JP3302477B2 - Surface acoustic wave filter - Google Patents

Surface acoustic wave filter

Info

Publication number
JP3302477B2
JP3302477B2 JP34457193A JP34457193A JP3302477B2 JP 3302477 B2 JP3302477 B2 JP 3302477B2 JP 34457193 A JP34457193 A JP 34457193A JP 34457193 A JP34457193 A JP 34457193A JP 3302477 B2 JP3302477 B2 JP 3302477B2
Authority
JP
Japan
Prior art keywords
comb
electrode
shaped
shaped electrode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34457193A
Other languages
Japanese (ja)
Other versions
JPH07176973A (en
Inventor
正志 大村
Original Assignee
キンセキ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キンセキ株式会社 filed Critical キンセキ株式会社
Priority to JP34457193A priority Critical patent/JP3302477B2/en
Publication of JPH07176973A publication Critical patent/JPH07176973A/en
Application granted granted Critical
Publication of JP3302477B2 publication Critical patent/JP3302477B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、弾性表面波を利用した
フィルタ、特には、移動体通信機器などの受信部にフロ
ントエンドフィルタとして使用される弾性表面波フィル
タの素子構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter using a surface acoustic wave, and more particularly to an element structure of a surface acoustic wave filter used as a front end filter in a receiving section of a mobile communication device or the like.

【0002】[0002]

【従来の技術】移動体通信機器などの受信部に用いられ
るフロントエンドフィルタは、受信信号を周波数変換す
る以前に選択するために用いられるもので、低挿入損失
で、必要な帯域がリップルなく得られることが望まし
い。このような用途に適するフィルタとして、IIDT
電極構造の弾性表面波フィルタがある。IIDT電極構
造は、多数の入力、出力用のIDT(くし型電極)を交
互に配置し、それぞれを並列に接続したものであり、ト
ランズバーサル型フィルタにおける方向性の損失がな
く、また、共振子型フィルタに比べて比較的広い通過帯
域が得られる。
2. Description of the Related Art A front-end filter used in a receiving unit of a mobile communication device or the like is used to select a received signal before frequency conversion. The front-end filter has a low insertion loss and a required band can be obtained without ripple. It is desirable that As a filter suitable for such use, IIDT
There is a surface acoustic wave filter having an electrode structure. The IIDT electrode structure is such that a number of input and output IDTs (comb-shaped electrodes) are alternately arranged and connected in parallel, and there is no loss of directionality in the transversal-type filter. A relatively wide pass band can be obtained as compared with the type filter.

【0003】[0003]

【発明が解決しようとする課題】従来の構成による弾性
表面波フィルタの特性は、以下の点から移動体通信等に
用いられるフロントエンドフィルタとして、必ずしも十
分ではない。
The characteristics of the conventional surface acoustic wave filter are not always sufficient as a front-end filter used for mobile communication from the following points.

【0004】通過帯域内での振幅リップルが大きい。
特に電極指を構成する金属膜厚が厚い場合、電極指によ
る反射率が増大し、振幅リップルが大きくなる。なお、
UHF帯(300MHz)以上での使用においては、反
射率を低減するために金属膜厚を薄くすると、電極指の
内部抵抗が増大して挿入損失が増大する。
[0004] The amplitude ripple in the pass band is large.
In particular, when the metal film forming the electrode finger is thick, the reflectance by the electrode finger increases, and the amplitude ripple increases. In addition,
In the use in the UHF band (300 MHz) or higher, if the metal film thickness is reduced in order to reduce the reflectance, the internal resistance of the electrode finger increases and the insertion loss increases.

【0005】外部整合回路を必要とする。フロントエ
ンドフィルタの入出力インピーダンスは、通常、純抵抗
値が用いられる。しかし、弾性表面波フィルタの最適な
特性が得られる整合条件は純抵抗とは限られず、そのた
め、外部に整合回路を付加することが必要となる。特
に、機器の小型化が重要視される移動体通信機器では、
部品数、実装面積の増大につながるため、大きな問題と
なる。また、通過帯域幅が用途によっては十分でない
こともある。
An external matching circuit is required. Normally, a pure resistance value is used as the input / output impedance of the front end filter. However, the matching condition for obtaining the optimum characteristics of the surface acoustic wave filter is not limited to the pure resistance, and therefore, it is necessary to add an external matching circuit. In particular, in mobile communication equipment where miniaturization of equipment is important,
This leads to an increase in the number of components and the mounting area, which is a major problem. Also, the pass bandwidth may not be sufficient for some applications.

【0006】本発明の目的は、移動体通信用フロントエ
ンドフィルタとして十分な特性、すなわち、必要な通過
帯域幅が得られ、小型で、低挿入損失で、通過帯域内リ
ップルの低い弾性表面波フィルタの構造を提供するもの
である。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a surface acoustic wave filter which has sufficient characteristics as a front end filter for mobile communication, that is, a small, low insertion loss, and a low ripple in a pass band, capable of obtaining a required pass bandwidth. Is provided.

