JPH0296414A - Surface acoustic wave device, its manufacture, communication equipment using it and method for adjusting the equipment - Google Patents

Surface acoustic wave device, its manufacture, communication equipment using it and method for adjusting the equipment

Info

Publication number
JPH0296414A
JPH0296414A JP24734388A JP24734388A JPH0296414A JP H0296414 A JPH0296414 A JP H0296414A JP 24734388 A JP24734388 A JP 24734388A JP 24734388 A JP24734388 A JP 24734388A JP H0296414 A JPH0296414 A JP H0296414A
Authority
JP
Japan
Prior art keywords
surface acoustic
acoustic wave
reflector
electrode
interdigital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24734388A
Other languages
Japanese (ja)
Other versions
JP2685537B2 (en
Inventor
Takashi Shiba
隆司 芝
Yuji Fujita
勇次 藤田
Toshimitsu Takahashi
利光 高橋
Jun Yamada
純 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63247343A priority Critical patent/JP2685537B2/en
Priority to DE19893933006 priority patent/DE3933006A1/en
Publication of JPH0296414A publication Critical patent/JPH0296414A/en
Priority to US07/842,570 priority patent/US5175711A/en
Application granted granted Critical
Publication of JP2685537B2 publication Critical patent/JP2685537B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02637Details concerning reflective or coupling arrays
    • H03H9/02685Grating lines having particular arrangements
    • H03H9/02771Reflector banks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6489Compensation of undesirable effects
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14517Means for weighting
    • H03H9/1452Means for weighting by finger overlap length, apodisation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14544Transducers of particular shape or position
    • H03H9/14552Transducers of particular shape or position comprising split fingers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14597Matching SAW transducers to external electrical circuits

Abstract

PURPOSE:To miniaturize the satisfactory equipment of a shoulder characteristic as a filter and to reduce the influence of the diffraction effect by providing the reflector of the surface acoustic wave at least at one side of an interdigital electrode. CONSTITUTION:An output interdigital electrode 2 and an input interdigital electrode 3 on a surface acoustic wave substrate 1 are arranged, a sound absorbing agent 4 to suppress the reflection from a substrate edge surface is applied to the edge of the substrate 1 and a short strip type reflector 5 is arranged at both sides of the electrode 3. The impulse to occur from the electrode 3 is closed at the section of the reflector 5, a part of it successively passes through the reflector 5 and arrives at an electrode 2. Consequently, for an impulse response train (broken line 7), the length of the response time is longer than an impulse response train (real line 6) before the reflector 5 is provided and equal to the condition in which the interdigital electrode equivalent to the length of the response time is provided. Since the number of the electrodes of the interdigital electrode is not increased and it is not necessary to make small the aperture, the device, which is small, has a small quantity of the influence of the diffraction effect, and is satisfactory in the shoulder characteristic, can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、フィルタとして使用したとき、周波数帯域の
肩特性および帯域外特性が良好な弾性表面波装置、及び
、その製作、調整方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a surface acoustic wave device that has good shoulder characteristics and out-of-band characteristics in a frequency band when used as a filter, and a method for manufacturing and adjusting the same.

〔従来OJ技術〕[Conventional OJ technology]

従来、弾性表面波フィルタの肩特性(フィルタ帯域端の
減衰特性の急峻さ)を向上させる手段として、例えば、
アイ・イー・イー・イー・トランザクション オン マ
イクロウェーブ セオリーアンド テクニクス 、エム
 ティー ティー21(IEEE、TRANS、ON 
MICROWAVETHEORY  AND  TEC
)I−NIQUES、VOL。
Conventionally, as a means to improve the shoulder characteristics (steepness of the attenuation characteristics at the edge of the filter band) of surface acoustic wave filters, for example,
IEE Transactions on Microwave Theory and Techniques, MTT21 (IEEE, TRANS, ON
MICROWAVE THEORY AND TEC
) I-NIQUES, VOL.

MTT−21)i4号、1975年4月、第206〜2
15頁に述べられている、マルチストリッグ カブラ−
等の技術がある。
MTT-21) i4 issue, April 1975, 206-2
Multi-string coupler described on page 15
There are technologies such as

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の技術では、肩特性向上のため擾こは、すだれ
状電極の本数を檀さねばならず、チップ形状が大きくな
り、原価上昇を避けられない0屑特性と電極本数の関係
に関しては、例えば、アイ・イー・イー・イー・トラン
ザクション オ/ マイクロウェーブ セオリー アン
ド テクニクスエム ティー ティー21 (IEEE
、TRANS、ONMICRO−WAVE THEOR
Y ANDTECHNIQUES、 VOL、 MTT
−21M! 4 号、 1973年4月、第162〜1
75頁lこ論しられている。
In the above conventional technology, in order to improve the shoulder characteristics, the number of interdigital electrodes must be increased, resulting in a larger chip shape and an unavoidable increase in cost.As for the relationship between the zero-chip characteristics and the number of electrodes, For example, IEE Transaction O/Microwave Theory and Techniques 21 (IEEE
, TRANS, ONMICRO-WAVE THEOR
Y ANDTECHNIQUES, VOL, MTT
-21M! No. 4, April 1973, No. 162-1
This is discussed on page 75.

また、肩特性向上のためには従来技術では前述のように
電極対数を増さなければならず、その為にすだれ状電極
の放射コンダクタンスが増加し、電気的負荷との条件に
よって定まる反射(RW)が増加する。従って、通常、
上記反射を抑圧するため、すだれ状′電極の開口を狭く
しなければならず、その場合には、弾性表面波の回折効
果の影響が増加し、フィルタ特性のサイドロープ等の劣
“化を生じる。
Furthermore, in order to improve the shoulder characteristics, the number of electrode pairs must be increased in the conventional technology as described above, which increases the radiation conductance of the interdigital electrodes and the reflection (RW) determined by the conditions with the electrical load. ) increases. Therefore, usually
In order to suppress the above-mentioned reflection, the aperture of the interdigital electrode must be narrowed, and in that case, the influence of the diffraction effect of surface acoustic waves increases, resulting in deterioration of the filter characteristics such as side lobes. .

本発明は、フィルタとして肩特性の良好な弾性表面波装
置の小形化および回折効果の影9を低減させることを目
的とする。
The present invention aims to reduce the size of a surface acoustic wave device having good shoulder characteristics as a filter and to reduce the shadow 9 of the diffraction effect.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために本発明においては、弾性表面
波装置内のすだれ状゛電極の少なくとも片(1tllに
14性衣而波σ」反射器を設けることにした。
In order to achieve the above object, in the present invention, at least one piece of the interdigital electrode (14 sigma wave σ) reflectors are provided in the surface acoustic wave device.

