JP2685537B2 - Surface acoustic wave device, manufacturing method thereof, adjusting method thereof, and communication device using the same - Google Patents

Surface acoustic wave device, manufacturing method thereof, adjusting method thereof, and communication device using the same

Info

Publication number
JP2685537B2
JP2685537B2 JP63247343A JP24734388A JP2685537B2 JP 2685537 B2 JP2685537 B2 JP 2685537B2 JP 63247343 A JP63247343 A JP 63247343A JP 24734388 A JP24734388 A JP 24734388A JP 2685537 B2 JP2685537 B2 JP 2685537B2
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
reflector
wave device
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63247343A
Other languages
Japanese (ja)
Other versions
JPH0296414A (en
Inventor
芝  隆司
勇次 藤田
利光 高橋
山田  純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63247343A priority Critical patent/JP2685537B2/en
Priority to DE19893933006 priority patent/DE3933006A1/en
Publication of JPH0296414A publication Critical patent/JPH0296414A/en
Priority to US07/842,570 priority patent/US5175711A/en
Application granted granted Critical
Publication of JP2685537B2 publication Critical patent/JP2685537B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02637Details concerning reflective or coupling arrays
    • H03H9/02685Grating lines having particular arrangements
    • H03H9/02771Reflector banks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6489Compensation of undesirable effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14517Means for weighting
    • H03H9/1452Means for weighting by finger overlap length, apodisation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14552Transducers of particular shape or position comprising split fingers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14597Matching SAW transducers to external electrical circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、フイルタとして使用したとき、周波数帯域
の肩特性および帯域外特性が良好な弾性表面波装置、及
び、その製作,調整方法に関する。
Description: TECHNICAL FIELD The present invention relates to a surface acoustic wave device having excellent frequency band shoulder characteristics and out-of-band characteristics when used as a filter, and a method of manufacturing and adjusting the same.

〔従来の技術〕[Conventional technology]

従来、弾性表面波フイルタの肩特性(フイルタ帯域端
の減衰特性の急峻さ)を向上させる手段として、例え
ば、アイ・イー・イー・イー・トランザクシヨン オン
マイクロウエーブ セオリーアンド テクニクス,エ
ム テイー テイー21(IEEE,TRANS.ON MICROWAVE THEO
RY AND TECH-NIQUES,VOL.MTT-21)第4号、1973年4
月、第206〜215頁に述べられている、マルチストリツプ
カプラー等の技術がある。
Conventionally, as a means for improving the shoulder characteristic of the surface acoustic wave filter (the steepness of the attenuation characteristic at the filter band edge), for example, iE / E / Transaction on Microwave Theory and Technics, MTE / TE21 ( IEEE, TRANS.ON MICROWAVE THEO
RY AND TECH-NIQUES, VOL.MTT-21) No. 4, April 1973
There are technologies such as multi-strip couplers described in Mon., pp. 206-215.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記従来の技術では、肩特性向上のためには、すだれ
状電極の本数を増さねばならず、チツプ形状が大きくな
り、原価上昇を避けられない。肩特性と電極本数の関係
に関しては、例えば、アイ・イー・イー・イー・トラン
ザクシヨン オン マイクロウエーブ セオリー アン
ド テクニクスエム テイー テイー21(IEEE,TRANS.O
N MICRO-WAVE THEORY AND TECHNIQUES,VOL.MTT-21)第
4号,1973年4月.第162〜175頁に論じられている。
In the above conventional technique, in order to improve the shoulder characteristics, the number of interdigital electrodes must be increased, the chip shape becomes large, and the cost increase cannot be avoided. Regarding the relationship between the shoulder characteristics and the number of electrodes, for example, iE / E / Transaction on Microwave Theory and Technics MTE / TE21 (IEEE, TRANS.O)
N MICRO-WAVE THEORY AND TECHNIQUES, VOL.MTT-21) No. 4, April 1973. Discussed at pages 162-175.

また、肩特性向上のためには従来技術では前述のよう
に電極対数を増さなければならず、その為にすだれ状電
極の放射コンダクタンスが増加し、電気的負荷との条件
によつて定まる反射(RW)が増加する。従つて、通常、
上記反射を抑圧するため、すだれ状電極の開口を狭くし
なければならず、その場合には、弾性表面波の回折効果
の影響が増加し、フイルタ特性のサイドローブ等の劣化
を生じる。
Further, in order to improve the shoulder characteristics, the number of electrode pairs must be increased in the prior art as described above, which increases the radiative conductance of the interdigital electrode, and the reflection determined by the condition with the electrical load. (RW) increases. Therefore, normally,
In order to suppress the above reflection, the aperture of the interdigital electrode must be narrowed. In that case, the influence of the diffraction effect of the surface acoustic wave increases, and the side lobe of the filter characteristic deteriorates.

本発明は、フイルタとして肩特性の良好な弾性表面波
装置の小形化および回折効果の影響を低減させることを
目的とする。
An object of the present invention is to reduce the size of a surface acoustic wave device having a good shoulder characteristic as a filter and reduce the influence of the diffraction effect.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために本発明においては、弾性表
面波装置内のすだれ状電極の少なくとも片側に弾性表面
波の反射器を設けることにした。
In order to achieve the above object, in the present invention, a surface acoustic wave reflector is provided on at least one side of the interdigital transducer in the surface acoustic wave device.

〔作用〕[Action]

すだれ状電極の横に反射器を設けることにより、すだ
れ状電極から放射された弾性表面波が反射器によつて反
射され、弾性表面波の励振源個所が見かけ上増えた状態
と等価となり、チツプ寸法を増加させずに肩特性を向上
させることが出来る。また、すだれ状電極の対数を増さ
ずに肩特性を向上させるため、電極の開口を小さくする
必要がなく、回折効果の影響を抑圧することが出来る。
By providing a reflector beside the interdigital transducer, the surface acoustic wave emitted from the interdigital electrode is reflected by the reflector, and the excitation source of the surface acoustic wave is equivalent to an apparently increased number of points, which is equivalent to the chip. Shoulder properties can be improved without increasing size. Further, since the shoulder characteristic is improved without increasing the number of pairs of the interdigital electrodes, it is not necessary to make the opening of the electrode small, and the influence of the diffraction effect can be suppressed.