【0007】[0007]

【課題を解決するための手段】本発明による弾性表面波
フィルタは、(a)圧電体からなる基板と、(b)該基
板表面上に配置され、相互に並列に接続された複数のく
し型電極からなる第1のくし型電極群と、(c)該第1
のくし型電極群の各くし型電極の間の前記基板表面上に
配置され、相互に並列に接続された複数のくし型電極か
らなる第2のくし型電極群とを含み、(d)前記第1の
くし型電極群に属するくし型電極と、それに隣接する前
記第2のくし型電極群に属するくし型電極の電極指中心
間距離L1が
A surface acoustic wave filter according to the present invention comprises: (a) a substrate made of a piezoelectric material; and (b) a plurality of comb-shaped filters arranged on the surface of the substrate and connected in parallel with each other. A first comb-shaped electrode group consisting of electrodes;
A second interdigital electrode group comprising a plurality of interdigital electrodes arranged on the substrate surface between each interdigital electrode of the interdigital electrode group and connected in parallel with each other; and (d) The distance L1 between the electrode finger centers of the comb electrodes belonging to the first comb electrode group and the adjacent comb electrodes belonging to the second comb electrode group adjacent thereto is

【式1】(0.30+n/2)λ≦L1≦(0.45+
n/2)λ (ただし、λは前記くし型電極の周期、nは零または自
然数である。)を満たし、(e)前記第1および第2の
くし型電極群の少なくとも一方に含まれるくし型電極の
対数および電極膜厚が、通過帯域周波数内での該くし型
電極群の放射コンダクタンスが放射サセプタンスの絶対
値よりも大きくなる値に設定されているものである。
[Equation 1] (0.30 + n / 2) λ ≦ L1 ≦ (0.45+
n / 2) λ (where λ is the period of the comb-shaped electrode, n is zero or a natural number), and (e) a comb included in at least one of the first and second comb-shaped electrode groups. The logarithm of the mold electrode and the electrode film thickness are set to values at which the radiation conductance of the comb electrode group within the passband frequency is larger than the absolute value of the radiation susceptance.

【0008】加えて、(f)前記第1および第2のくし
型電極群を挾むように配置され、前記くし型電極の電極
指と同一周期の相互に短絡された複数の金属ストリップ
からなる反射器を含み、(g)前記くし型電極に最も近
接した前記金属ストリップの中心と、それに隣接する前
記くし型電極の電極指の中心との中心間距離L2が
In addition, (f) a reflector consisting of a plurality of metal strips arranged so as to sandwich the first and second comb-shaped electrode groups and short-circuited to each other at the same period as the electrode fingers of the comb-shaped electrode. (G) the center distance L2 between the center of the metal strip closest to the comb-shaped electrode and the center of the electrode finger of the adjacent comb-shaped electrode is

【式2】(0.35+m/2)λ≦L2≦(0.65+
m/2)λ (ただし、λは前記くし型電極の周期、mは零または自
然数である。)を満たすことが望ましい。
(Equation 2) (0.35 + m / 2) λ ≦ L2 ≦ (0.65+
m / 2) λ (where λ is the period of the comb-shaped electrode and m is zero or a natural number).

【0009】さらに、前記第1および第2のくし型電極
群の少なくとも一方に含まれる全てのくし型電極の対数
および電極膜厚が、通過帯域周波数内での該くし型電極
の放射コンダクタンスが放射サセプタンスの絶対値より
も大きくなる値に設定されていることが望ましい。より
具体的には、前記基板が30〜40°Y回転LiTaO
3であり、前記くし型電極の対数Nおよび電極膜厚hが
Further, the logarithm and the electrode film thickness of all the comb electrodes included in at least one of the first and second comb electrode groups are such that the radiation conductance of the comb electrodes within the passband frequency radiates. It is desirable that the value is set to a value larger than the absolute value of the susceptance. More specifically, when the substrate is a 30-40 ° Y-rotation LiTaO
3 , and the logarithm N of the comb-shaped electrode and the electrode thickness h are

【式3】15+log10(h/λ)≦N≦−20−40log
10(h/λ) (ただし、λは前記くし型電極の周期、log10(x)は
xの常用対数である。)を満たすものである。
[Equation 3] 15 + log 10 (h / λ) ≦ N ≦ −20-40 log
10 (h / λ) (where λ is the period of the comb-shaped electrode, and log 10 (x) is a common logarithm of x).

【0010】[0010]

【作用】本発明による第1の電極構成の概略を図1に示
す。圧電体からなる基板1の表面上に複数の入力用くし
型電極2と複数の出力用くし型電極3が交互に隣接して
配置されている。並列用の配線4、5により、入力用く
し型電極2と出力用くし型電極3の一方は、それぞれが
並列に接続され、他方は接地されている。入力用くし型
電極2と隣接する出力用くし型電極3の間隔は、それぞ
れに属する最も近接した電極指6の中心間距離L1が
FIG. 1 schematically shows a first electrode configuration according to the present invention. A plurality of input comb electrodes 2 and a plurality of output comb electrodes 3 are alternately arranged adjacent to each other on the surface of a substrate 1 made of a piezoelectric material. One of the input comb electrode 2 and the output comb electrode 3 are connected in parallel by the parallel wirings 4 and 5, and the other is grounded. The distance between the input comb electrode 2 and the adjacent output comb electrode 3 is determined by the distance L1 between the centers of the closest electrode fingers 6 belonging to each.