〔作用〕[Effect]

すだれ状*極の横に反射器を設けることにより、すだれ
状電極から放射された弾性表面波が反射器lζよって反
射され、弾性表面波のwJ振源個所が見かけ上増えた状
態と等価となり、チップ寸法を垢加させずに肩特性を向
上させることが出来る。また、すだれ状′電極の対数を
増さずに肩特性を向上させるため、′BL極の開口を小
さ(する必要がな(、回折効果の影’14118抑圧す
ることが出来る。
By providing a reflector next to the interdigital electrode, the surface acoustic wave emitted from the interdigital electrode is reflected by the reflector lζ, which is equivalent to an apparent increase in the number of wJ oscillation sources of the surface acoustic wave. The shoulder characteristics can be improved without increasing the chip size. Furthermore, in order to improve the shoulder characteristics without increasing the number of pairs of interdigital electrodes, it is not necessary to make the aperture of the BL pole small (and the shadow of the diffraction effect can be suppressed).

〔実施例〕〔Example〕

本発明の第1実施例を第1〜3図を用いて説明する。第
1図は第1実施例8楔式的に示す平面図である。弾性表
面波基板1上に出力すだれ状電極2及び入力すだれ状電
極3が配設され、基板の端には基板端面からの反射を抑
圧するため吸音剤4が塗布されている。また、入力すだ
れ状電極の両側には、ショートストリップ型の反射器5
が配設されている。入出力すだれ状′電極はスプリット
コネクト型とした。次に第2図により本実施例の動作原
理を説明する。第2図は、横軸に時間、縦軸に弾性表面
波励振源の強K(振幅)を表し、すだれ状電極から離れ
た位置から見たインパルス応答を模式的に示している。
A first embodiment of the present invention will be described using FIGS. 1 to 3. FIG. 1 is a plan view showing the first embodiment 8 in a wedge-like manner. An output interdigital electrode 2 and an input interdigital electrode 3 are arranged on a surface acoustic wave substrate 1, and a sound absorbing material 4 is applied to the edge of the substrate to suppress reflection from the end surface of the substrate. In addition, short strip reflectors 5 are placed on both sides of the input interdigital electrode.
is installed. The input and output interdigital electrodes were of the split-connect type. Next, the principle of operation of this embodiment will be explained with reference to FIG. In FIG. 2, the horizontal axis represents time and the vertical axis represents the intensity K (amplitude) of the surface acoustic wave excitation source, and schematically shows an impulse response viewed from a position away from the interdigital electrode.

実線6で示した応答が入力Tだれ状電極単体のもの(従
って反射器を配設してない状態)で、破線7で示した応
答が反射器5を配設した後の応答である0人力すだれ状
電極から生じたインパルスは反射器5の間に閉じ込めら
れ、その一部が順次反射器58通過して出力すだれ状電
極2に到達する。従ってM2図に示したようにインパル
ス応答列(破線7)は、反射器を配設する前のインパル
ス応答列(実線6)に比べ応答時間の長さが長く、上記
応答時間の長さに相当するすだれ状電極を配設した状態
と等価lこなる0すだれ状電極の電極本数を増加させず
、また開口を小さくする必要もないため、小形で、回折
効果の影響の少ない肩特性の良好な弾性表面波装置が得
られる。第3図は国内向はテレビジョン受信機のIFフ
ィルタの減衰量の周波数特性を示している。破線8は通
常のIFフィルタの特性、−点鎖線10は電極対数を増
し、クロマチルト部の肩特性を向上させ、RWによる反
射を減らすため開口を狭くした従来のIFフィルタの特
性である。入力側重み付すだれ状電極の励振源(インパ
ルス)対数は150対、開ロア50μm、出力側正規型
電極の同対数は15対、開口1500μm1弾性表面波
基板1としてXカット112度回転Y軸伝ff1LiT
aos基板を用いている。上記従来の構成では、同図に
示すようにサイドロープ特性、トラップ(減衰極)特性
の劣化が見られた0実線9は本発明ζこよるフィルタの
特性を示している。入力すだれ状電極5の励振源対数は
60対、開口1000μm1反射器5の電極本数は20
本とした0従って反射器を含めた入力側の電極長は約8
0対であり、前述の従来のフィルタの150対に比べ約
半分の値となった。出力正規型すだれ状電極の対数、開
口は従来と同様である。チップ全体の長さは従来に比べ
約374程度となり小形化を達成している0また、入力
すだれ状’it極の開口を狭くしていないため、回折効
果が抑圧され良好な帯域外特性が得られている。
The response shown by the solid line 6 is for the input T-shaped electrode alone (therefore, no reflector is installed), and the response shown by the broken line 7 is the response after the reflector 5 is installed. The impulses generated from the interdigital transducers are confined between the reflectors 5, and a portion of them sequentially passes through the reflectors 58 and reaches the output interdigital electrodes 2. Therefore, as shown in diagram M2, the impulse response train (dashed line 7) has a longer response time than the impulse response train (solid line 6) before the reflector is installed, and corresponds to the length of the above response time. This is equivalent to the state in which interdigital electrodes are arranged.Since there is no need to increase the number of interdigital electrodes and there is no need to make the aperture smaller, it is small and has good shoulder characteristics with less influence of diffraction effects. A surface acoustic wave device is obtained. FIG. 3 shows the frequency characteristics of the attenuation amount of the IF filter of a domestic television receiver. The broken line 8 is the characteristic of a normal IF filter, and the dashed line 10 is the characteristic of a conventional IF filter in which the number of electrode pairs is increased, the shoulder characteristic of the chroma tilt part is improved, and the aperture is narrowed to reduce reflection by RW. The number of pairs of excitation sources (impulses) of the weighted interdigital electrode on the input side is 150 pairs, the lower opening is 50 μm, and the number of pairs of excitation sources (impulses) of the weighted interdigital electrode on the output side is 15 pairs, and the opening of the regular type electrode is 15 pairs. ff1LiT
An AOS board is used. In the conventional configuration described above, as shown in the figure, the zero solid line 9 in which deterioration of the side lobe characteristics and trap (attenuation pole) characteristics was observed indicates the characteristics of the filter according to the present invention ζ. The number of excitation source pairs of the input interdigital electrode 5 is 60, and the number of electrodes of the reflector 5 is 20.
Therefore, the length of the electrode on the input side including the reflector is approximately 8
The number of pairs is 0, which is about half the value of 150 pairs in the conventional filter mentioned above. The number of pairs and apertures of the output normal interdigital electrodes are the same as in the conventional case. The overall length of the chip is approximately 374mm compared to the conventional one, achieving a smaller size.In addition, since the aperture of the input interdigital pole is not narrowed, diffraction effects are suppressed and good out-of-band characteristics are achieved. It is being

第3図の実線の特性を見ると、肩特性、帯域外特性は良
好であるが、帯域内(こリップルが見られる。これは反
射器5による反射の影響である。
Looking at the characteristics indicated by the solid line in FIG. 3, the shoulder characteristics and out-of-band characteristics are good, but ripples are seen within the band. This is due to the effect of reflection by the reflector 5.