〔実施例〕〔Example〕

本発明の第1実施例を第1〜3図を用いて説明する。
第1図は第1実施例を模式的に示す平面図である。弾性
表面波基板1上に出力すだれ状電極2及び入力すだれ状
電極3が配設され、基板の端には基板端面からの反射を
抑圧するため吸音剤4が塗布されている。また、入力す
だれ状電極の両側には、シヨートストリツプ型の反射器
5が配設されている。入出力すだれ状電極はスプリツト
コネクト型とした。次に第2図により本実施例の動作原
理を説明する。第2図は、横軸に時間,縦軸に弾性表面
波励振源の強度(振幅)を表し、すだれ状電極から離れ
た位置から見たインパルス応答を模式的に示している。
実線6で示した応答が入力すだれ状電極単体のもの(従
つて反射器を配設してない状態)で、破線7で示した応
答が反射器5を配設した後の応答である。入力すだれ状
電極から生じたインパルスは反射器5の間に閉じ込めら
れ、その一部が順次反射器5を通過して出力すだれ状電
極2に到達する。従つて第2図に示したようにインパル
ス応答列(破線7)は、反射器を配設する前のインパル
ス応答列(実線6)に比べ応答時間の長さが長く、上記
応答時間の長さに相当するすだれ状電極を配設した状態
と等価になる。すだれ状電極の電極本数を増加させず、
また開口を小さくする必要もないため、小形で、回折効
果の影響の少ない肩特性の良好な弾性表面波装置が得ら
れる。第3図は国内向けテレビジヨン受信機のIFフイル
タの減衰量の周波数特性を示している。破線8は通常の
IFフイルタの特性、一点鎖線10は電極対数を増し、クロ
マチルト部の肩特性を向上させ、RWによる反射を減らす
ため開口を狭くした従来のIFフイルタの特性である。入
力側重み付すだれ状電極の励振源(インパルス)対数は
150対,開口750μm,出力側正規型電極の同対数は15対,
開口1500μm,弾性表面波基板1としてXカツト112度回
転Y軸伝搬LiTaO3基板を用いている。上記従来の構成で
は、同図に示すようにサイドローブ特性,トラツプ(減
衰極)特性の劣化が見られた。実線9は本発明によるフ
イルタの特性を示している。入力すだれ状電極3の励振
源対数は60対,開口1000μm,反射器5の電極本数は20本
とした。従つて反射器を含めた入力側の電極長は約80対
であり、前述の従来のフイルタの150対に比べ約半分の
値となつた。出力正規型すだれ状電極の対数,開口は従
来と同様である。チツプ全体の長さは従来に比べ約3/4
程度となり小形化を達成している。また、入力すだれ状
電極の開口を狭くしていないため、回折効果が抑圧され
良好な帯域外特性が得られている。
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a plan view schematically showing the first embodiment. An output interdigital electrode 2 and an input interdigital electrode 3 are arranged on a surface acoustic wave substrate 1, and a sound absorbing agent 4 is applied to the end of the substrate to suppress reflection from the end face of the substrate. Further, a short strip reflector 5 is disposed on both sides of the input interdigital transducer. The input / output interdigital transducers were of split-connect type. Next, the operation principle of this embodiment will be described with reference to FIG. FIG. 2 shows time on the horizontal axis and strength (amplitude) of the surface acoustic wave excitation source on the vertical axis, and schematically shows the impulse response viewed from a position away from the interdigital transducer.
The response shown by the solid line 6 is for the input interdigital transducer alone (therefore, the reflector is not provided), and the response shown by the broken line 7 is the response after the reflector 5 is provided. The impulse generated from the input interdigital transducer is confined between the reflectors 5, and a part of the impulse sequentially passes through the reflector 5 and reaches the output interdigital transducer 2. Therefore, as shown in FIG. 2, the impulse response train (broken line 7) has a longer response time than the impulse response train (solid line 6) before the reflector is arranged, and the above-mentioned response time length is longer. It is equivalent to a state in which a comb-shaped electrode corresponding to is arranged. Without increasing the number of interdigital electrodes,
Further, since it is not necessary to make the opening small, it is possible to obtain a small-sized surface acoustic wave device having a small shoulder effect and a good shoulder characteristic. Figure 3 shows the frequency characteristics of the attenuation of the IF filter of a domestic television receiver. Dashed line 8 is normal
The characteristics of the IF filter, the alternate long and short dash line 10, are the characteristics of the conventional IF filter in which the number of electrode pairs is increased, the shoulder characteristics of the chroma tilt portion are improved, and the aperture is narrowed to reduce reflection due to RW. Input source weighted comb-shaped electrode excitation source (impulse) logarithm
150 pairs, aperture 750 μm, the same number of pairs of normal electrodes on the output side is 15 pairs,
The opening is 1500 μm, and as the surface acoustic wave substrate 1, an X-cut 112 ° rotated Y-axis propagating LiTaO 3 substrate is used. In the above-mentioned conventional structure, the side lobe characteristic and the trap (attenuation pole) characteristic were deteriorated as shown in FIG. The solid line 9 shows the characteristics of the filter according to the invention. The number of pairs of excitation sources of the input interdigital transducer 3 was 60, the number of openings was 1000 μm, and the number of electrodes of the reflector 5 was 20. Therefore, the electrode length on the input side including the reflector is about 80 pairs, which is about half the value of 150 pairs of the conventional filter described above. The logarithm of the output normal type interdigital transducer and the aperture are the same as the conventional one. The total length of the chip is about 3/4 compared to the conventional one
The size has been reduced to a certain level. Further, since the aperture of the input interdigital transducer is not narrowed, the diffraction effect is suppressed and good out-of-band characteristics are obtained.

第3図の実線の特性を見ると、肩特性,帯域外特性は
良好であるが、帯域内にリツプルが見られる。これは反
射器5による反射の影響である。
Looking at the characteristics of the solid line in FIG. 3, the shoulder characteristics and the out-of-band characteristics are good, but ripples are seen in the band. This is an influence of reflection by the reflector 5.

次に第4図,第5図により、上記反射を抑圧した第2
実施例に関して説明する。
Next, referring to FIG. 4 and FIG.
Examples will be described.