【式1】(0.30+n/2)λ≦L1≦(0.45+
n/2)λ (ただし、λは前記くし型電極の周期、nは零または自
然数である。)の範囲にある。そして、並列に接続され
ている入力用くし型電極2全体の(および/または、並
列に接続されている出力用くし型電極3全体の)通過帯
域周波数内における放射コンダクタンスが、放射サセプ
タンスの絶対値よりも大きく(望ましくは、3倍以上
と)なるように、入力用くし型電極2(および/また
は、出力用くし型電極3)の対数および電極膜厚が設定
されている。
[Equation 1] (0.30 + n / 2) λ ≦ L1 ≦ (0.45+
n / 2) λ (where λ is the period of the comb-shaped electrode, and n is zero or a natural number). The radiation conductance in the passband frequency of the entire input comb electrode 2 connected in parallel (and / or the entire output comb electrode 3 connected in parallel) is the absolute value of the radiation susceptance. The logarithm and electrode thickness of the input comb-shaped electrode 2 (and / or the output comb-shaped electrode 3) are set so as to be larger (preferably three times or more).

【0011】このような電極構成において、電極指の中
心間距離L1を変化させた場合の通過特性(通過帯域幅
を+、挿入損失を●、および帯域内リップルを○で示
す。)を図2にまとめる。挿入損失は、0.87λ近隣
で極小となり、0.75〜0.95λで特に低くなるこ
とがわかる。0.87〜1.1λでは帯域内リップルは
発生せず、0.80〜0.87λでは帯域内リップルを
1.0dB以下とすることができる。また、この範囲で
は、3%程度の比較的広い通過帯域幅が得られることが
わかる。したがって、電極指の中心間距離L1を0.8
0〜0.95λに設定することにより挿入損失が低く、
かつ帯域内リップルの低いフィルタを構成することがで
きる。特に、規格化膜厚が比較的厚い(3%以上の)場
合、外部整合回路を用いることなく、リップルが低く、
かつ、挿入損失も低くでき、加えて、電極指の電気抵抗
を下げることができ、電極の内部抵抗による挿入損失を
さらに低減できる。また、この特性は、λ/2の周期性
を持っており、電極指の中心間距離L1を1.30〜
1.45λなどに設定してもよく、λ/2の周期で変化
させも同様の特性が得られることがわかる。なお、この
特性は、36°Y回転LiTaO3基板上に入力用5
組、出力用5組のくし型電極(25.5対)を交互に配
置し、その入出力インピーダンスを50Ωとした場合の
通過特性をシミュレーションしたものである。
FIG. 2 shows the pass characteristics (pass band width is indicated by +, insertion loss is indicated by ●, and in-band ripple is indicated by ○) when the center distance L 1 between the electrode fingers is changed in such an electrode configuration. Put together. It can be seen that the insertion loss is minimized in the vicinity of 0.87λ, and is particularly low at 0.75 to 0.95λ. At 0.87 to 1.1λ, no in-band ripple occurs, and at 0.80 to 0.87λ, the in-band ripple can be reduced to 1.0 dB or less. Further, it can be seen that a relatively wide pass bandwidth of about 3% can be obtained in this range. Therefore, the distance L1 between the centers of the electrode fingers is set to 0.8.
By setting to 0 to 0.95λ, the insertion loss is low,
In addition, a filter having a low in-band ripple can be configured. In particular, when the normalized film thickness is relatively thick (3% or more), the ripple is low without using an external matching circuit,
In addition, the insertion loss can be reduced, and in addition, the electrical resistance of the electrode finger can be reduced, and the insertion loss due to the internal resistance of the electrode can be further reduced. This characteristic has a periodicity of λ / 2, and the distance L1 between the centers of the electrode fingers is set to 1.30 to
It may be set to 1.45λ or the like, and it can be seen that similar characteristics can be obtained by changing at a period of λ / 2. It should be noted that this characteristic is obtained by inputting 5 input signals on a 36 ° Y-rotation LiTaO 3 substrate.
This is a simulation of a passing characteristic when five sets of comb electrodes (25.5 pairs) are alternately arranged and the input / output impedance is set to 50Ω.

【0012】本発明による第2の電極構成の概略を図3
に示す。この電極構造は、第1の電極構造に加えて、入
力用くし型電極2および出力用くし型電極3を挾むよう
に配置され、これらのくし型電極の電極指6と同一周期
(λ/2)の相互に短絡された複数の金属ストリップ7
からなる一対の反射器8を含み、この反射器8のくし型
電極2、3に最も近接した金属ストリップ7の中心と、
それに隣接するくし型電極の電極指6の中心との中心間
距離L2が
FIG. 3 schematically shows a second electrode configuration according to the present invention.
Shown in This electrode structure is arranged so as to sandwich the input comb electrode 2 and the output comb electrode 3 in addition to the first electrode structure, and has the same period (λ / 2) as the electrode fingers 6 of these comb electrodes. Metal strips 7 shorted to each other
And a center of the metal strip 7 closest to the comb electrodes 2 and 3 of the reflector 8;
The distance L2 between the center of the electrode finger 6 of the adjacent comb-shaped electrode and the center L2 is

【式2】(0.35+m/2)λ≦L2≦(0.65+
m/2)λ (ただし、λは前記くし型電極の周期、mは零または自
然数である。)の範囲にある。
(Equation 2) (0.35 + m / 2) λ ≦ L2 ≦ (0.65+
m / 2) λ (where λ is the period of the comb-shaped electrode, and m is zero or a natural number).