次に第4図、第5図により、上記反射を抑圧した第2実
施例に関して説明する0 第4図は、すだれ状電極5の両側に反射器58配役した
場合(上lこ模式的平面図、下に等価回路図を示す)の
全体の反射波の大きさ(入力81とすると反射係数Fと
なる)8求める方法を示している。ここでSはすだれ状
電極および反射器の散乱行列の要素(入力ポート81.
出力ボート82としている)であり、T、、 T、は反
射器5とすだれ状電極3の間の透過係数である0ここで
添字aは前段の反射器、添字すはすだれ状!極、添字C
は計算結果は次のようになる。
Next, a second embodiment in which the above-mentioned reflection is suppressed will be explained with reference to FIGS. 4 and 5. FIG. , an equivalent circuit diagram is shown below). Here, S is the element of the scattering matrix of the interdigital electrode and reflector (input port 81.
output port 82), T,, T, is the transmission coefficient between the reflector 5 and the interdigital electrode 3, 0, where the subscript a is the previous reflector, and the subscript a is the interdigital! pole, subscript C
The calculation result is as follows.

また、参考のため透過係数Tを示せば となる。いまフィルタの中心周波数近傍を考え、反射波
同士か打ち消し合う条件として T、=’p2=6±J−j=± j         
 −(3)として、また各散乱行列を実数と考え(中心
周波数近傍であるため各項の位相項は全てTI + ’
rtに含めて考えることができるため)、各反射b、T
だn状電極の可逆性、対称性(S+t =St+ 、 
So =Su) ’)考慮し、前段、後段の反射器を同
一構造として、S〒1=晶=r、      C4) Sk2= Srt = t a      (5)So
 = rb         (6)S1*= t b
         (7)となる。今、反射器およびす
だれ状電極内の損失は充分小さいから、エネルギー保存
則から、ta + r、 = 1        (9
)tb + rb = 1      − (1o)が
成り立つから(8)式は となる。反射が無い状態ではr=oであるからrH(4
rニー2ra)+rb(3r;−1)+2ra−2ra
=O((12)の2次方程式を解くと なる関係が得られる。即ち、(13)式8満足するよう
にすだれ状電極と反射器の反射係数を定め、かつ、反射
器端部の電極の中心位置と丁だれ状電極端部の電極の中
心位置の距離を−λ十旦λ(λは帯域中心周波数lこお
ける弾性表面波の波長、nは自然数)とする事(即ち、
TI = T1= e±JTとする挙)により反射波を
抑圧することが出来る。
Also, for reference, the transmission coefficient T is shown below. Now considering the vicinity of the center frequency of the filter, the condition for the reflected waves to cancel each other out is T, ='p2=6±J-j=± j
−(3), and consider each scattering matrix as a real number (because it is near the center frequency, the phase term of each term is all TI + '
rt), each reflection b, T
Reversibility and symmetry of the n-shaped electrode (S+t = St+,
So = Su) ') Considering that the front and rear reflectors have the same structure, S〒1 = crystal = r, C4) Sk2 = Srt = t a (5) So
= rb (6) S1*= t b
(7) becomes. Now, since the loss in the reflector and the interdigital electrode is sufficiently small, from the law of conservation of energy, ta + r, = 1 (9
)tb + rb = 1 - (1o) holds, so equation (8) becomes. Since r=o in the absence of reflection, rH(4
r knee 2ra)+rb(3r;-1)+2ra-2ra
=O(By solving the quadratic equation (12), the relationship is obtained. That is, the reflection coefficients of the interdigital electrodes and the reflector are determined so as to satisfy Equation (13) 8, and the electrode at the end of the reflector is The distance between the center of
Reflected waves can be suppressed by setting TI=T1=e±JT.

次に本発明を国内テレビジョン受信機のIFフィルタに
適用した第2実施例について述べる。入力すだれ状電極
はソリッド型の正規型電極とし、その両側にλ/4ソリ
ッド型ショートストリップ型の反射器を配設した。正規
型電極の励振源対数は15対(電極数31本)、反射器
本数は16本とした0出力側のすだれ状電極は開口重み
付スプリットコネクト型の構造とし、励振源対数を60
.5対とした。
Next, a second embodiment will be described in which the present invention is applied to an IF filter for a domestic television receiver. The input interdigital electrode was a regular solid type electrode, and λ/4 solid type short strip type reflectors were arranged on both sides thereof. The number of excitation source pairs of the regular type electrode was 15 (31 electrodes), and the number of reflectors was 16.The interdigital electrode on the 0 output side had an aperture weighted split-connect type structure, and the number of excitation source pairs was 60.
.. There were 5 pairs.

r、=0.108 、 rl、=0.054となり、(
15)式をほぼ満足している。電極と反射器の間の距離
は3/4λ(夫々の端部電極の中心間距離)とした0 第5図は第2実施例の減衰量の周波数特性である。実線
11が減衰itを示すC帯域内の反射特性が改善され、
リップルが小さくなっている0このように第2実施例で
は、中心周波数近傍でのリップルが小さく、肩特性の良
好な小形のフィルタが得られた。
r, = 0.108, rl, = 0.054, (
15) formula is almost satisfied. The distance between the electrode and the reflector was 3/4λ (the distance between the centers of the respective end electrodes). FIG. 5 shows the frequency characteristics of the attenuation amount in the second embodiment. The reflection characteristics within the C band, where the solid line 11 indicates attenuation it, are improved,
The ripple is small.0 Thus, in the second example, a small filter with small ripple near the center frequency and good shoulder characteristics was obtained.

@2実施例では、反射器の反射係数を規定する事ζこよ
り中心周波数近傍でのリップル特性を改善することが出
来たが、第5図から判るように、中心周波数から離れる
に従って、反射波の抑圧度が減少し、リップルが増加し
ている。これは反射器とすだれ状電極の中心位置の距離
が離れているため、T、、T、の位相回転が速く、前述
のようにT1゜T−e±J−i一定とすることが出来ず
、中心周波数から外れると急激に反射が増すためである
In Example @2, by specifying the reflection coefficient of the reflector, it was possible to improve the ripple characteristics near the center frequency, but as can be seen from Figure 5, the reflected wave The degree of suppression is decreasing and the ripple is increasing. This is because the center position of the reflector and the interdigital electrode are far apart, so the phase rotation of T, , T is fast, and it is not possible to keep T1゜T-e±J-i constant as mentioned above. This is because reflection increases rapidly when the frequency deviates from the center frequency.