以下、すだれ状電極において電気信号に変換されるエ
ネルギーは小さいので無視する。第4図は、すだれ状電
極3の両側に反射器5を配設した場合(上に模式的平面
図、下に等価回路図を示す)の全体の反射波の大きさ
(入力を1とすると反射係数Γとなる)を求める方法を
示している。ここでSはすだれ状電極および反射器の散
乱行列の要素(入力ポートを1,出力ポートを2としてい
る)であり、T1,T2は反射器5とすだれ状電極3の間の
透過係数である。ここで添字aは前段の反射器,添字b
はすだれ状電極,添字cは後段の反射器に関する値であ
ることを示している。計算結果は次のようになる。
Hereinafter, the energy converted into an electric signal in the interdigital transducer is small and is ignored. FIG. 4 shows the magnitude of the entire reflected wave when the reflectors 5 are arranged on both sides of the interdigital transducer 3 (a schematic plan view is shown above and an equivalent circuit diagram is shown below) (assuming that the input is 1). A reflection coefficient Γ is obtained. Here, S is an element of the scattering matrix of the interdigital transducer and the reflector (the input port is 1 and the output port is 2), and T 1 and T 2 are the transmission coefficients between the reflector 5 and the interdigital electrode 3. Is. Here, the subscript a is the reflector in the previous stage, and the subscript b
The interdigital electrodes and the subscript c indicate that the values are related to the reflector in the subsequent stage. The calculation result is as follows.

また、参考のため透過係数Tを示せば となる。いまフイルタの中心周波数近傍を考え、 反射波同士が打ち消し合う条件として T1=exp(±jπ/2)=±j −(3) T2=exp(±jπ/2)=±j −(3′) とすれば、実数方程式により解を求めることができる。
各散乱行列を実数と考え(中心周波数近傍であるため各
項の位相項は全てT1,T2に含めて考えることができるた
め)、各反射器、すだれ状電極の可逆性,対称性(S12
=S21,S11=S22)を考慮し、前段,後段の反射器を同一
構造として、 とすると、(1)式は となる。今、反射器およびすだれ状電極内の損失は充分
小さいから、エネルギー保存則から、 が成り立つから(8)式は となる。反射が無い状態ではΓ=0であるから の2次方程式を解くと なる関係が得られる。即ち、(13)式を満足するように
すだれ状電極と反射器の反射係数を定め、かつ、反射器
端部の電極の中心位置とすだれ状電極端部の電極の中心
位置の距離を (λは帯域中心周波数における弾性表面波の波長,nは自
然数)とする事(即ち、 とする事)により反射波を抑圧することが出来る。
Also, if the transmission coefficient T is shown for reference, Becomes Considering the vicinity of the center frequency of the filter, T 1 = exp (± jπ / 2) = ± j- (3) T 2 = exp (± jπ / 2) = ± j- (3 ′), The solution can be obtained by a real number equation.
Considering each scattering matrix as a real number (because it is in the vicinity of the center frequency, all phase terms of each term can be included in T 1 and T 2 ), and the reversibility and symmetry of each reflector and interdigital electrode ( S 12
= S 21, S 11 = S 22) considering, as the same structure front, the rear stage of the reflector, Then, equation (1) becomes Becomes Now, since the loss in the reflector and the interdigital transducer is sufficiently small, from the law of energy conservation, Since Eq. (8) holds, Becomes Since there is no reflection, Γ = 0 Solving the quadratic equation of Is obtained. That is, the reflection coefficients of the interdigital electrode and the reflector are determined so as to satisfy the expression (13), and the distance between the center position of the electrode at the end of the reflector and the center position of the electrode at the end of the interdigital electrode is set. (Λ is the wavelength of the surface acoustic wave at the band center frequency, and n is a natural number) (that is, It is possible to suppress the reflected wave.

次に本発明を国内テレビジヨン受信機のIFフイルタに
適用した第2実施例について述べる。入力すだれ状電極
はソリツド型の正規型電極とし、その両側にλ/4ソリツ
ド型シヨートストリツプ型の反射器を配設した。正規型
電極の励振源対数は15対(電極数31本)、反射器本数は
16本とした。出力側のすだれ状電極は開口重み付スプリ
ツトコネクト型の構造とし、励振源対数を60.5対とし
た。ra=0.108,rb=0.054となり、(13)式をほぼ満足
している。電極と反射器の間の距離は3/4λ(夫々の端
部電極の中心間距離)とした。
Next, a second embodiment in which the present invention is applied to an IF filter of a domestic television receiver will be described. The input interdigital transducer was a normal type electrode of solid type, and a λ / 4 solid type short strip type reflector was arranged on both sides thereof. There are 15 pairs of excitation sources for normal type electrodes (31 electrodes), and the number of reflectors is
16 The interdigital electrodes on the output side have a split-connect structure with an aperture weight, and the number of pairs of excitation sources is 60.5. r a = 0.108 and r b = 0.054, almost satisfying equation (13). The distance between the electrode and the reflector was 3 / 4λ (center-to-center distance between each end electrode).

第5図は第2実施例の減衰量の周波数特性である。実
線11が減衰量を示す。帯域内の反射特性が改善され、リ
ツプルが小さくなつている。このように第2実施例で
は、中心周波数近傍でのリツプルが小さく、肩特性の良
好な小形のフイルタが得られた。
FIG. 5 shows the frequency characteristic of the attenuation amount of the second embodiment. The solid line 11 shows the amount of attenuation. In-band reflection characteristics are improved and ripples are reduced. As described above, in the second embodiment, a small filter having a small ripple near the center frequency and a good shoulder characteristic was obtained.

第2実施例では、反射器の反射係数を規定する事によ
り中心周波数近傍でのリツプル特性を改善することが出
来たが、第5図から判るように、中心周波数から離れる
に従つて、反射波の抑圧度が減少し、リツプルが増加し
ている。これは反射器とすだれ状電極の中心位置の距離
が離れているため、T1,T2の位相回転が速く、前述のよ
うに 一定とすることが出来ず、中心周波数から外れると急激
に反射が増すためである。
In the second embodiment, the ripple characteristic near the center frequency could be improved by defining the reflection coefficient of the reflector, but as can be seen from FIG. The degree of repression is reduced and the ripple is increased. This is because the distance between the center of the reflector and the center of the interdigital electrode is large, so the phase rotation of T 1 and T 2 is fast, and This is because it cannot be constant, and the reflection sharply increases when the frequency deviates from the center frequency.

