JPS59122590A - Liquefaction of coal - Google Patents

Liquefaction of coal

Info

Publication number
JPS59122590A
JPS59122590A JP23454282A JP23454282A JPS59122590A JP S59122590 A JPS59122590 A JP S59122590A JP 23454282 A JP23454282 A JP 23454282A JP 23454282 A JP23454282 A JP 23454282A JP S59122590 A JPS59122590 A JP S59122590A
Authority
JP
Japan
Prior art keywords
fraction
primary
coal
boiling point
hydrogenation reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23454282A
Other languages
Japanese (ja)
Other versions
JPH0410515B2 (en
Inventor
Nobuyoshi Hirosachi
広幸 信義
Yoichi Kageyama
蔭山 陽一
Teruo Namiki
並木 輝夫
Shinji Kaneko
金子 晋二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KATSUTAN EKIKA KK
Asia Oil Co Ltd
Nippon Brown Coal Liquefaction Co Ltd
Idemitsu Kosan Co Ltd
Kobe Steel Ltd
Mitsubishi Kasei Corp
Original Assignee
NIPPON KATSUTAN EKIKA KK
Asia Oil Co Ltd
Nippon Brown Coal Liquefaction Co Ltd
Idemitsu Kosan Co Ltd
Kobe Steel Ltd
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KATSUTAN EKIKA KK, Asia Oil Co Ltd, Nippon Brown Coal Liquefaction Co Ltd, Idemitsu Kosan Co Ltd, Kobe Steel Ltd, Mitsubishi Kasei Corp filed Critical NIPPON KATSUTAN EKIKA KK
Priority to JP23454282A priority Critical patent/JPS59122590A/en
Publication of JPS59122590A publication Critical patent/JPS59122590A/en
Publication of JPH0410515B2 publication Critical patent/JPH0410515B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To obtain a liquid reaction product in high yield, by hydrogenating primarily in suspension of an iron catalyst, hydrogenating is further secondarily at high temperature, circulating partially the reaction products of the primary and secondary reactions through the primary hydrogenating reaction zone. CONSTITUTION:Coal is hydrogenated primarily in suspension of an iron catalyst at <=440 deg.C, a fraction having >=420 deg.C boiling point is collected, a fraction having 0.65-0.80 FA value is collected from the fraction, and circulated through the primary hydrogenating reaction zone. The residue fraction is hydrogenated secondarily at a higher temperature in suspension of a catalyst, to give the desired liquid reaction product. A fraction having >=420 deg.C boiling point and 0.65-0.80 FA value is collected from the reaction product and circulated through the primary reaction zone.

Description

【発明の詳細な説明】 本発明は石炭の液化法に関するものであり、特に石炭か
ら液状生成物を高収率で取得する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for liquefying coal, and in particular to a method for obtaining a liquid product from coal in high yield.

石炭を水添して液化することは公知である。It is known to liquefy coal by hydrogenating it.

この技術は大別して一段法と二段法とに分けられる。一
段法は石炭を触媒と一緒に炭化水素系溶剤でスラリー状
とし、高温高圧下に長時間水添して液化する方法である
。この方法は反応条件が過酷なため、水素の消費が多く
、かつガス状生成物の生成が多いという問題がある。こ
れに対し二段法は、石炭を先ず第一次水添により重質分
に富む液化物とし、次いでこの液化物から重質分を分取
してさらに水添する方法であり、一段法よりも工程は複
雑であるが液状物の収率が高い。
This technique can be broadly divided into one-stage method and two-stage method. The one-stage method involves slurrying coal together with a catalyst in a hydrocarbon solvent and liquefying it by hydrogenating it at high temperature and pressure for a long period of time. This method has problems in that it requires severe reaction conditions, consumes a lot of hydrogen, and produces a lot of gaseous products. On the other hand, the two-stage method is a method in which coal is first hydrogenated to form a liquefied product rich in heavy components, and then the heavy components are separated from this liquefied product and further hydrogenated. Although the process is complicated, the yield of liquid product is high.