第5実施例は、上述の欠点を改善する。(15)式はr
a+rbが1に対して充分小さいとするとrb’%2r
a       (1’)となる。また、ソリッド型の
ショートストリップ反射器およびソリッド型すだれ状電
極のMEL(電極の幾何学的形状lこよって定まる反射
)分は次の式で表わされる。
The fifth embodiment improves the above-mentioned drawbacks. Equation (15) is r
If a+rb is sufficiently small relative to 1, then rb'%2r
a (1'). Further, the MEL (reflection determined by the geometric shape l of the electrode) of the solid type short strip reflector and the solid type interdigital electrode is expressed by the following equation.

ここで、Zrは電極のある場所と無い場所の弾性表面波
の伝搬インピーダンスの比、Nは電極の本数である。一
般にZrは1ζこ充分に近いためzr=1+e(ε<1
)    −(16)と表す。(15)式は と表わされる。l/’Iが1に比べ光分に小さい(Nが
小)場合には jr l ”qNt              (1
8)と表わされる。(18)の結果を上述の反射器(添
字aで示す)及びすだれ状電極(添字すで示す)の場合
に適用し、(14)式を用いると Nbg ’q 2 Nm’ Nb−2Na             (19)の関
係が得られる。即ち、電極本数が充分小さい場合には、
反射器の電極本数とすだれ状電極の電極本数の比81:
2とすれば全体の反射を抑える墨ができる。例えば1対
の励振源のすだれ状電極の反射を抑える事は1本の電極
からなる反射器を両側1こ1λ十旦λ(nは自然数)隔
てて配設することにより達成される0そこで例えばn=
1とすれば充分広帯電番こ反射波を抑圧する事ができる
Here, Zr is the ratio of the propagation impedance of surface acoustic waves in a place with an electrode and a place without an electrode, and N is the number of electrodes. Generally, Zr is sufficiently close to 1ζ, so zr=1+e(ε<1
) −(16). Equation (15) is expressed as. When l/'I is smaller than 1 in terms of light (N is small), jr l ''qNt (1
8). Applying the result of (18) to the above-mentioned reflector (indicated by subscript a) and interdigital electrode (indicated by subscript sum) and using equation (14), Nbg 'q 2 Nm' Nb-2Na (19 ) relationship is obtained. That is, if the number of electrodes is small enough,
Ratio of the number of electrodes of the reflector to the number of electrodes of the interdigital electrode: 81:
If you set it to 2, you can create ink that suppresses the overall reflection. For example, suppressing the reflection of a pair of interdigital electrodes of a pair of excitation sources can be achieved by arranging a reflector consisting of one electrode at a distance of 1 λ 10 λ (n is a natural number) on both sides. n=
If it is set to 1, it is possible to sufficiently suppress the wide-band electrostatic reflection wave.

この電極群(すだれ状電極の励振源対数1対1反射器電
極1本(1組))8基本構成として、それを表面波伝搬
方向に複数配設Tる墨により所望の周波数特性を得る。
A desired frequency characteristic is obtained by arranging a plurality of electrode groups (1 pair of excitation source pairs of interdigital electrodes and 1 reflector electrode (1 set)) in the surface wave propagation direction.

NX6図はその構成を示す0破線で囲った部分13が基
本構成である。基本構成間lこ設置したスプリット型の
電極dは、反射器部をショートストリップ型(反射器部
のRW分を除去)とするためのものである。スゲリット
型としたのは、そこでのMEL分を抑圧するためである
0従ってすだれ状電極12は反射器を内部(こ配設した
構造となる。
In the NX6 diagram, a portion 13 surrounded by a zero-dashed line showing the configuration is the basic configuration. The split-type electrodes d installed between the basic components are used to make the reflector part a short strip type (remove the RW portion of the reflector part). The reason for using the sugerite type is to suppress the MEL component there. Therefore, the interdigital electrode 12 has a structure in which a reflector is disposed inside.

@5実施例として、上記構造の入力すだれ状電極8備え
た弾性表面波装置を国内テレビジョン受信機のIFフィ
ルタに適用した場合について述べる。基本構成85個接
続したすだれ状電極を入力正規型すだれ状電極として用
い、出力すだわ、状電極には開口重み付スプリットコネ
クト型を用いた。
@5 As an example, a case will be described in which a surface acoustic wave device having the input interdigital electrode 8 having the above structure is applied to an IF filter of a domestic television receiver. Basic structure: 85 interdigitated electrodes connected to each other were used as the input regular interdigital electrodes, and the output interdigital electrodes were of the aperture weighted split-connect type.

入力正規型電極の開口は1500μm、出力すだれ状電
極の励振源対数は120対、開口は1000μmとした
。このフィルタの減員量刑波数特性を第7図に実線14
で示す。広帯域に反射波を抑圧したため、リップルが減
少している0このように第3実施例を用いれば、広帯域
にリップルを抑圧した、肩特性の良好な小形の弾性表面
波フィルタが得られる0次に第4実施例について第8図
とw、9図により説明する。@8図は第4実施例を模式
的に示したもので、出力(入力)Tだれ状電極2に相対
する入力(出力)Tだれ状′電極15の両*lrに、上
記各実施例同様、反射器5を設けている。この様に反射
器を配設すると、反射器間にエネルギー閉じ込めが起こ
り、肩特性を向上させることが出来るのであるが、それ
と同時に、帯域端の周波数でQの上昇を生じるため、そ
の周波数で群遅延時間の増大を来す。群遅延時間の平坦
性が必安な場合には、予め、すだれ状′電極15の群遅
延時間特性を進相にしておく必要がある0′第9図は第
4実施例の群遅延特性を示し、破線16が反射器を配設
する前の特性、実?fM17が配役後の特性である。帯
域端の周波数まで群M延が一定となっている0上記の如
(第4実施例によれば、小形で肩特性が急峻で群遅延が
一定の高性能フィルタが得られる。
The aperture of the input normal type electrode was 1500 μm, the number of excitation source pairs of the output interdigital electrode was 120, and the aperture was 1000 μm. The solid line 14 in Figure 7 shows the wave number characteristics of this filter.
Indicated by Since the reflected waves are suppressed in a wide band, ripples are reduced.0 As described above, if the third embodiment is used, a small surface acoustic wave filter with good shoulder characteristics and suppressed ripples in a wide band can be obtained. The fourth embodiment will be explained with reference to FIGS. 8, w, and 9. Figure @8 schematically shows the fourth embodiment, in which both *lr of the input (output) T-shaped electrode 15 opposite to the output (input) T-shaped electrode 2 are provided with the same structure as in each of the above embodiments. , a reflector 5 is provided. When the reflectors are arranged in this way, energy is trapped between the reflectors and the shoulder characteristics can be improved, but at the same time, the Q increases at the band edge frequency, so there is no group at that frequency. This results in an increase in delay time. If flatness of the group delay time is essential, the group delay time characteristic of the interdigital electrode 15 must be made phase-leading in advance. The broken line 16 indicates the characteristics before the reflector is installed, and the actual fM17 is the characteristic after casting. According to the fourth embodiment, a small, high-performance filter with a steep shoulder characteristic and a constant group delay can be obtained.