第3実施例は、上述の欠点を改善する。(13)式は
ra,rbが1に対して充分小さいとすると rb≒2ra −(14) となる。また、ソリツド型のシヨートストリツプ反射器
およびソリツド型すだれ状電極のMEL(電極の幾何学的
形状によつて定まる反射)分は次の式で表わされる。
The third embodiment remedies the above-mentioned drawbacks. Equation (13) is
If r a and r b are sufficiently smaller than 1, r b ≈ 2r a − (14). Further, the MEL (reflection determined by the geometrical shape of the electrodes) of the solid type short strip reflector and the solid type interdigital transducer is expressed by the following equation.

ここで、Zrは電極のある場所と無い場所の弾性表面波
の伝搬インピーダンスの比、Nは電極の本数である。一
般にZrは1に充分に近いため Zr=1+ε(ε≪1) −(16) と表す。(15)式は と表わされる。|Γ|が1に比べ充分に小さい(Nが
小)場合には |Γ|≒N6 −(18) と表わされる。(18)の結果を上述の反射器(添字aで
示す)及びすだれ状電極(添字bで示す)の場合に適用
し、(14)式を用いると、 Nbε≒2Naε Nb≒2Na −(19) の関係が得られる。即ち、電極本数が充分小さい場合に
は、反射器の電極本数とすだれ状電極の電極本数の比を
1:2とすれば全体の反射を抑える事ができる。例えば1
対の励振源のすだれ状電極の反射を抑える事は1本の電
極からなる反射器を両側に (nは自然数)隔てて配設することにより達成される。
そこで例えばn=1とすれば充分広帯域に反射波を抑圧
する事ができる。この電極群(ソリッド型すだれ状電極
の電極指2本,反射器電極1本(1組))を基本構成と
して、それを表面波伝搬方向に複数配設する事により所
望の周波数特性を得る。第6図はその構成を示す。破線
で囲つた部分13が基本構成である。基本構成間に設置し
たスプリツト型の電極dは、反射器部をシヨートストリ
ツプ型(反射器部のRW分を除去)とするためのものであ
る。スプリツト型としたのは、そこでのMEL分を抑圧す
るためである。従つてすだれ状電極12は反射器を内部に
配設した構造となる。
Here, Z r is the ratio of the propagation impedance of the surface acoustic wave at the place where the electrode is present and where it is not, and N is the number of electrodes. In general, Z r is sufficiently close to 1, and thus Z r = 1 + ε (ε << 1) − (16). Equation (15) is It is expressed as When | Γ | is sufficiently smaller than 1 (N is small), it is expressed as | Γ | ≈N 6 − (18). Applying the result of (18) to the case of the above-mentioned reflector (indicated by subscript a) and interdigital electrode (indicated by subscript b), and using equation (14), N b ε ≈ 2N a ε N b ≈ The relationship of 2N a − (19) is obtained. That is, when the number of electrodes is sufficiently small, the ratio of the number of electrodes of the reflector to the number of interdigital electrodes is
If it is 1: 2, the total reflection can be suppressed. Eg 1
To suppress the reflection of the interdigital electrodes of the pair of excitation sources, a reflector consisting of one electrode should be placed on both sides. (N is a natural number).
Therefore, if n = 1, for example, the reflected wave can be suppressed sufficiently in a wide band. This electrode group (two electrode fingers of a solid type interdigital electrode and one reflector electrode (one set)) is used as a basic structure, and a plurality of them are arranged in the surface wave propagation direction to obtain a desired frequency characteristic. FIG. 6 shows the structure. A portion 13 surrounded by a broken line has a basic configuration. The split-type electrode d provided between the basic components is for making the reflector section a short-strip type (removing the RW portion of the reflector section). The split type is used to suppress the MEL component there. Therefore, the interdigital electrode 12 has a structure in which a reflector is arranged inside.

第3実施例として、上記構造の入力すだれ状電極を備
えた弾性表面波装置を国内テレビジヨン受信機のIFフイ
ルタに適用した場合について述べる。基本構成を5個接
続したすだれ状電極を入力正規型すだれ状電極として用
い、出力すだれ状電極には開口重み付スプリツトコネク
ト型を用いた。入力正規型電極の開口は1500μm,出力す
だれ状電極の励振源対数は120対,開口は1000μmとし
た。このフイルタの減衰量周波数特性を第7図に実線14
で示す。広帯域に反射波を抑圧したため、リツプルが減
少している。このように第3実施例を用いれば、広帯域
にリツプルを抑圧した、肩特性の良好な小形の弾性表面
波フイルタが得られる。
As a third embodiment, a case where the surface acoustic wave device having the input interdigital transducer having the above structure is applied to the IF filter of a domestic television receiver will be described. A comb-shaped electrode in which five basic components were connected was used as an input normal type comb-shaped electrode, and an aperture-weighted split connect type was used as the output comb-shaped electrode. The aperture of the input normal type electrode was 1500 μm, the number of pairs of excitation sources of the output interdigital electrode was 120 pairs, and the aperture was 1000 μm. The attenuation frequency characteristics of this filter are shown in Fig. 7 by the solid line 14
Indicated by The ripples are reduced because the reflected waves are suppressed in a wide band. As described above, by using the third embodiment, it is possible to obtain a small-sized surface acoustic wave filter having excellent shoulder characteristics in which ripples are suppressed in a wide band.

次に第4実施例について第8図と第9図により説明す
る。第8図は第4実施例を模式的に示したもので、出力
(入力)すだれ状電極2に相対する入力(出力)すだれ
状電極15の両側に、上記各実施例同様、反射器5を設け
ている。この様に反射器を配設すると、反射器間にエネ
ルギー閉じ込めが起こり、肩特性を向上させることが出
来るのであるが、それと同時に、帯域端の周波数でQの
上昇を生じるため、その周波数で群遅延時間の増大を来
す。群遅延時間の平坦性が必要な場合には、予め、すだ
れ状電極15の群遅延時間特性を進相にしておく必要があ
る。第9図は第4実施例の群遅延特性を示し、破線16が
反射器を配設する前の特性,実線17が配設後の特性であ
る。帯域端の周波数まで群遅延が一定となつている。上
記の如く第4実施例によれば、小形で肩特性が急峻で群
遅延が一定の高性能フイルタが得られる。
Next, a fourth embodiment will be described with reference to FIGS. 8 and 9. FIG. 8 schematically shows the fourth embodiment, in which reflectors 5 are provided on both sides of the input (output) interdigital transducer 15 facing the output (input) interdigital transducer 2, as in the above-mentioned respective embodiments. It is provided. By arranging the reflectors in this way, energy can be trapped between the reflectors and the shoulder characteristics can be improved. At the same time, however, Q rises at the frequency at the band edge, so at that frequency the group The delay time increases. If flatness of the group delay time is required, it is necessary to advance the group delay time characteristic of the interdigital transducer 15 in advance. FIG. 9 shows the group delay characteristics of the fourth embodiment. The broken line 16 is the characteristic before the reflector is arranged, and the solid line 17 is the characteristic after the reflector is arranged. The group delay is constant up to the band edge frequency. As described above, according to the fourth embodiment, it is possible to obtain a small-sized high performance filter having a sharp shoulder characteristic and a constant group delay.