【0013】このような電極構成において、金属ストリ
ップ7とくし型電極の電極指6の中心間距離L2を変化
させた場合の通過帯域幅(3dB帯域幅を○、1dB帯
域幅を●で示す。)を図4にまとめる。中心間距離L2
が0.75λ程度で帯域幅が極小(3dB帯域幅が約
1.2%)となり、また、その通過特性は、帯域内に大
きなリップルを生じる。0.65λ以下または0.85
λ以上では3dB帯域幅が2.5%以上となり、十分広
くすることができる。0.60λ以下または0.95λ
以上とすることで、さらにで通過帯域幅を広くすること
ができる。これらの特性は、36°Y回転LiTaO3
基板上に入力用5組、出力用5組のくし型電極(25.
5対)と、互いに短絡された40本の金属ストリップか
らなる反射器を配置し、電極指の中心間距離L1を0.
85λ、その入出力インピーダンスを50Ωとした場合
の通過特性をシミュレーションしたものである。
In such an electrode configuration, the pass band width when the center distance L2 between the metal strip 7 and the electrode finger 6 of the interdigital electrode is changed (the 3 dB bandwidth is indicated by ○, and the 1 dB bandwidth is indicated by ●). Are summarized in FIG. Center distance L2
Is about 0.75λ, the bandwidth becomes extremely small (3 dB bandwidth is about 1.2%), and its passing characteristic causes a large ripple in the band. 0.65λ or less or 0.85
Above λ, the 3 dB bandwidth becomes 2.5% or more, which can be sufficiently widened. 0.60λ or less or 0.95λ
By doing so, the pass bandwidth can be further increased. These properties are based on the 36 ° Y-rotation LiTaO 3
Five sets of input and five sets of comb-shaped electrodes (25.
5 pairs) and a reflector composed of 40 metal strips short-circuited to each other, and the center distance L1 between the electrode fingers is set to 0.
This is a simulation of the passing characteristic when the input / output impedance is 85Ω and the input / output impedance is 50Ω.

【0014】反射器のない第1の電極構成、および反射
器のある第2の電極構成を用いて、入力用、出力用を合
わせたくし型電極の数(組数)を変化させた場合の挿入
損失の変化を図5に示す。反射器のある第2の電極構成
を用いることで、反射器のない第1の電極構成に比べて
挿入損失が低下することがわかる。特に、7組以上のく
し型電極を用いた場合に挿入損失が十分に低くなること
がわかる。
[0014] Insertion in the case where the number (the number of sets) of comb-shaped electrodes for input and output is changed using the first electrode configuration without a reflector and the second electrode configuration with a reflector. The change in loss is shown in FIG. It can be seen that the use of the second electrode configuration with a reflector reduces insertion loss as compared to the first electrode configuration without a reflector. In particular, when seven or more comb-shaped electrodes are used, it can be seen that the insertion loss becomes sufficiently low.

【0015】さらに、第1および第2の電極構造におい
て、入力用くし型電極2および/または出力用くし型電
極3のくし型電極の対数および電極膜厚が、通過帯域周
波数内での放射コンダクタンスが放射サセプタンスの絶
対値よりも大きくなる値に設定されているので、外部に
整合回路を設けることなく純抵抗の外部インピーダンス
に整合することができる。したがって、回路全体を小型
化することが可能となる。特に、表面波音速が早く、温
度特性に優れた36°Y回転LiTaO3基板を用いた
場合に、くし型電極の対数Nおよび電極膜厚hを
Further, in the first and second electrode structures, the logarithm of the comb-shaped electrode 2 and / or the electrode thickness of the comb-shaped output electrode 3 and the electrode film thickness are determined by the radiation conductance within the pass band frequency. Is set to a value larger than the absolute value of the radiation susceptance, it is possible to match the external impedance of the pure resistance without providing an external matching circuit. Therefore, it is possible to reduce the size of the entire circuit. In particular, when a 36 ° Y-rotation LiTaO 3 substrate having a high surface acoustic wave velocity and excellent temperature characteristics is used, the logarithm N of the comb-shaped electrode and the electrode thickness h are reduced.

【式3】15+log10(h/λ)≦N≦−20−40log
10(h/λ) (ただし、λは前記くし型電極の周期、log10(x)は
xの常用対数である。)の範囲に設定することで、入力
用くし型電極2および/または出力用くし型電極3の放
射コンダクタンスを放射サセプタンスの絶対値よりも小
さくできるので、整合が容易であり、さらに装置を小型
化することができる。図6に、36°Y回転LiTaO
3基板を用いた場合に、放射サセプタンスの絶対値を低
くするこのできる1つのくし型電極における対数の範囲
を示している。規格化膜厚h/λを大きく(特に4%以
上と)すると対数の範囲が(18対〜25対程度と)狭
くなっており、式3の範囲を示していことがわかる。
[Equation 3] 15 + log 10 (h / λ) ≦ N ≦ −20-40 log
10 (h / λ) (where λ is the period of the comb-shaped electrode and log 10 (x) is a common logarithm of x) so that the input comb-shaped electrode 2 and / or the output Since the radiation conductance of the comb-shaped electrode 3 can be made smaller than the absolute value of the radiation susceptance, matching is easy and the device can be downsized. FIG. 6 shows a 36 ° Y-rotation LiTaO.
The range of the logarithm in one possible comb-shaped electrode that reduces the absolute value of the radiation susceptance when three substrates are used is shown. It can be seen that when the normalized film thickness h / λ is increased (especially 4% or more), the range of the logarithm becomes narrow (about 18 to 25 pairs), and the range of Expression 3 is shown.