次に第5実施例について第10図、第11図により説明
する。第9図から判るように第4実施例では完全に#遅
砥を一定にする墨ができず、帯域内にリップルを生じて
しまう。これは反射器が多数本の電極から成っているた
め、その反射器内へのエネルギー閉じ込めが起こり、総
合インパルス応答が時間軸上で対称特性とならないとい
う理由力)ら生じるものである。そこで更に群遅延時間
の平坦性が必安な場合には完全反射面が必要となる。
Next, a fifth embodiment will be explained with reference to FIGS. 10 and 11. As can be seen from FIG. 9, in the fourth embodiment, it is not possible to completely keep # slow grinding constant, and ripples occur within the band. This is because the reflector consists of a large number of electrodes, so energy is trapped within the reflector, and the overall impulse response does not have symmetrical characteristics on the time axis. Therefore, if flatness of the group delay time is essential, a completely reflective surface is required.

第10図は第5実施例を模式的に示し、出力(入力)す
だれ状′wL極2に相対する入力(出力)すだれ状′4
極18の一端にα5対励振源のスプリットコネクト型す
だれ状電極型反射器を配設しである0高反射係数を得る
ため、電極の容tをインダクタンス20を用いて打ち消
している。この様にすだれ状電極型の反射器は少数対数
でも高反射係数が得られるため、群遅延の平坦性8確保
するためには有効である。その他、完全反射面8得ろ手
段上して基板端面を利用することも考えられるが、基板
加工精度、チッピング等の問題乃)ら上記のようにする
方が有効と考えられる。第11図は@5実施例の群遅延
時間特性を実線21で示す。帯域内の平坦性が第4実施
例に比べて改善されていることが判る。
FIG. 10 schematically shows the fifth embodiment, in which the input (output) interdigital shape 4 is opposed to the output (input) interdigital shape 'wL pole 2.
A split-connect interdigital electrode reflector with an α5 excitation source is disposed at one end of the pole 18, and the capacitance t of the electrode is canceled out using an inductance 20 in order to obtain a high reflection coefficient. As described above, since the interdigital electrode type reflector can obtain a high reflection coefficient even with a small logarithm, it is effective for ensuring the flatness 8 of the group delay. Alternatively, it is possible to use the end face of the substrate as a means for obtaining the perfect reflective surface 8, but it is thought that the above method is more effective due to problems such as substrate processing accuracy and chipping. In FIG. 11, the group delay time characteristic of the @5 embodiment is shown by a solid line 21. It can be seen that the flatness within the band is improved compared to the fourth example.

上記の如く、第5実施例を用いると群遅延特性を一層向
上させることが出来る。
As described above, using the fifth embodiment allows the group delay characteristics to be further improved.

次に第6実施例について@12図を用いて説明する。前
述の反射器はフィルタ帯域端の肩特性を向上させるため
のものであるが、反射器の反射係数が過大または過少の
値の場合、減衰量の帯域内特性の平坦性が劣化する。ま
た、反射器の反射波位相が最適値からずれると、所望の
周波数以外のQ値か上昇し、肩特性の劣化、減衰量の帯
域内平坦性の劣化が生じる。第12図は、そのような場
合の反射器の反射係数の調整方法を示す。即ち、反射器
5の必要な部分(残しておきたい個所)だけレジスト膜
等の保膿膜を形成してエツチングを行い、不要部分22
8除去するトリミングを端部力)ら順次行い、上記反射
係数の調整を行っている1、本実施例を用いれば上記反
射特性のずれによる周波数特性の劣化を改善できるため
歩留向上に効果があ妬第7実施例は反射器の反射波位相
の調整方法(こ関するものである。第13図は第7実施
例の反射器の調整方法を示す。反射器5そショートスト
リップ電極としておき、順次、切断個所eをレーザカッ
タ、超音波カッタ等のトリミング技術によりオープンス
トリップ部を形成させ反射波の位相を調侵している。本
実施例を用いれば歩留向上lこ効果がある。
Next, a sixth embodiment will be described using FIG. The above-mentioned reflector is intended to improve the shoulder characteristic at the edge of the filter band, but if the reflection coefficient of the reflector is too large or too small, the flatness of the in-band characteristic of the amount of attenuation deteriorates. Furthermore, if the reflected wave phase of the reflector deviates from the optimum value, Q values other than the desired frequency will increase, resulting in deterioration of shoulder characteristics and deterioration of in-band flatness of the amount of attenuation. FIG. 12 shows a method for adjusting the reflection coefficient of the reflector in such a case. That is, a purulent-retaining film such as a resist film is formed only on the necessary portions of the reflector 5 (the portions to be left) and etching is performed to remove the unnecessary portions 22.
8. Trimming is performed sequentially starting from the edge force) to adjust the reflection coefficient. 1. By using this example, it is possible to improve the deterioration of the frequency characteristics due to the deviation of the reflection characteristics, which is effective in improving the yield. The seventh embodiment relates to a method for adjusting the phase of the reflected wave of a reflector. FIG. 13 shows a method for adjusting the reflector of the seventh embodiment. The reflector 5 is made of a short strip electrode. Sequentially, open strip portions are formed at the cut points e using a trimming technique such as a laser cutter, an ultrasonic cutter, etc., and the phase of the reflected waves is adjusted.Using this embodiment has the effect of improving the yield.

@88実施は、すだれ状電極型反射器を備えた本発明弾
性表面波装置を回路に用いた通信装置の周波数特性の調
整方法に関するものである。第14図は第8冥施例を模
式的lζ示す。出力(入力)すだれ状電極2と相対する
入力(出力)すだれ状電極18の横に、すだれ状電極型
反射器19を配設しである。弾性表面波装置の外部回路
に可変インダクタンス238配置し、上記すだれ状電極
型反射器19に電気的に接続する。すだれ状電極の反射
特性は整合用のインダクタンス値+i化させる事により
調整できる。そこで、本発明の弾性表面披裂fftを通
信装置内に設置した後で、上、記可変インダクタンスの
値8FA整する。本実施例を用いれば、通信装置に実装
した状態で、周波数特性8調整することができる点が有
効である。
The implementation @88 relates to a method for adjusting the frequency characteristics of a communication device using the surface acoustic wave device of the present invention equipped with an interdigital electrode reflector in its circuit. FIG. 14 schematically shows the eighth embodiment. A transducer-shaped electrode reflector 19 is disposed next to the input (output) transducer-shaped electrode 18 that faces the output (input) transducer-shaped electrode 2 . A variable inductance 238 is arranged in the external circuit of the surface acoustic wave device and electrically connected to the interdigital electrode type reflector 19. The reflection characteristics of the interdigital electrode can be adjusted by increasing the matching inductance value +i. Therefore, after installing the elastic surface fft of the present invention in a communication device, the above variable inductance value is adjusted to 8FA. If this embodiment is used, it is effective that the frequency characteristics 8 can be adjusted while being mounted on a communication device.