次に第5実施例について第10図,第11図により説明す
る。第9図から判るように第4実施例では完全に群遅延
を一定にする事ができず、帯域内にリツプルを生じてし
まう。これは反射器が多数本の電極から成つているた
め、その反射器内へのエネルギー閉じ込めが起こり、総
合インパルス応答が時間軸上で対称特性とならないとい
う理由から生じるものである。そこで更に群遅延時間の
平坦性が必要な場合には完全反射面が必要となる。
Next, a fifth embodiment will be described with reference to FIGS. As can be seen from FIG. 9, the group delay cannot be made completely constant in the fourth embodiment, and ripples occur within the band. This is because the reflector is composed of a large number of electrodes, energy is trapped in the reflector, and the total impulse response does not have a symmetrical characteristic on the time axis. Therefore, when the flatness of the group delay time is required, a perfect reflection surface is required.

第10図は第5実施例を模式的に示し、出力(入力)す
だれ状電極2に相対する入力(出力)すだれ状電極18の
一端に0.5対励振源のスプリツトコネクト型すだれ状電
極型反射器を配設してある。高反射係数を得るため、電
極の容量をインダクタンス20を用いて打ち消している。
この様にすだれ状電極型の反射器は少数対数でも高反射
係数が得られるため、群遅延の平坦性を確保するために
は有効である。その他、完全反射面を得る手段として基
板端面を利用することも考えられるが、基板加工精度,
チツピング等の問題から上記のようにする方が有効と考
えられる。第11図は第5実施例の群遅延時間特性を実線
21で示す。帯域内の平坦性が第4実施例に比べて改善さ
れていることが判る。上記の如く、第5実施例を用いる
と群遅延特性を一層向上させることが出来る。
FIG. 10 schematically shows a fifth embodiment, in which one end of the input (output) interdigital transducer 18 facing the output (input) interdigital transducer 2 has a split-connect type interdigital transducer reflection of 0.5 pair excitation source. Is equipped with a container. In order to obtain a high reflection coefficient, the capacitance of the electrode is canceled by using the inductance 20.
In this way, the interdigital transducer type reflector can obtain a high reflection coefficient even with a small number of logarithms, and is therefore effective for ensuring the flatness of the group delay. Besides, it is possible to use the end face of the substrate as a means for obtaining a perfect reflection surface.
It is considered more effective to do the above because of problems such as chipping. FIG. 11 is a solid line showing the group delay time characteristics of the fifth embodiment.
Shown at 21. It can be seen that the in-band flatness is improved compared to the fourth embodiment. As described above, when the fifth embodiment is used, the group delay characteristic can be further improved.

次に第6実施例について第12図を用いて説明する。前
述の反射器はフイルタ帯域端の肩特性を向上させるため
のものであるが、反射器の反射係数が過大または過少の
値の場合、減衰量の帯域内特性の平坦性が劣化する。ま
た、反射器の反射波位相が最適値からずれると、所望の
周波数以外のQ値が上昇し、肩特性の劣化,減衰量の帯
域内平坦性の劣化が生じる。第12図は、そのような場合
の反射器の反射係数の調整方法を示す。即ち、反射器5
の必要な部分(残しておきたい個所)だけレジスト膜等
の保護膜を形成してエッチングを行い、不要部分22を除
去するトリミングを端部から順次行い、上記反射係数の
調整を行つている。本実施例を用いれば上記反射特性の
ずれによる周波数特性の劣化を改善できるため歩留向上
に効果がある。
Next, a sixth embodiment will be described with reference to FIG. The above-mentioned reflector is for improving the shoulder characteristic at the filter band edge, but if the reflection coefficient of the reflector is too large or too small, the flatness of the in-band characteristic of the attenuation is deteriorated. Further, if the reflected wave phase of the reflector deviates from the optimum value, the Q value other than the desired frequency rises, causing deterioration of shoulder characteristics and deterioration of in-band flatness of attenuation. FIG. 12 shows a method of adjusting the reflection coefficient of the reflector in such a case. That is, the reflector 5
A protective film such as a resist film is formed only on a necessary portion (a portion desired to be left) and etching is performed, and trimming for removing the unnecessary portion 22 is sequentially performed from the end portion to adjust the reflection coefficient. The use of this embodiment can improve the yield because the deterioration of the frequency characteristics due to the deviation of the reflection characteristics can be improved.

第7実施例は反射器の反射波位相の調整方法に関する
ものである。第13図は第7実施例の反射器の調整方法を
示す。反射器5をシヨートストリツプ電極としておき、
順次、切断個所eをレーザカツタ,超音波カツタ等のト
リミング技術によりオープンストリツプ部を形成させ反
射波の位相を調整している。本実施例を用いれば歩留向
上に効果がある。
The seventh embodiment relates to a method of adjusting the reflected wave phase of the reflector. FIG. 13 shows a method of adjusting the reflector of the seventh embodiment. The reflector 5 is used as a short strip electrode,
Sequentially, an open strip portion is formed at the cutting point e by a trimming technique such as a laser cutter and an ultrasonic cutter to adjust the phase of the reflected wave. The use of this embodiment is effective in improving the yield.