【0016】以上のように、本発明によれば、十分広い
通過帯域を有し、挿入損失が低く、通過帯域内のリップ
ルが小さく、小型の弾性表面波フィルタを実現すること
が可能となる。なお、以上のシミュレーション結果は、
実際の測定と同様の結果である。36°Y回転LiTa
3基板は、その回転角度が30ないし40°の範囲
で、また、弾性表面波の伝搬方向がX方向もしくはそれ
から5°の範囲内では、ほぼ同様の特性が得られる。
As described above, according to the present invention, it is possible to realize a small surface acoustic wave filter having a sufficiently wide pass band, a low insertion loss, a small ripple in the pass band, and a small surface acoustic wave filter. Note that the above simulation results
The result is similar to the actual measurement. 36 ° Y rotation LiTa
The O 3 substrate has substantially the same characteristics when the rotation angle is in the range of 30 to 40 ° and when the propagation direction of the surface acoustic wave is in the X direction or within 5 °.

【0017】[0017]

【実施例】以下、実施例により本発明を詳細に説明す
る。第1の実施例であるSAWフィルタの電極構造の概
略は図1に示したものと同様である。36°Y回転のL
iTaO3(タンタル酸リチウム単結晶)からなる基板
1を用い、弾性表面波の伝搬方向はX方向とした。基板
1の表面上に5個の入力用くし型電極2と5個の出力用
くし型電極3が交互に隣接して配置されている。並列用
の配線4、5により、入力用くし型電極2と出力用くし
型電極3の一方がそれぞれが並列に接続され、他方は接
地されている。これらのくし型電極2、3および配線
4、5は、規格化膜厚h/λが4.5%のアルミニウム
膜からなる。これらのくし型電極2、3は、対数25.
5対で、シングル電極(電極指の幅および電極指間の間
隔がそれぞれ約λ/4)の正規型であり、開口長は20
λである。入力用くし型電極2と隣接する出力用くし型
電極3のそれぞれに属する最も近接した電極指6の中心
間距離L1をすべて0.8λとした。なお、通過周波数
帯域において、1つのくし型電極3、4の放射コンダク
タンスの絶対値は、放射サセプタンスの絶対値の3倍以
上である。
The present invention will be described below in detail with reference to examples. The outline of the electrode structure of the SAW filter according to the first embodiment is the same as that shown in FIG. L of 36 ° Y rotation
The substrate 1 made of iTaO 3 (single crystal of lithium tantalate) was used, and the propagation direction of the surface acoustic wave was set to the X direction. On the surface of the substrate 1, five input comb electrodes 2 and five output comb electrodes 3 are alternately arranged adjacent to each other. One of the comb electrode 2 for input and the comb electrode 3 for output are connected in parallel by the wirings 4 and 5 for parallel connection, and the other is grounded. The comb electrodes 2 and 3 and the wirings 4 and 5 are made of an aluminum film having a normalized film thickness h / λ of 4.5%. These comb electrodes 2 and 3 have a logarithm of 25.
5 pairs, a single electrode (the width of the electrode finger and the interval between the electrode fingers are each approximately λ / 4), and the aperture length is 20
λ. The distance L1 between the centers of the closest electrode fingers 6 belonging to each of the input comb electrode 2 and the adjacent output comb electrode 3 was set to 0.8λ. Note that, in the pass frequency band, the absolute value of the radiation conductance of one of the comb electrodes 3 and 4 is at least three times the absolute value of the radiation susceptance.

【0018】入出力の終端インピーダンスを50Ω+j
0Ω(純抵抗)とした場合の第1の実施例によるSAW
フィルタの通過特性(周波数fは、通過中心周波数fo
で規格化した規格化周波数f/fo)を図7に示す。1
dB比帯域幅2%以上、最小挿入損失2dB以下、帯域
内リップル0.5dB以下の良好なフィルタ特性が得ら
れた。なお、フィルタの通過帯域は、弾性表面波の反射
により決まるくし型電極のストップバンド内にあり、単
一のモードで共振しているため帯域内リップルのない優
れた特性が得られる。
The input / output terminating impedance is 50Ω + j
SAW according to the first embodiment when 0Ω (pure resistance) is set
The pass characteristic of the filter (frequency f is the pass center frequency fo
FIG. 7 shows the normalized frequency (f / fo) standardized in (1). 1
Good filter characteristics with a dB ratio bandwidth of 2% or more, a minimum insertion loss of 2 dB or less, and an in-band ripple of 0.5 dB or less were obtained. The pass band of the filter is within the stop band of the comb-shaped electrode determined by the reflection of the surface acoustic wave, and resonates in a single mode, so that excellent characteristics without in-band ripple can be obtained.

【0019】比較例1として、電極指6の中心間距離L
1を1.0λとして、それ以外は実施例1と同等とした
ものの通過特性を図8に示す。1dB比帯域幅1%未満
と狭いフィルタ特性しか得ることができず、加えて、通
過帯域外の減衰量も十分得られていない。
As Comparative Example 1, the distance L between the centers of the electrode fingers 6
FIG. 8 shows the pass characteristics of a filter having the same value as in the first embodiment except that 1 is set to 1.0λ. Only a narrow filter characteristic with a 1 dB ratio bandwidth of less than 1% can be obtained, and in addition, the attenuation outside the pass band is not sufficiently obtained.