欠番こ本発明を通信製@iご用いた実施例に関して説明
する。第15図は第9実施例のテレビジョン受信機のブ
ロック図である。チューナ24のIF比出力本発明の弾
性表面披裂riL25に接続され、弾性表面波装置25
の出力は2系統に分かれ、1系統は映像検波回路261
こ入力され、他の1系統は音声検波回路271こ入力さ
れている。本実施例の弾性表面波装置25の特性は第7
図に示すような特性であり、クロマレベルの上昇により
画面の解像度が向上し、また本発明の技術を用い、音声
レベルを減衰させているため、クロスカラー 920 
K hビート等の妨害が無い良好な特性が得られている
A description will be given of an embodiment in which the present invention is applied to Tsushin@i. FIG. 15 is a block diagram of a television receiver according to a ninth embodiment. IF specific output of the tuner 24 Connected to the elastic surface arytenoid riL 25 of the present invention, the surface acoustic wave device 25
The output is divided into two systems, one system is the video detection circuit 261
The other system is input to the audio detection circuit 271. The characteristics of the surface acoustic wave device 25 of this embodiment are as follows.
With the characteristics shown in the figure, the screen resolution is improved by increasing the chroma level, and the technology of the present invention is used to attenuate the audio level, so cross color 920
Good characteristics are obtained without interference such as Kh beat.

次に第16図、第17図1こより第10実施例1こつい
て説明する。第16図は第10実施例の衛星数送受II
のブロック図である。屋外ユニット28でダウンコンバ
ートされた信号はケーブルを介して屋内ユニット29に
送られる0更ζこ屋内ユニット29内では発振器30に
よる発振信号によりダウンコンバートされ、第2IFフ
ィルタである本発明弾性表面波装置ll 31ζこ送ら
れる。第2IFフィルタを通過した信号はPLL同期横
波回路32によって横波され、そnぞれ映像信号処理回
路33と音声信号処理回路34に送られる。
Next, the tenth embodiment 1 will be explained with reference to FIGS. 16 and 17. Figure 16 shows the satellite number transmission and reception II of the 10th embodiment.
FIG. The signal down-converted by the outdoor unit 28 is sent to the indoor unit 29 via a cable.In the indoor unit 29, the signal is down-converted by the oscillation signal from the oscillator 30, and the second IF filter is the surface acoustic wave device of the present invention. ll 31ζ will be sent. The signal that has passed through the second IF filter is transversely waved by a PLL synchronized transverse wave circuit 32 and sent to a video signal processing circuit 33 and an audio signal processing circuit 34, respectively.

第17図は第10実施例の第21Fフィルタの@涙量周
波数特性を示す。破線36は従来の弾性表面波装置の特
性、実線35は本発明の弾性表面波装置の特性を示して
いる。本発明の弾性表面波装置の特性は信号帯域を忠実
に再現しているため、イぎ号に歪をかけず、微分利得特
性(1)G)、微分位相特性(DP)が向上し、更に帯
域端の特性が急峻となったため、その部分のノイズ量が
減少しS/Nを向上させることが出水た0 〔発明の効果〕 以上説明したように本発明によりは、テップサイズを増
大させずに、また、Tだれ状電極の開口長、を小さくす
る事なく、急峻な肩特性を有し、サイドローブ特性等の
性能が向上した広帯域なフィルタが得られ、装置の原価
低減の効果も得られる。
FIG. 17 shows the @tear volume frequency characteristic of the 21F filter of the 10th embodiment. The broken line 36 shows the characteristics of the conventional surface acoustic wave device, and the solid line 35 shows the characteristics of the surface acoustic wave device of the present invention. Since the characteristics of the surface acoustic wave device of the present invention faithfully reproduce the signal band, the differential gain characteristic (1) G) and differential phase characteristic (DP) are improved without distorting the signal. Since the characteristic at the band edge became steep, the amount of noise in that part was reduced and the S/N ratio was improved. [Effects of the Invention] As explained above, the present invention allows the step size to be reduced without increasing the step size. In addition, without reducing the aperture length of the T-shaped electrode, a broadband filter with steep shoulder characteristics and improved performance such as side lobe characteristics can be obtained, and the cost of the device can be reduced. It will be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の模式図、第2図はインパ
ルス応答図、第3図は第1実施例の減衰量周波数特性図
、第4図は第2実施例OJ反射彼の解析方法説明図、第
5図は第2実施例(/J減減衰局周波数特性図第6図は
第3実施例の模式図、第7図は第3実施例の減衰量周波
数特性図、第8図は第4実施例CIJ模式図、第9図は
第4実施例の群遅延時間周波数特性図、第10図は第5
実施例の模式図、第11図は第5実施例の群遅延時間周
波数特性図、第12図は第6実施例の製作方法説明図、
第13図は第7実施例の製作方法説明図、第14図は第
8実施例の通信装置の調整方法説明図、第15図は第9
実施例のテレビジョン受信機のブロック図、第16図は
第10実施例の両層放送受信機のブロック図、第17図
は第10実施例の弾性表面波フィルタの減衰量周波数特
性図である。 2、 3.12.15.18・・・すだれ状電極・・反
射器 13・・・基本構成 20・・・インダクタンス 22・・・不歎部分 26・・・可変インダクタンス 25・・・弾性衣面披裂這 31・・・弾性表面波装置費
Fig. 1 is a schematic diagram of the first embodiment of the present invention, Fig. 2 is an impulse response diagram, Fig. 3 is an attenuation frequency characteristic diagram of the first embodiment, and Fig. 4 is an OJ reflection diagram of the second embodiment. Analysis method explanatory diagram, Figure 5 is a diagram of the second embodiment (/J reduced attenuation station frequency characteristic diagram. Figure 6 is a schematic diagram of the third embodiment, and Figure 7 is an attenuation frequency characteristic diagram of the third embodiment. Fig. 8 is a schematic diagram of CIJ of the fourth embodiment, Fig. 9 is a group delay time frequency characteristic diagram of the fourth embodiment, and Fig. 10 is a diagram of the CIJ of the fourth embodiment.
A schematic diagram of the embodiment, FIG. 11 is a group delay time frequency characteristic diagram of the fifth embodiment, and FIG. 12 is an explanatory diagram of the manufacturing method of the sixth embodiment.
FIG. 13 is an explanatory diagram of the manufacturing method of the seventh embodiment, FIG. 14 is an explanatory diagram of the adjustment method of the communication device of the eighth embodiment, and FIG. 15 is a diagram of the ninth embodiment.
FIG. 16 is a block diagram of the television receiver of the embodiment, FIG. 16 is a block diagram of the dual-layer broadcasting receiver of the tenth embodiment, and FIG. 17 is an attenuation frequency characteristic diagram of the surface acoustic wave filter of the tenth embodiment. . 2, 3.12.15.18...Interdigital electrode...Reflector 13...Basic configuration 20...Inductance 22...Unsatisfactory part 26...Variable inductance 25...Elastic clothing surface arytenoid 31...Surface acoustic wave device cost