第8実施例は、すだれ状電極型反射器を備えた本発明
弾性表面波装置を回路に用いた通信装置の周波数特性の
調整方法に関するものである。第14図は第8実施例を模
式的に示す。出力(入力)すだれ状電極2と相対する入
力(出力)すだれ状電極18の横に、すだれ状電極型反射
器19を配設してある。弾性表面波装置の外部回路に可変
インダクタンス23を配置し、上記すだれ状電極型反射器
19に電気的に接続する。すだれ状電極の反射特性は整合
用のインダクタンス値を変化させる事により調整でき
る。そこで、本発明の弾性表面波装置を通信装置内に設
置した後で、上記可変インダクタンスの値を調整する。
本実施例を用いれば、通信装置に実装した状態で、周波
数特性を調整することができる点が有効である。
The eighth embodiment relates to a method of adjusting frequency characteristics of a communication device using a surface acoustic wave device of the present invention having a interdigital transducer as a circuit. FIG. 14 schematically shows the eighth embodiment. Next to the input (output) interdigital transducer 18 facing the output (input) interdigital transducer 2, a interdigital transducer 19 is arranged. A variable inductance 23 is arranged in the external circuit of the surface acoustic wave device, and the interdigital transducer type reflector is arranged.
Electrically connect to 19. The reflection characteristics of the interdigital transducer can be adjusted by changing the matching inductance value. Therefore, after the surface acoustic wave device of the present invention is installed in the communication device, the value of the variable inductance is adjusted.
The use of this embodiment is effective in that the frequency characteristic can be adjusted in a state where it is mounted on a communication device.

次に本発明を通信装置に用いた実施例に関して説明す
る。第15図は第9実施例のテレビジヨン受信機のブロッ
ク図である。チユーナ24のIF出力は本発明の弾性表面波
装置25に接続され、弾性表面波装置25の出力は2系統に
分かれ、1系統は映像検波回路26に入力され、他の1系
統は音声検波回路27に入力されている。本実施例の弾性
表面波装置25の特性は第7図に示すような特性であり、
クロマレベルの上昇により画面の解像度が向上し、また
本発明の技術を用い、音声レベルを減衰させているた
め、クロスカラー、920KHzビート等の妨害が無い良好な
特性が得られている。
Next, an embodiment in which the present invention is used in a communication device will be described. FIG. 15 is a block diagram of the television receiver of the ninth embodiment. The IF output of the tuner 24 is connected to the surface acoustic wave device 25 of the present invention, the output of the surface acoustic wave device 25 is divided into two systems, one system is input to the video detection circuit 26, and the other system is the audio detection circuit. It has been entered in 27. The characteristics of the surface acoustic wave device 25 of this embodiment are as shown in FIG.
The resolution of the screen is improved by the increase of the chroma level, and the sound level is attenuated by using the technique of the present invention. Therefore, good characteristics without interference such as cross color and 920 KHz beat are obtained.

次に第16図,第17図により第10実施例について説明す
る。第16図は第10実施例の衛星放送受信機のブロツク図
である。屋外ユニツト28でダウンコンバートされた信号
はケーブルを介して屋内ユニツト29に送られる。更に屋
内ユニツト29内では発振器30による発振信号によりダウ
ンコンバートされ、第2IFフイルタである本発明弾性表
面波装置31に送られる。第2IFフイルタを通過した信号
はPLL同期検波回路32によつて検波され、それぞれ映像
信号処理回路33と音声信号処理回路34に送られる。
Next, a tenth embodiment will be described with reference to FIGS. FIG. 16 is a block diagram of the satellite broadcast receiver of the tenth embodiment. The signal down-converted in the outdoor unit 28 is sent to the indoor unit 29 via a cable. Further, in the indoor unit 29, it is down-converted by the oscillation signal from the oscillator 30 and sent to the surface acoustic wave device 31 of the present invention which is the second IF filter. The signal passed through the second IF filter is detected by the PLL synchronous detection circuit 32 and sent to the video signal processing circuit 33 and the audio signal processing circuit 34, respectively.

第17図は第10実施例の第2IFフイルタの減衰量周波数
特性を示す。破線36は従来の弾性表面波装置の特性,実
線35は本発明の弾性表面波装置の特性を示している。本
発明の弾性表面波装置の特性は信号帯域を忠実に再現し
ているため、信号に歪をかけず、微分利得特性(DG),
微分位相特性(DP)が向上し、更に帯域端の特性が急峻
となつたため、その部分のノイズ量が減少しS/Nを向上
させることが出来た。
FIG. 17 shows the attenuation frequency characteristics of the second IF filter of the tenth embodiment. The broken line 36 shows the characteristic of the conventional surface acoustic wave device, and the solid line 35 shows the characteristic of the surface acoustic wave device of the present invention. Since the characteristic of the surface acoustic wave device of the present invention faithfully reproduces the signal band, the signal is not distorted, and the differential gain characteristic (DG),
Since the differential phase characteristic (DP) was improved and the characteristic at the band edge became steeper, the amount of noise in that part was reduced and S / N could be improved.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば、チツプサイズを
増大させずに、また、すだれ状電極の開口長を小さくす
る事なく、急峻な肩特性を有し、サイドローブ特性等の
性能が向上した広帯域なフイルタが得られ、装置の原価
低減の効果も得られる。
As described above, according to the present invention, a wide band having steep shoulder characteristics and improved performance such as side lobe characteristics without increasing the chip size and without reducing the opening length of the interdigital transducer. It is possible to obtain various filters, and the effect of reducing the cost of the device can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1実施例の模式図、第2図はインパ
ルス応答図、第3図は第1実施例の減衰量周波数特性
図、第4図は第2実施例の反射波の解析方法説明図、第
5図は第2実施例の減衰量周波数特性図、第6図は第3
実施例の模式図、第7図は第3実施例の減衰量周波数特
性図、第8図は第4実施例の模式図、第9図は第4実施
例の群遅延時間周波数特性図、第10図は第5実施例の模
式図、第11図は第5実施例の群遅延時間周波数特性図、
第12図は第6実施例の製作方法説明図、第13図は第7実
施例の製作方法説明図、第14図は第8実施例の通信装置
の調整方法説明図、第15図は第9実施例のテレビジヨン
受信機のブロツク図、第16図は第10実施例の衛星放送受
信機のブロツク図、第17図は第10実施例の弾性表面波フ
イルタの減衰量周波数特性図である。 2,3,12,15,18……すだれ状電極 5,19……反射器、13……基本構成 20……インダクタンス、22……不要部分 23……可変インダクタンス 25……弾性表而波装置、31……弾性表面波装置
FIG. 1 is a schematic diagram of the first embodiment of the present invention, FIG. 2 is an impulse response diagram, FIG. 3 is an attenuation amount frequency characteristic diagram of the first embodiment, and FIG. 4 is a reflected wave of the second embodiment. FIG. 5 is an explanatory diagram of the analysis method, FIG. 5 is an attenuation frequency characteristic diagram of the second embodiment, and FIG.
FIG. 7 is a schematic diagram of the embodiment, FIG. 7 is a characteristic diagram of the attenuation amount frequency of the third embodiment, FIG. 8 is a schematic diagram of the fourth embodiment, and FIG. 9 is a group delay time frequency characteristic diagram of the fourth embodiment. FIG. 10 is a schematic diagram of the fifth embodiment, FIG. 11 is a group delay time frequency characteristic diagram of the fifth embodiment,
FIG. 12 is a drawing for explaining the manufacturing method of the sixth embodiment, FIG. 13 is a drawing for explaining the manufacturing method of the seventh embodiment, FIG. 14 is a drawing for explaining the adjusting method of the communication device of the eighth embodiment, and FIG. FIG. 16 is a block diagram of the television receiver of the ninth embodiment, FIG. 16 is a block diagram of the satellite broadcast receiver of the tenth embodiment, and FIG. 17 is an attenuation frequency characteristic diagram of the surface acoustic wave filter of the tenth embodiment. . 2,3,12,15,18 …… Interdigital electrodes 5,19 …… Reflector, 13 …… Basic configuration 20 …… Inductance, 22 …… Unnecessary part 23 …… Variable inductance 25 …… Elastic meta-wave device , 31 …… Surface acoustic wave device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山田 純 神奈川県横浜市戸塚区吉田町292番地 株式会社日立製作所家電研究所内 (56)参考文献 特開 昭56−10725(JP,A) 特開 昭55−49021(JP,A) 特開 昭53−140928(JP,A) 特開 昭51−72257(JP,A) 特開 昭49−14064(JP,A) 特開 昭53−123051(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Jun Yamada 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Inside the Home Appliance Research Laboratory, Hitachi, Ltd. (56) References JP-A-56-10725 (JP, A) JP-A-SHO 55-49021 (JP, A) JP-A 53-140928 (JP, A) JP-A 51-72257 (JP, A) JP-A 49-14064 (JP, A) JP-A 53-123051 (JP, A) A)