本発明は二段法の改良に関するものであり、石炭を鉄系
触媒の存在下に第一次水添して第一次水添反応生成物と
し、これから沸点が≠20℃以上の留分を分取し、この
留分をさらに第二次水添する石炭の液化法において、第
一次水添を弘グ0℃以下の温度で触媒の懸濁状態で行な
うこと、第一次水添反応生成物から沸点がグ2θ℃以」
二であってFA値が0.65〜O,KOである留分を分
取して第一次水添反応帯域に循環すること、第二次水添
を第一次水添よりも高温で触媒O懸濁状態で実施するこ
と、および第二次水添反応生成物から沸点が≠20℃以
上であってFA値が0馬夕〜o、goである留分を分取
して第一次水添反応帯域に循環することを特徴とするも
のである。
The present invention relates to an improvement of the two-stage process, in which coal is subjected to primary hydrogenation in the presence of an iron-based catalyst to obtain a primary hydrogenation reaction product, from which a fraction with a boiling point of ≠20°C or higher is extracted. In the coal liquefaction method in which the fraction is fractionated and this fraction is further subjected to secondary hydrogenation, the primary hydrogenation is carried out in a suspended state of a catalyst at a temperature below 0°C, and the primary hydrogenation reaction The boiling point of the product is 2θ℃ or higher.”
2, and the fraction with an FA value of 0.65 to O, KO is separated and recycled to the primary hydrogenation reaction zone, and the secondary hydrogenation is carried out at a higher temperature than the primary hydrogenation. The process is carried out with the catalyst in suspension, and a fraction with a boiling point of ≠20°C or higher and an FA value of 0 to 0,000 is separated from the secondary hydrogenation reaction product. It is characterized by being circulated to the subsequent hydrogenation reaction zone.

本発明について詳細に説明すると、石炭の水添反応によ
り液状物を製造する際には、一般に反応温度を高くする
と石炭の分解は進むがガス状生成物の生成比率が大きく
なるので、水素消費量が増加する割には液状物の収率は
増加し彦い。水素消費量を少くしてかつ液状物の収率な
増加させるには、反応速度を低下させずに反応温度を下
げることが必要である。
To explain the present invention in detail, when producing a liquid material by the hydrogenation reaction of coal, generally speaking, when the reaction temperature is raised, the decomposition of the coal will proceed, but the production ratio of gaseous products will increase, so the hydrogen consumption will be reduced. Although the amount increases, the yield of liquid material increases. In order to reduce hydrogen consumption and increase the yield of liquid product, it is necessary to lower the reaction temperature without reducing the reaction rate.

本発明によれば、鉄系触媒を使用し、かつ反応生成物か
ら分取したFA値がo、t5〜0、ざ0の留分を第一次
水添反応帯域に循環することにより、反応温度が低くて
も反応が良好に進行して液状物が高収率で得られる。本
発明において本発明で第一次水添で用いる鉄系触媒とし
ては、酸化鉄、硫化鉄、転炉ダスト、赤泥、鉄鉱石等が
あげられるが、好ましくは鉄鉱石を微粉砕したものを硫
黄で修飾して用いられる(特願昭54t−jo737参
照)。触媒の使用量は無水無灰炭に対して鉄としてO1
5〜、20(重量)%、好ましくは/−zO(重量)%
である。なお、所望ならば上述の鉄系触媒に、モリブデ
ン、コバルト、ニッケル等を併用してもよい。
According to the present invention, the reaction is carried out by using an iron-based catalyst and by circulating the fractions with FA values of o, t5 to 0, and 0, separated from the reaction product, to the primary hydrogenation reaction zone. Even at low temperatures, the reaction proceeds well and a liquid product can be obtained in high yield. Examples of the iron-based catalyst used in the primary hydrogenation in the present invention include iron oxide, iron sulfide, converter dust, red mud, iron ore, etc., but preferably finely pulverized iron ore is used. It is used after being modified with sulfur (see Japanese Patent Application No. 1983, T-JO 737). The amount of catalyst used is O1 as iron for anhydrous ash-free coal.
5 to 20% (by weight), preferably /-zO (by weight)%
It is. Incidentally, if desired, molybdenum, cobalt, nickel, etc. may be used in combination with the above-mentioned iron-based catalyst.