Claims (12)

【特許請求の範囲】[Claims] 1. 弾性表面波基板上に、入出力すだれ状電極を配設
し、更に、少なくとも一つのすだれ状電極の少なくとも
片側に弾性表面波の反射器を配設して、広帯域かつ肩特
性良好な周波数特性にしたことを特徴とする弾性表面波
装置。
1. Input/output interdigital electrodes are disposed on the surface acoustic wave substrate, and a surface acoustic wave reflector is disposed on at least one side of at least one interdigital electrode to achieve a wide band and frequency characteristics with good shoulder characteristics. A surface acoustic wave device characterized by:
2. すだれ状電極の両側に反射器を配設し、λをフィ
ルタの中心周波数における弾性表面波波長nを自然数と
して、すだれ状電極の端部電極中心と反射器の端部電極
中心の間の距離を両側とも1/4λ+n/2λとし、反
射器の反射係数をr_a、すだれ状電極の反射係数をr
_bとしたとき ▲数式、化学式、表等があります▼ を満足するように、上記反射器とすだれ状電極の構造を
定めたことを特徴とする請求項1記載の弾性表面波装置
2. Reflectors are arranged on both sides of the interdigital electrode, and the distance between the center of the end electrode of the interdigital electrode and the center of the end electrode of the reflector is determined by setting λ to the surface acoustic wave wavelength n at the center frequency of the filter as a natural number. Both sides are 1/4λ+n/2λ, the reflection coefficient of the reflector is r_a, and the reflection coefficient of the interdigital electrode is r.
2. The surface acoustic wave device according to claim 1, wherein the structures of the reflector and the interdigital electrode are determined so that when _b is ▲a mathematical formula, a chemical formula, a table, etc.▼.
3. 請求項2記載のすだれ状電極と反射器の組を基本
構成として、それを複数組、弾性表面波伝搬路上に配設
し、各すだれ状電極を電気的に並列に接続したことを特
徴とする弾性表面波装置。
3. The present invention is characterized in that a plurality of pairs of interdigital electrodes and reflectors according to claim 2 are arranged on a surface acoustic wave propagation path, and the interdigital electrodes are electrically connected in parallel. Surface acoustic wave device.
4. 請求項2記載の基本構成中の反射器の反射係数を
r_a、すだれ状電極の反射係数をr_bとしたとき、
r_b=2r_aを満足させた請求項5記載の弾性表面
波装置。
4. When the reflection coefficient of the reflector in the basic configuration according to claim 2 is r_a, and the reflection coefficient of the interdigital electrode is r_b,
The surface acoustic wave device according to claim 5, which satisfies r_b=2r_a.
5. 請求項4記載の基本構成を、2本の電極指からな
るソリッド型すだれ状電極と、その両側に配設した夫々
すだれ状電極の電極指幅と同じ幅の1本の電極指からな
る反射器とで形成した請求項4記載の弾性表面波装置。
5. The basic structure according to claim 4 is a reflector comprising a solid type interdigital electrode consisting of two electrode fingers and one electrode finger having the same width as the electrode finger width of each interdigital electrode arranged on both sides of the solid interdigital electrode. 5. The surface acoustic wave device according to claim 4, wherein the surface acoustic wave device is formed by:
6. 反射器が配設されたすだれ状電極の電極指交差幅
を弾性表面波伝搬路方向で左右非対称にしたことを特徴
とする請求項1記載の弾性表面波装置。
6. 2. The surface acoustic wave device according to claim 1, wherein the interdigital interdigital width of the interdigital electrodes on which the reflector is disposed is made asymmetrical in the direction of the surface acoustic wave propagation path.
7. 反射器を、少数電極対数のすだれ状電極型とした
請求項6記載の弾性表面波装置。
7. 7. The surface acoustic wave device according to claim 6, wherein the reflector is of interdigital electrode type with a small number of electrode pairs.
8. 請求項1記載の弾性表面波装置に配設された反射
器を、端部から順次トリミングして、反射器の反射係数
または反射波の位相を変化させ、所望の周波数特性を得
るようにしたことを特徴とする弾性表面波装置の製作方
法。
8. The reflector disposed in the surface acoustic wave device according to claim 1 is trimmed sequentially from the end to change the reflection coefficient of the reflector or the phase of the reflected wave to obtain desired frequency characteristics. A method for manufacturing a surface acoustic wave device characterized by:
9. 請求項1記載の弾性表面波装置をフィルタとして
自装置回路内に用いたことを特徴とする通信装置。
9. A communication device characterized in that the surface acoustic wave device according to claim 1 is used as a filter in its own circuit.
10. テレビジョン受信機のチューナ1F出力と検波
回路の間のIFフィルタとして、請求項1記載の弾性表
面波装置を用い、音声キャリアレベルを抑え、クロマキ
ヤリアレベルを上昇させた請求項9記載の通信装置。
10. The communication device according to claim 9, wherein the surface acoustic wave device according to claim 1 is used as an IF filter between the tuner 1F output of the television receiver and the detection circuit, and the audio carrier level is suppressed and the chroma carrier level is increased. .
11. 衛星放送受信機の屋内ユニットにおける第2I
Fフィルタとして、請求項1記載の弾性表面波装置を用
いた請求項9記載の通信装置。
11. 2nd I in the indoor unit of the satellite receiver
10. The communication device according to claim 9, wherein the surface acoustic wave device according to claim 1 is used as the F filter.
12. 請求項9記載の通信装置の弾性表面波装置に用
いられている請求項7記載のすだれ状電極型反射器に可
変インダクタンス素子よりなる回路を接続し、そのイン
ダクタンス値を順次変化させて、上記反射器の反射係数
または反射波位相を変え、所望の周波数特性を得るよう
にしたことを特徴とする通信装置の調整方法。
12. A circuit consisting of a variable inductance element is connected to the interdigital electrode type reflector according to claim 7 used in the surface acoustic wave device of a communication device according to claim 9, and the inductance value of the circuit is sequentially changed. 1. A method for adjusting a communication device, the method comprising changing the reflection coefficient or the phase of a reflected wave of a communication device to obtain desired frequency characteristics.
JP63247343A 1988-10-03 1988-10-03 Surface acoustic wave device, manufacturing method thereof, adjusting method thereof, and communication device using the same Expired - Lifetime JP2685537B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63247343A JP2685537B2 (en) 1988-10-03 1988-10-03 Surface acoustic wave device, manufacturing method thereof, adjusting method thereof, and communication device using the same
DE19893933006 DE3933006A1 (en) 1988-10-03 1989-10-03 SAW device with interdigital transducers at input and output - having reflectors for improved characteristic without increase of chip area
US07/842,570 US5175711A (en) 1988-10-03 1992-01-02 Surface acoustic wave apparatus and method of productivity and adjustment of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63247343A JP2685537B2 (en) 1988-10-03 1988-10-03 Surface acoustic wave device, manufacturing method thereof, adjusting method thereof, and communication device using the same