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】弾性表面波基板上に、入力用すだれ状電極
と出力用すだれ状電極を配設し、該入力用すだれ状電極
と該出力用すだれ状電極の内の少なくとも一つのすだれ
状電極の両側に同一構造の反射器を配設し、λをフィル
タの中心周波数における弾性表面波波長、nを自然数と
して、すだれ状電極の端部電極中心と反射器の端部電極
中心の間の距離を両側ともλ/4+nλ/2とし、反射器の
反射係数をra、すだれ状電極の反射係数をrbとしたとき を満足するように、上記反射器とすだれ状電極の構造を
定めたことを特徴とする2ポートフィルタ型弾性表面波
装置。
1. An interdigital transducer for input and an interdigital transducer for output are provided on a surface acoustic wave substrate, and at least one interdigital transducer of the interdigital transducer for input and the interdigital transducer for output. With reflectors of the same structure on both sides of λ, the distance between the end electrode center of the interdigital electrode and the end electrode center of the reflector, where λ is the surface acoustic wave wavelength at the center frequency of the filter and n is a natural number. Where λ / 4 + nλ / 2 on both sides, the reflection coefficient of the reflector is ra, and the reflection coefficient of the interdigital transducer is rb The two-port filter type surface acoustic wave device is characterized in that the structure of the reflector and the interdigital transducer is defined so as to satisfy the above condition.
【請求項2】請求項1記載のすだれ状電極と反射器の組
を基本構成として、それを複数組、弾性表面波伝搬路上
に配設し、各すだれ状電極を電気的に並列に接続したこ
とを特徴とする弾性表面波装置。
2. A set of the interdigital electrode and the reflector according to claim 1 is used as a basic structure, a plurality of sets are arranged on a surface acoustic wave propagation path, and each interdigital electrode is electrically connected in parallel. A surface acoustic wave device characterized by the above.
【請求項3】反射器の反射係数ra、すだれ状電極の反射
係数rbの関係として、 rb≒2raを満足させた請求項2記載の弾性表面波装置。
3. The surface acoustic wave device according to claim 2, wherein the relation between the reflection coefficient ra of the reflector and the reflection coefficient rb of the interdigital electrode satisfies rb≈2ra.
【請求項4】請求項3記載の基本構成を、2本の電極指
から成るソリッド型すだれ状電極と、その両側に配設し
たそれぞれすだれ状電極の電極指と同じ幅の1本の電極
指からなる反射器とで形成した請求項3記載の弾性表面
波装置。
4. The basic structure according to claim 3, wherein a solid type interdigital electrode composed of two electrode fingers and one electrode finger having the same width as the electrode fingers of each interdigital electrode arranged on both sides thereof. The surface acoustic wave device according to claim 3, wherein the surface acoustic wave device is formed of a reflector.
【請求項5】反射器を、少数電極対数のすだれ状電極型
とした請求項1記載の弾性表面波装置。
5. The surface acoustic wave device according to claim 1, wherein the reflector is a interdigital electrode type having a small number of electrode pairs.
【請求項6】請求項1記載の弾性表面波装置に配設され
た反射器を、端部から順次トリミングして、反射器の反
射係数または反射波の位相を変化させ、該弾性表面波装
置が所望の周波数特性を得るようにしたことを特徴とす
る弾性表面波装置の製作方法。
6. The surface acoustic wave device according to claim 1, wherein the reflector provided in the surface acoustic wave device is trimmed in order from the end to change the reflection coefficient of the reflector or the phase of the reflected wave. A method for manufacturing a surface acoustic wave device, characterized in that a desired frequency characteristic is obtained.
【請求項7】請求項1記載の弾性表面波装置をフィルタ
として自装置回路内に用いたことを特徴とする通信装
置。
7. A communication device using the surface acoustic wave device according to claim 1 as a filter in its own circuit.
【請求項8】テレビジョン受信機のチューナIF出力と被
検回路の間のIFフィルタが請求項7記載の弾性表面波装
置であることを特徴とする通信装置。
8. A communication device, wherein an IF filter between a tuner IF output of a television receiver and a circuit under test is the surface acoustic wave device according to claim 7.
【請求項9】衛星放送受信機の室内ユニットにおける第
2IFフィルタとして、請求項7記載の弾性表面波装置を
用いたことを特徴とする通信装置。
9. An indoor unit of a satellite broadcast receiver
A communication device using the surface acoustic wave device according to claim 7 as a 2IF filter.
【請求項10】請求項5記載の弾性表面波装置におい
て、すだれ状電極型反射器に可変インダクタンス素子よ
りなる回路を接続し、そのインダクタンス値を順次変化
させて、上記反射器の反射係数または反射波位相を変
え、該弾性表面波装置が所望の周波数特性を得るように
したことを特徴とする弾性表面波装置の調整方法。
10. The surface acoustic wave device according to claim 5, wherein a circuit composed of a variable inductance element is connected to the interdigital transducer reflector, and the inductance value is sequentially changed to obtain a reflection coefficient or reflection of the reflector. A method of adjusting a surface acoustic wave device, characterized in that the wave phase is changed so that the surface acoustic wave device obtains a desired frequency characteristic.
JP63247343A 1988-10-03 1988-10-03 Surface acoustic wave device, manufacturing method thereof, adjusting method thereof, and communication device using the same Expired - Lifetime JP2685537B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63247343A JP2685537B2 (en) 1988-10-03 1988-10-03 Surface acoustic wave device, manufacturing method thereof, adjusting method thereof, and communication device using the same
DE19893933006 DE3933006A1 (en) 1988-10-03 1989-10-03 SAW device with interdigital transducers at input and output - having reflectors for improved characteristic without increase of chip area
US07/842,570 US5175711A (en) 1988-10-03 1992-01-02 Surface acoustic wave apparatus and method of productivity and adjustment of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63247343A JP2685537B2 (en) 1988-10-03 1988-10-03 Surface acoustic wave device, manufacturing method thereof, adjusting method thereof, and communication device using the same