第一次水添反応はl/−≠θ℃以下、好ましくは4to
 o −+ lAo℃、水素分圧!; 0〜!;’ 0
0 kg/CI?L。
The primary hydrogenation reaction is l/-≠θ℃ or less, preferably 4to
o −+ lAo℃, hydrogen partial pressure! ; 0~! ;' 0
0 kg/CI? L.

好まqくは7!〜j 00 kVcri*で行なわれる
。反応時間はj−/20分、好ましくはi0〜70分間
である。
Preferably 7! ~j 00 kVcri*. The reaction time is j-/20 minutes, preferably i0 to 70 minutes.

石炭は通常0’f 7” mm JJ、下に粉砕し、炭
化水素系溶剤、循環留分、触媒等と一緒にスラリーとし
は反応生成物から分取した/!?0−≠20℃の留分が
用いられる。溶剤の使用量は無水無灰炭に対し、(溶剤
+循環留分)として、1.夕〜≠、O(重量)倍、好ま
しくは2.0〜3.0(重量)倍である。
Coal is usually pulverized to 0'f 7" mm JJ, and the slurry is separated from the reaction product together with hydrocarbon solvent, circulating fraction, catalyst, etc./!? 0-≠20℃ distillate The amount of solvent used is (solvent + circulating fraction) based on anhydrous ash-free coal, 1.0~≠, O (weight) times, preferably 2.0 to 3.0 (weight) It's double.

反応生成物からはガス状生成物を除き、次いで蒸留して
沸点igo℃以下の軽沸留分、沸点ig’o〜4t2θ
℃の溶剤留分等を留出させて、沸点がグ20℃以上の留
分を取得し、その一部は第二次水添反応に供し、他の一
部は第一次水添反応帯域に循環する。この循環留分はF
A値が0.45〜09g0でなければならない。この範
囲外のFA値を有する留分を循環したのでは、石炭の水
添分解が良好に進行しない。従って、第一次水添反応は
、反応生成物から分取される沸点≠20℃以上の留分が
FA値0.A!i〜O0ざ0となるように行なうのが好
ましい。若しこの留分のFA値が0.6夕〜o、goの
範囲外である場合には、この留分をさらに蒸留してFA
値が0.6j〜o、goとなるように調整して循環留分
とする。この循環留分の使用量は、無水無灰炭に対し、
後記する第二次水添工程からの循環留分との合計で0.
i〜3(重量)倍、好ましくは0.2〜2.0(重量)
倍である。この範囲内において、第一次水添工程からの
循環留分を、第二次水添工程からのそれよりも多くする
のが、反応進行上好ましい。なお、第一次水添反応生成
物から分取した沸点4t、20℃以上の留分は、通常、
脱灰工程を経て灰分を除去したのち、それぞれの用途に
供−jる。
Gaseous products are removed from the reaction product, and then distilled to obtain a light boiling fraction with a boiling point of igo℃ or less, a boiling point of ig'o~4t2θ
℃ solvent fraction etc. is distilled to obtain a fraction with a boiling point of 20℃ or higher, a part of which is used for the secondary hydrogenation reaction, and the other part is used in the primary hydrogenation reaction zone. circulates. This circulating fraction is F
A value must be 0.45-09g0. If a fraction having an FA value outside this range is circulated, the hydrogenolysis of coal will not progress satisfactorily. Therefore, in the primary hydrogenation reaction, the fraction with a boiling point ≠ 20°C or higher separated from the reaction product has an FA value of 0. A! It is preferable to perform this so that i~O0za0. If the FA value of this fraction is outside the range of 0.6~o, go, this fraction is further distilled to obtain FA.
The value is adjusted to 0.6j~o,go and used as a circulating fraction. The usage amount of this circulating fraction is based on anhydrous ash-free coal.
The total amount including the recycled fraction from the second hydrogenation step described later is 0.
i to 3 (weight) times, preferably 0.2 to 2.0 (weight)
It's double. Within this range, it is preferable for the reaction to proceed that the recycled fraction from the first hydrogenation step is larger than that from the second hydrogenation step. Incidentally, the fraction with a boiling point of 4t and 20°C or higher collected from the primary hydrogenation reaction product is usually
After the ash is removed through a deashing process, it is used for various purposes.