Publications (2)

Publication Number Publication Date
JPH0296414A true JPH0296414A (en) 1990-04-09
JP2685537B2 JP2685537B2 (en) 1997-12-03

Family

ID=17161997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63247343A Expired - Lifetime JP2685537B2 (en) 1988-10-03 1988-10-03 Surface acoustic wave device, manufacturing method thereof, adjusting method thereof, and communication device using the same

Country Status (2)

Country Link
JP (1) JP2685537B2 (en)
DE (1) DE3933006A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0583077A (en) * 1991-09-24 1993-04-02 Mitsubishi Electric Corp Surface acoustic wave circuit device
US6160339A (en) * 1997-07-17 2000-12-12 Seiko Epson Corporation Two-port saw resonator
CN112532196A (en) * 2020-11-26 2021-03-19 北京航天微电科技有限公司 Surface acoustic wave filter, manufacturing method thereof and electronic equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4227362C2 (en) * 1992-08-19 1996-01-25 Dresden Ev Inst Festkoerper Acoustic surface wave component
JP3923283B2 (en) 2001-07-03 2007-05-30 富士通メディアデバイス株式会社 Surface acoustic wave device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914064A (en) * 1972-05-16 1974-02-07
JPS5172257A (en) * 1974-12-20 1976-06-22 Toko Inc DANSEIHYOMENHAFUIRUTA
JPS53123051A (en) * 1977-04-04 1978-10-27 Hitachi Ltd Filter for surface slip wave
JPS53140928A (en) * 1977-05-16 1978-12-08 Hitachi Ltd Television receiver
JPS5549021A (en) * 1978-10-04 1980-04-08 Hitachi Ltd Elastic surface-wave unit
JPS5610725A (en) * 1979-07-09 1981-02-03 Murata Mfg Co Ltd Elastic surface wave device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3716809A (en) * 1971-08-11 1973-02-13 Us Air Force Acoustic surface wave resonator
JPS519648A (en) * 1974-07-15 1976-01-26 Nippon Telegraph & Telephone
US4144507A (en) * 1976-09-29 1979-03-13 Texas Instruments Incorporated Surface acoustic wave resonator incorporating coupling transducer into reflecting arrays
GB2000926B (en) * 1977-07-05 1982-04-28 Texas Instruments Inc Channel selector for television receiver
DE3267639D1 (en) * 1981-02-04 1986-01-09 Matsushita Electric Ind Co Ltd Surface acoustic wave device
US4442574A (en) * 1982-07-26 1984-04-17 General Electric Company Frequency trimming of saw resonators
JPH0773177B2 (en) * 1984-12-17 1995-08-02 株式会社東芝 Surface acoustic wave resonator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914064A (en) * 1972-05-16 1974-02-07
JPS5172257A (en) * 1974-12-20 1976-06-22 Toko Inc DANSEIHYOMENHAFUIRUTA
JPS53123051A (en) * 1977-04-04 1978-10-27 Hitachi Ltd Filter for surface slip wave
JPS53140928A (en) * 1977-05-16 1978-12-08 Hitachi Ltd Television receiver
JPS5549021A (en) * 1978-10-04 1980-04-08 Hitachi Ltd Elastic surface-wave unit
JPS5610725A (en) * 1979-07-09 1981-02-03 Murata Mfg Co Ltd Elastic surface wave device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0583077A (en) * 1991-09-24 1993-04-02 Mitsubishi Electric Corp Surface acoustic wave circuit device
US6160339A (en) * 1997-07-17 2000-12-12 Seiko Epson Corporation Two-port saw resonator
WO2004102797A1 (en) * 1997-07-17 2004-11-25 Michiaki Takagi Two-port saw resonator
CN112532196A (en) * 2020-11-26 2021-03-19 北京航天微电科技有限公司 Surface acoustic wave filter, manufacturing method thereof and electronic equipment
CN112532196B (en) * 2020-11-26 2024-05-07 北京航天微电科技有限公司 Surface acoustic wave filter, manufacturing method thereof and electronic equipment

Also Published As

Publication number Publication date
DE3933006A1 (en) 1990-04-05
JP2685537B2 (en) 1997-12-03

Similar Documents

Publication Publication Date Title
US6909340B2 (en) Bulk acoustic wave filter utilizing resonators with different aspect ratios
US7315107B2 (en) Surface acoustic wave device
JPH11500593A (en) Weighted taper SPUDT-SAW device
JP2000031552A (en) Lateral mode suppression of semiconductor bulk acoustic resonator(sbar) device using tapered electrode and electrode edge part attenuation material
US3662293A (en) Acoustic-wave transmitting device
US4066985A (en) Television IF filter constructed in accordance with the surface wave principle
EP0026114B1 (en) Surface acoustic wave device
US5175711A (en) Surface acoustic wave apparatus and method of productivity and adjustment of the same
JPH0296414A (en) Surface acoustic wave device, its manufacture, communication equipment using it and method for adjusting the equipment
US4160219A (en) Transducer electrodes for filters or delay lines utilizing surface wave principles
US5818310A (en) Series-block and line-width weighted saw filter device
JPS62160807A (en) Surface acoustic wave resonator
JPH02170610A (en) Surface acoustic wave device
US4577169A (en) Small ripple surface acoustic wave filter with low insertion loss
US5710529A (en) Surface acoustic wave filer device having a cascade filter structure and a piezoelectric substrate having mirror-polished surfaces
WO1996028886A1 (en) Surface acoustic wave filter
JPH0832397A (en) Surface acoustic wave device
JP2000049558A (en) Surface acoustic wave filter
JPS61141217A (en) Surface acoustic wave device
JPS5937723A (en) Surface acoustic wave resonator type filter device
JPS59213A (en) Surface acoustic wave device
CN1110133C (en) Duplexer for cordless acoustic surface wave telephone
JPH09153753A (en) Saw(surface accoustic wave) device and antenna branching filter using the device
JPH0630433B2 (en) Demultiplexer using surface acoustic wave filter
JP2888739B2 (en) Surface acoustic wave filter