode 24 and the electrode 24' constitute a second electrode that defines the odd component. That is, in the embodiment of FIG. 9, when focusing on the common electrode part 23b along one envelope of the first electrode 23, the first and second electrodes 23, which are connected to a different potential from the common electrode part 23b, 24 electrode fingers are connected to the common electrode part 23a and the common electrode part 24a,
These common electrode portions 23a and 24a are connected to each other via a shield electrode 25, and are further electrically connected to a terminal electrode 26. Further, when focusing on the common electrode section 23a along the other envelope of the first electrode 23, the common electrode section of the first and second electrodes 23 and 24' arranged on both sides of the common electrode section 23a Electrode fingers connected to a different potential from 23a are electrically connected to each other at terminal electrode 27 via common electrode section 23b and common electrode section 24a'. That is, in the embodiment of FIG. 9, the configuration of the present invention is also provided on the common electrode portion 23a side provided along the other envelope of the first electrode 23.

上記各実施例では、シングル形の電極で非対称
の周波数特性達成できるので、従来のバリアブル
ピツチ法や第7図のミラー法(又はリフレクシヨ
ン法)と比較して、同じ電極幅ではるかに高い周
波数のフイルタが実現できる。
In each of the above embodiments, asymmetric frequency characteristics can be achieved with a single electrode, so compared to the conventional variable pitch method or the mirror method (or reflection method) shown in FIG. 7, a much higher frequency can be achieved with the same electrode width. filter can be realized.

第10図はさらに他の実施例を示し、上記2つ
の実施例との相違点は、TTE除去の効果をもた
せるために、電極23,24をスプリツト電極形
に構成したことにある。この実施例によれば、ス
プリツト電極の対の電極指を同一長さで構成で
き、従来のミラー法(又はリフレクシヨン法)と
比較して計算差が少なくなる。
FIG. 10 shows yet another embodiment, which differs from the above two embodiments in that the electrodes 23 and 24 are configured in the form of split electrodes in order to have the effect of removing TTE. According to this embodiment, the electrode fingers of a pair of split electrodes can be configured to have the same length, and the calculation difference is reduced compared to the conventional mirror method (or reflection method).

上記各実施例における電極は非常にシンプルな
包絡線をもつものを例示しているが、本発明はい
かなる包絡線をもつ電極であつても適用可能なも
のである。
Although the electrodes in the above embodiments have very simple envelopes, the present invention is applicable to electrodes having any envelope.

以上説明したように、本発明によれば、ミラー
法と同程度の基板寸法でもつて、所望周波数特性
が誤差なく確実に得られ、しかも設計時の煩雑な
計算も軽減され、さらにはシングル電極でもスプ
リツト電極でも構成することができる。
As explained above, according to the present invention, the desired frequency characteristics can be reliably obtained without errors even with the same substrate dimensions as the mirror method, and the complicated calculations at the time of design can be reduced, and even with a single electrode. A split electrode can also be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の可変ピツチ型電極におけるイン
パルス応答特性図、第2〜5図は従来例及び本発
明の説明に用いる図で、第2図はH1(ω)とH2
(ω)の周波数特性図、第3図はHR(ω)とjHI
(ω)の周波数特性図、第4図はHR(ω)とjHI
(ω)のインパルス応答特性図、第5図はHR(ω)
jHI(ω)とを合成したインパルス応答特性図、
第6図は従来のフイルタを示す図、第7図aは他
の従来フイルタを示す図、同図bは部分拡大図、
第8図、第9図および第10図はそれぞれ本発明
によるフイルタを示す図である。
Fig. 1 is an impulse response characteristic diagram of a conventional variable pitch type electrode, Figs. 2 to 5 are diagrams used to explain the conventional example and the present invention, and Fig. 2 shows the characteristics of H 1 (ω) and H 2
(ω) frequency characteristic diagram, Figure 3 shows H R (ω) and j H I
(ω) frequency characteristic diagram, Figure 4 shows H R (ω) and j H I
(ω) impulse response characteristic diagram, Figure 5 shows H R (ω)
Impulse response characteristic diagram that combines and j H I (ω),
FIG. 6 is a diagram showing a conventional filter, FIG. 7a is a diagram showing another conventional filter, and FIG. 7b is a partially enlarged view.
FIGS. 8, 9 and 10 each illustrate a filter according to the present invention.