【0020】次に、図3に示した電極構造を有するSA
Wフィルタを第2の実施例として説明する。第2の実施
例では、第1の実施例と同様の基板1、入力用くし型電
極2、出力用くし型電極3、配線4、5からなり、入力
用くし型電極2と隣接する出力用くし型電極3のそれぞ
れに属する最も近接した電極指の中心間距離L1はすべ
て0.8λである。さらに、入力用くし型電極2および
出力用くし型電極3を挾むように配置され、これらのく
し型電極の電極指6と同一周期(λ/4の金属部分と、
λ/4の金属の無い部分の繰り返しを有する)の相互に
短絡された40本の金属ストリップ7からなる一対の反
射器8を含んでいる。(金属ストリップ7は、くし型電
極3、4と同じ、アルミニウム膜からなる。)反射器8
のくし型電極3、4に最も近接した金属ストリップ7の
中心と、それに隣接するくし型電極の電極指6の中心間
距離L2を0.5λとしている。
Next, the SA having the electrode structure shown in FIG.
A W filter will be described as a second embodiment. In the second embodiment, a substrate 1, an input comb electrode 2, an output comb electrode 3, and wirings 4 and 5 similar to the first embodiment are provided. The distance L1 between the centers of the closest electrode fingers belonging to each of the comb electrodes 3 is 0.8λ. Further, it is arranged so as to sandwich the input comb electrode 2 and the output comb electrode 3 and has the same period as the electrode fingers 6 of these comb electrodes (a metal part of λ / 4,
(having a repetition of a metal-free part of λ / 4) comprising a pair of reflectors 8 of forty metal strips 7 shorted together. (The metal strip 7 is made of the same aluminum film as the interdigital electrodes 3 and 4.) Reflector 8
The center distance L2 between the center of the metal strip 7 closest to the comb electrodes 3 and 4 and the electrode finger 6 of the adjacent comb electrode is 0.5λ.

【0021】入出力の終端インピーダンスを50Ω+j
0Ω(純抵抗)とした場合の第2の実施例によるSAW
フィルタの通過特性を図9に示す。1dB比帯域幅2%
以上、最小挿入損失1.5dB以下、帯域内リップル
0.5dB以下の良好なフィルタ特性が得られた。反射
器8を用いることにより挿入損失は実施例1に比較して
0.4dB以上向上していることがわかる。
The terminating impedance of the input and output is 50Ω + j
SAW according to the second embodiment when 0Ω (pure resistance) is set
FIG. 9 shows the pass characteristics of the filter. 1dB ratio bandwidth 2%
As described above, good filter characteristics with a minimum insertion loss of 1.5 dB or less and an in-band ripple of 0.5 dB or less were obtained. It can be seen that the insertion loss is improved by 0.4 dB or more compared to the first embodiment by using the reflector 8.

【0022】比較例2として、金属ストリップ7の中心
と、それに隣接するくし型電極の電極指6の中心間距離
L2を0.75λとして、それ以外は実施例2と同等と
したものの通過特性を図10に示す。帯域内に大きなリ
ップル(5dB以上)を持ったフィルタ特性しか得られ
ない。
As a comparative example 2, the pass characteristics of the center of the metal strip 7 and the center distance L2 between the electrode fingers 6 of the comb-shaped electrode adjacent to the center were set to 0.75λ, and otherwise the same as that of the second embodiment. As shown in FIG. Only a filter characteristic having a large ripple (5 dB or more) in the band can be obtained.

【0023】なお、本発明は以上の実施例にのみ限定さ
れるものではなく、電極の構成としては、本発明による
フィルタを複数個縦続に接続してもよい。入出力端子
は、片側を接地して非平衡としているが、接地を行なわ
ずに平衡入出力型としてもよい。くし型電極は、アルミ
ニウムに銅、シリコンなどを添加してもよいし、他の導
電性の材料を用いてもよい。また、入力用くし型電極の
数と出力用くし型電極の数を同数(N:N)とせず、片
方を1つ増やして(N:N+1)も良いが、同数とした
方が入出力のインピーダンス整合条件をとりやすい。特
に、くし型電極の対数なども含めて、電極構造を点対称
に設計することがフィルタ特性上、望ましい。
Note that the present invention is not limited to the above-described embodiment, and a plurality of filters according to the present invention may be connected in cascade as an electrode configuration. The input / output terminals are unbalanced by grounding one side, but may be of a balanced input / output type without grounding. For the comb electrode, copper, silicon, or the like may be added to aluminum, or another conductive material may be used. Also, the number of comb-shaped electrodes for input and the number of comb-shaped electrodes for output may not be the same (N: N), but one may be increased by one (N: N + 1). Easy impedance matching conditions. In particular, it is desirable from the viewpoint of filter characteristics that the electrode structure, including the number of comb electrodes, is designed to be point-symmetrical.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による第1の電極構成を説明するための
概念図である。
FIG. 1 is a conceptual diagram for explaining a first electrode configuration according to the present invention.

【図2】第1の電極構成において、電極指の中心間距離
L1を変えた場合の通過特性を示した図である。
FIG. 2 is a diagram illustrating transmission characteristics when the distance L1 between centers of electrode fingers is changed in the first electrode configuration.

【図3】本発明による第2の電極構成を説明するための
概念図である。
FIG. 3 is a conceptual diagram for explaining a second electrode configuration according to the present invention.