Publications (2)

Publication Number Publication Date
JPH0296414A JPH0296414A (en) 1990-04-09
JP2685537B2 true JP2685537B2 (en) 1997-12-03

Family

ID=17161997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63247343A Expired - Lifetime JP2685537B2 (en) 1988-10-03 1988-10-03 Surface acoustic wave device, manufacturing method thereof, adjusting method thereof, and communication device using the same

Country Status (2)

Country Link
JP (1) JP2685537B2 (en)
DE (1) DE3933006A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0583077A (en) * 1991-09-24 1993-04-02 Mitsubishi Electric Corp Surface acoustic wave circuit device
DE4227362C2 (en) * 1992-08-19 1996-01-25 Dresden Ev Inst Festkoerper Acoustic surface wave component
WO2004102797A1 (en) * 1997-07-17 2004-11-25 Michiaki Takagi Two-port saw resonator
JP3923283B2 (en) 2001-07-03 2007-05-30 富士通メディアデバイス株式会社 Surface acoustic wave device
CN112532196B (en) * 2020-11-26 2024-05-07 北京航天微电科技有限公司 Surface acoustic wave filter, manufacturing method thereof and electronic equipment

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3716809A (en) * 1971-08-11 1973-02-13 Us Air Force Acoustic surface wave resonator
JPS5433503B2 (en) * 1972-05-16 1979-10-20
JPS519648A (en) * 1974-07-15 1976-01-26 Nippon Telegraph & Telephone
JPS5172257A (en) * 1974-12-20 1976-06-22 Toko Inc DANSEIHYOMENHAFUIRUTA
US4144507A (en) * 1976-09-29 1979-03-13 Texas Instruments Incorporated Surface acoustic wave resonator incorporating coupling transducer into reflecting arrays
JPS53123051A (en) * 1977-04-04 1978-10-27 Hitachi Ltd Filter for surface slip wave
JPS53140928A (en) * 1977-05-16 1978-12-08 Hitachi Ltd Television receiver
GB2000926B (en) * 1977-07-05 1982-04-28 Texas Instruments Inc Channel selector for television receiver
JPS5549021A (en) * 1978-10-04 1980-04-08 Hitachi Ltd Elastic surface-wave unit
JPS5610725A (en) * 1979-07-09 1981-02-03 Murata Mfg Co Ltd Elastic surface wave device
EP0057555B1 (en) * 1981-02-04 1985-11-27 Matsushita Electric Industrial Co., Ltd. Surface acoustic wave device
US4442574A (en) * 1982-07-26 1984-04-17 General Electric Company Frequency trimming of saw resonators
JPH0773177B2 (en) * 1984-12-17 1995-08-02 株式会社東芝 Surface acoustic wave resonator

Also Published As

Publication number Publication date
JPH0296414A (en) 1990-04-09
DE3933006A1 (en) 1990-04-05

Similar Documents

Publication Publication Date Title
US4162465A (en) Surface acoustic wave device with reflection suppression
JPH11500593A (en) Weighted taper SPUDT-SAW device
EP0024927B1 (en) Surface acoustic wave resonator device
EP0026114B1 (en) Surface acoustic wave device
US5175711A (en) Surface acoustic wave apparatus and method of productivity and adjustment of the same
JP2685537B2 (en) Surface acoustic wave device, manufacturing method thereof, adjusting method thereof, and communication device using the same
KR100407463B1 (en) Surface acoustic wave device
US5818310A (en) Series-block and line-width weighted saw filter device
JPS62160807A (en) Surface acoustic wave resonator
US4205285A (en) Acoustic surface wave device
JPH02170610A (en) Surface acoustic wave device
US4577169A (en) Small ripple surface acoustic wave filter with low insertion loss
JPH0832397A (en) Surface acoustic wave device
US4146852A (en) Phase weighted acoustic reflective array compressor
JP2821263B2 (en) Surface acoustic wave device and communication device using the same
JPH0630433B2 (en) Demultiplexer using surface acoustic wave filter
JP3126026B2 (en) Surface acoustic wave resonator filter
JP2590347B2 (en) Surface acoustic wave device
JP3302477B2 (en) Surface acoustic wave filter
WO1997047085A1 (en) Surface acoustic wave element
JPS6150536B2 (en)
US5808524A (en) Surface wave filter with a specified transducer impulse train that reduces diffraction
JPH07106911A (en) Surface acoustic wave resonator/filter
JPS60263506A (en) Elastic surface wave band pass filter unit
JP3456810B2 (en) Surface acoustic wave filter