Claims (1)

【特許請求の範囲】 1 中心周波数に対し非対称の周波数応答特性を
得るための、少なくとも入出力側電極を有する弾
性表面波フイルタであつて、 上記入出力側電極のうち少なくとも一方の電極
が、 交さ幅重み付けを施して周波数応答特性の偶成
分を規定する第1のインターデイジタル電極と、 第1のインターデイジタル電極の包絡線に沿つ
て形成された共通電極と、 共通電極を挟んで第1のインターデイジタル電
極と反対側において、相対的に大部分が第1のイ
ンターデイジタル電極の非交さ領域に配置されて
おり、交さ幅重み付けが施されて周波数応答特性
の奇成分を規定している第2のインターデイジタ
ル電極とを備え、 上記共通電極に、第1、第2のインターデイジ
タル電極の一方電位に接続される電極指が接続さ
れており、かつ 第1、第2のインターデイジタル電極の他方電
位に接続される電極指が互いに電気的に接続され
ていることを特徴とする弾性表面波フイルタ。
[Scope of Claims] 1. A surface acoustic wave filter having at least input and output side electrodes for obtaining a frequency response characteristic asymmetrical with respect to a center frequency, wherein at least one of the input and output side electrodes is crossed. a first interdigital electrode that performs width weighting to define an even component of the frequency response characteristic; a common electrode formed along the envelope of the first interdigital electrode; and a first interdigital electrode with the common electrode in between. On the side opposite to the interdigital electrodes, a relatively large portion is arranged in the non-intersecting region of the first interdigital electrode, and intersection width weighting is applied to define the odd component of the frequency response characteristic. a second interdigital electrode; an electrode finger connected to one potential of the first and second interdigital electrodes is connected to the common electrode; A surface acoustic wave filter characterized in that electrode fingers connected to the other potential are electrically connected to each other.
JP10439182A 1982-06-16 1982-06-16 DANSEIHYOMENHAFUIRUTA Expired - Lifetime JPH0244171B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10439182A JPH0244171B2 (en) 1982-06-16 1982-06-16 DANSEIHYOMENHAFUIRUTA
GB838315675A GB8315675D0 (en) 1982-06-16 1983-06-08 Surface acoustic wave device
US06/504,271 US4604595A (en) 1982-06-16 1983-06-14 Surface acoustic wave device having interdigitated comb electrodes weighted for odd/even response
GB08316298A GB2123637B (en) 1982-06-16 1983-06-15 Surface acoustic wave device
DE19833321843 DE3321843A1 (en) 1982-06-16 1983-06-16 COMPONENT WITH USE OF ACOUSTIC SURFACE WAVES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10439182A JPH0244171B2 (en) 1982-06-16 1982-06-16 DANSEIHYOMENHAFUIRUTA

Publications (2)

Publication Number Publication Date
JPS58220517A JPS58220517A (en) 1983-12-22
JPH0244171B2 true JPH0244171B2 (en) 1990-10-03

Family

ID=14379436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10439182A Expired - Lifetime JPH0244171B2 (en) 1982-06-16 1982-06-16 DANSEIHYOMENHAFUIRUTA

Country Status (2)

Country Link
JP (1) JPH0244171B2 (en)
GB (1) GB8315675D0 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06334477A (en) * 1993-05-20 1994-12-02 Nec Corp Surface acoustic wave filter

Also Published As

Publication number Publication date
JPS58220517A (en) 1983-12-22
GB8315675D0 (en) 1983-07-13

Similar Documents

Publication Publication Date Title
JPH06334476A (en) Surface acoustic wave filter
US4604595A (en) Surface acoustic wave device having interdigitated comb electrodes weighted for odd/even response
US5175711A (en) Surface acoustic wave apparatus and method of productivity and adjustment of the same
JP2002330048A (en) Surface acoustic wave filter and communication apparatus using the same
JPS62160807A (en) Surface acoustic wave resonator
JPH02170610A (en) Surface acoustic wave device
JPS61192112A (en) Surface acoustic wave device
JPH0244171B2 (en) DANSEIHYOMENHAFUIRUTA
JPS5847090B2 (en) surface acoustic wave filter
US6313563B1 (en) Edge reflection type surface acoustic wave device
JPS598417A (en) Surface acoustic wave device
JP2685537B2 (en) Surface acoustic wave device, manufacturing method thereof, adjusting method thereof, and communication device using the same
JP3341699B2 (en) Edge reflection type surface acoustic wave device
JPH0318768B2 (en)
JPS6247206A (en) Surface acoustic wave multimode filter
US5781083A (en) Surface wave resonator having a plurality of resonance frequencies
JPS60140918A (en) Surface acoustic wave resonator
JPS59213A (en) Surface acoustic wave device
JPH0351133B2 (en)
JPS61252704A (en) Surface acoustic wave filter
JPS62286305A (en) Surface acoustic wave device
JPH0563961B2 (en)
JPS61181216A (en) Surface acoustic wave filter
JP3191551B2 (en) Piezoelectric resonator
JPH02260908A (en) Surface acoustic wave device