【図4】第2の電極構成において、金属ストリップと電
極指の中心間距離L2を変えた場合の通過帯域幅を示し
た図である。
FIG. 4 is a diagram showing a pass band width when a center distance L2 between a metal strip and an electrode finger is changed in the second electrode configuration.

【図5】第1および第2の電極構成において、くし型電
極の数を変えた場合の挿入損失を示した図である。
FIG. 5 is a diagram showing insertion loss when the number of comb electrodes is changed in the first and second electrode configurations.

【図6】LiTaO3基板を用いた場合に、放射サセプ
タンスの絶対値を低くするこのできる対数の範囲を示す
図である。
FIG. 6 is a diagram showing a range of a logarithm that can reduce an absolute value of a radiation susceptance when a LiTaO 3 substrate is used.

【図7】第1の実施例によるSAWフィルタの通過特性
を示す図である。
FIG. 7 is a diagram illustrating pass characteristics of the SAW filter according to the first embodiment.

【図8】第1の比較例によるSAWフィルタの通過特性
を示す図である。
FIG. 8 is a diagram illustrating pass characteristics of a SAW filter according to a first comparative example.

【図9】第2の実施例によるSAWフィルタの通過特性
を示す図である。
FIG. 9 is a diagram illustrating pass characteristics of a SAW filter according to a second embodiment.

【図10】第2の比較例によるSAWフィルタの通過特
性を示す図である。
FIG. 10 is a diagram illustrating pass characteristics of a SAW filter according to a second comparative example.

【符号の説明】[Explanation of symbols]

1 基板 2 入力用くし型電極 3 出力用くし型電極 4、5 並列用の配線 6 電極指 7 金属ストリップ 8 反射器 DESCRIPTION OF SYMBOLS 1 Substrate 2 Comb electrode for input 3 Comb electrode for output 4, 5 Parallel wiring 6 Electrode finger 7 Metal strip 8 Reflector

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−69752(JP,A) 特開 平3−284009(JP,A) 特開 平7−38369(JP,A) 特開 平3−91311(JP,A) 大貫秀雄、保坂憲生、山田 純,移動 通信用多電極型低損失SAWフィルタの 設計における最適化の一手法,電子情報 通信学会論文誌A,1993年2月25日, p.167−174 (58)調査した分野(Int.Cl.7,DB名) H03H 9/145 H03H 9/64 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-69752 (JP, A) JP-A-3-284009 (JP, A) JP-A-7-38369 (JP, A) JP-A-3- 91311 (JP, A) Hideo Onuki, Norio Hosaka, Jun Yamada, An Optimization Method in Designing Multi-electrode Low-Loss SAW Filters for Mobile Communications, IEICE Transactions A, February 25, 1993, p . 167-174 (58) Field surveyed (Int. Cl. 7 , DB name) H03H 9/145 H03H 9/64

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】(a)圧電体からなる基板と、(b)該基
板表面上に配置され、相互に並列に接続された複数のく
し型電極からなる第1のくし型電極群と、(c)該第1
のくし型電極群の各くし型電極の間の前記基板表面上に
配置され、相互に並列に接続された複数のくし型電極か
らなる第2のくし型電極群とを含み、(d)前記第1の
くし型電極群に属するくし型電極と、それに隣接する前
記第2のくし型電極群に属するくし型電極の電極指中心
間距離L1が 【式1】(0.30+n/2)λ≦L1≦(0.45+
n/2)λ (ただし、λは前記くし型電極の周期、nは零または自
然数である。)を満たし、(e)前記第1および第2の
くし型電極群の少なくとも一方に含まれるくし型電極の
対数および電極膜厚が、通過帯域周波数内での該くし型
電極群の放射コンダクタンスが放射サセプタンスの絶対
値よりも大きくなる値に設定されていることを特徴とす
る弾性表面波フィルタ。
(A) a substrate made of a piezoelectric material; (b) a first comb-shaped electrode group consisting of a plurality of comb-shaped electrodes arranged on the surface of the substrate and connected in parallel with each other; c) the first
A second interdigital electrode group comprising a plurality of interdigital electrodes arranged on the substrate surface between each interdigital electrode of the interdigital electrode group and connected in parallel with each other; and (d) The distance L1 between the electrode finger centers of the comb-shaped electrodes belonging to the first comb-shaped electrode group and the adjacent comb-shaped electrodes belonging to the second comb-shaped electrode group is expressed by the following formula: (0.30 + n / 2) λ ≦ L1 ≦ (0.45+
n / 2) λ (where λ is the period of the comb-shaped electrode, n is zero or a natural number), and (e) a comb included in at least one of the first and second comb-shaped electrode groups. A surface acoustic wave filter characterized in that the logarithm and the electrode thickness of the pattern electrode are set to values such that the radiation conductance of the comb electrode group within the pass band frequency is larger than the absolute value of the radiation susceptance.
【請求項2】(f)前記第1および第2のくし型電極群
を挾むように配置され、前記くし型電極の電極指と同一
周期の相互に短絡された複数の金属ストリップからなる
反射器を含み、(g)前記くし型電極に最も近接した前
記金属ストリップの中心と、それに隣接する前記くし型
電極の電極指の中心との中心間距離L2が 【式2】(0.35+m/2)λ≦L2≦(0.65+
m/2)λ (ただし、λは前記くし型電極の周期、mは零または自
然数である。)を満たすことを特徴とする請求項1記載
の弾性表面波フィルタ。
And (f) a reflector comprising a plurality of metal strips which are arranged so as to sandwich said first and second comb-shaped electrode groups and are mutually short-circuited at the same period as the electrode fingers of said comb-shaped electrode. (G) the center-to-center distance L2 between the center of the metal strip closest to the comb-shaped electrode and the center of the electrode finger of the adjacent comb-shaped electrode is expressed by the following equation (0.35 + m / 2) λ ≦ L2 ≦ (0.65+
2. The surface acoustic wave filter according to claim 1, wherein m / 2) λ (where λ is the period of the comb-shaped electrode, and m is zero or a natural number).
【請求項3】前記第1および第2のくし型電極群の少な
くとも一方に含まれる全てのくし型電極の対数および電
極膜厚が、通過帯域周波数内での該くし型電極の放射コ
ンダクタンスが放射サセプタンスの絶対値よりも大きく
なる値に設定されていることを特徴とする請求項1ない
し2記載の弾性表面波フィルタ。
3. The logarithm and the electrode film thickness of all the comb electrodes included in at least one of the first and second comb electrode groups are such that the radiation conductance of the comb electrodes within the pass band frequency radiates. 3. The surface acoustic wave filter according to claim 1, wherein the value is set to a value larger than the absolute value of the susceptance.
【請求項4】前記基板が30〜40°Y回転LiTaO
3であり、前記くし型電極の対数Nおよび電極膜厚hが 【式3】15+log10(h/λ)≦N≦−20−40log
10(h/λ) (ただし、λは前記くし型電極の周期、log10(x)は
xの常用対数である。)を満たすことを特徴とする請求
項3記載の弾性表面波フィルタ。
4. The method according to claim 1, wherein the substrate is a 30-40 ° Y rotation LiTaO.
3 , and the logarithm N of the comb-shaped electrode and the electrode thickness h are as follows: 15 + log 10 (h / λ) ≦ N ≦ −20-40 log
4. The surface acoustic wave filter according to claim 3, wherein the filter satisfies 10 (h / λ) (where λ is the period of the comb-shaped electrode and log 10 (x) is a common logarithm of x).
JP34457193A 1993-12-20 1993-12-20 Surface acoustic wave filter Expired - Fee Related JP3302477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34457193A JP3302477B2 (en) 1993-12-20 1993-12-20 Surface acoustic wave filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34457193A JP3302477B2 (en) 1993-12-20 1993-12-20 Surface acoustic wave filter

Publications (2)

Publication Number Publication Date
JPH07176973A JPH07176973A (en) 1995-07-14
JP3302477B2 true JP3302477B2 (en) 2002-07-15

Family

ID=18370306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34457193A Expired - Fee Related JP3302477B2 (en) 1993-12-20 1993-12-20 Surface acoustic wave filter

Country Status (1)

Country Link
JP (1) JP3302477B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006048999A1 (en) 2004-11-04 2008-05-22 株式会社村田製作所 Balanced SAW filter
CN101044678B (en) 2004-11-04 2010-05-05 株式会社村田制作所 Balance SAW filter
DE102014118000A1 (en) * 2014-12-05 2016-06-09 Epcos Ag Arrangement with a strain gauge filter and steep right flank

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
大貫秀雄、保坂憲生、山田 純,移動通信用多電極型低損失SAWフィルタの設計における最適化の一手法,電子情報通信学会論文誌A,1993年2月25日,p.167−174

Also Published As

Publication number Publication date
JPH07176973A (en) 1995-07-14

Similar Documents

Publication Publication Date Title
KR100346805B1 (en) Surface acoustic wave device
US5831493A (en) Surface acoustic wave ladder filter utilizing a generated spurious component of the parallel arm
EP0652637B1 (en) Surface acoustic wave filter
EP0795958B1 (en) Resonator-type surface-acoustic-wave filter with improved upper stopband attenuation and reduced insertion loss
EP1244212B1 (en) Surface acoustic wave apparatus and communications unit
US6034577A (en) Integrated interdigital electrode saw filter with specified distances between input/output electrodes
US5864262A (en) Surface acoustic wave device having one-port and double mode SAW resonators
US20080024246A1 (en) Filter having multiple surface acoustic wave filters connected in parallel
US6326864B1 (en) Surface acoustic wave filter, duplexer and communications device with specific series resonator multiple anti-resonant point placement
JPH07283682A (en) Surface acoustic wave resonator filter
JP4014630B2 (en) Surface acoustic wave device
EP0782256B1 (en) Surface acoustic wave resonator filter apparatus
US6720847B2 (en) Longitudinally-coupled resonator surface acoustic wave filter and communication apparatus using the same
JP3302477B2 (en) Surface acoustic wave filter
JP4251409B2 (en) Surface acoustic wave filter
JPH05335881A (en) Longitudinal dual mode surface acoustic wave filter
US6147574A (en) Unidirectional surface acoustic wave transducer and transversal-type saw filter having the same
JP2000151355A (en) Ladder-type saw filter
JPH10209806A (en) Surface acoustic wave device
JP3126026B2 (en) Surface acoustic wave resonator filter
JP3340563B2 (en) Surface acoustic wave device
JP3224455B2 (en) Surface acoustic wave device
JP3435148B2 (en) Surface acoustic wave device
JP3478447B2 (en) Surface acoustic wave device
JPH08181566A (en) Surface acoustic wave filter device

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120426

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130426

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130426

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130426

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350