添加して、触媒の懸濁状態で行なわれる。溶剤としては
第一段水添と同じく反応生成物から分取した沸点l♂0
−4’ 20℃の留分を用いるのが好ましい。溶剤の使
用量は沸点ケ20℃以上の留分に対し0.3〜3.0(
重量)倍、好ましくは0.j〜!、0(重量)倍である
。また、触媒も第一次水添におけるのと同様な鉄系触媒
が用いられる。触媒の使用量は、沸点ll−20℃以上
の留分に対し、鉄として0゜!−,20(重量)%、好
ましくは/〜/θ(重量)%である。なお、硫黄で修飾
するのが好ましいこと及びニッケル、モリブデン、コバ
ルト等を併用してもよいことも第一次水添と同様である
Addition is carried out with the catalyst in suspension. As a solvent, boiling point l♂0 fractionated from the reaction product as in the first stage hydrogenation.
-4' It is preferable to use a 20°C fraction. The amount of solvent used is 0.3 to 3.0 (
weight) times, preferably 0. j~! , 0 (weight) times. Further, as the catalyst, an iron-based catalyst similar to that used in the primary hydrogenation is used. The amount of catalyst used is 0° as iron for the fraction with a boiling point of 11-20°C or higher! -,20 (weight)%, preferably /~/θ (weight)%. Note that, as in the case of primary hydrogenation, it is preferable to modify with sulfur, and nickel, molybdenum, cobalt, etc. may be used in combination.

第二次水添反応は第一次水添反応より高温で行なうこと
が必要である。これにより沸点グ20℃以上の留分が容
易に分解して軟質化する。また、このように高温で反応
を行なっても、ガス状生成物の生成は少ない。通常採用
される第二次水添反応の条件は、反応温度’A!;0〜
≠ど0℃、水素分圧jO〜SOO暖保、好ましくはノj
θ〜3ook癩、反応時間30〜igo分、好ましくは
20〜720分間である。
The secondary hydrogenation reaction needs to be carried out at a higher temperature than the primary hydrogenation reaction. As a result, the fraction with a boiling point of 20° C. or higher is easily decomposed and softened. Furthermore, even if the reaction is carried out at such a high temperature, only a small amount of gaseous products are produced. The conditions for the second hydrogenation reaction that are usually adopted are the reaction temperature 'A! ;0~
≠0℃, hydrogen partial pressure jO~SOO, preferably noj
The reaction time is 30 to 720 minutes, preferably 20 to 720 minutes.

第二次水添反応の反応生成物からは、ガス状生成物を除
き、次いで蒸留して軽沸留分、溶剤留分等を留出させ、
沸点IA、20℃以上の留分を分取して第一次水添反応
帯域に循環する。なお、この留分のFA値が0.Aj′
〜01goの範囲を外れている場合には、第一次水添反
応の場合と同じく、この留分をさらに蒸留してFA値が
0馬j〜0.ど0となるよ゛うに調整して、第一次水添
反応帯域に循環する。
Gaseous products are removed from the reaction product of the second hydrogenation reaction, and then distilled to remove light boiling fractions, solvent fractions, etc.
A fraction having a boiling point IA of 20°C or higher is separated and recycled to the primary hydrogenation reaction zone. Note that the FA value of this fraction is 0. Aj′
If the value is outside the range of ~01go, this fraction is further distilled to reduce the FA value to 0~0. It is adjusted so that it becomes zero and is circulated to the primary hydrogenation reaction zone.

本発明によれば、石炭から高収率で液状生成物を取得す
ることができる。
According to the present invention, a liquid product can be obtained from coal in high yield.

以下に実施例により本発明をさらに詳細に説明するが、
本発明はその要旨を超えない限り、以下の実施例に限定
されるものではない。
The present invention will be explained in more detail with reference to Examples below.
The present invention is not limited to the following examples unless it exceeds the gist thereof.

なお本発明におけるFA値の計算は下記によるものとす
る。
Note that the calculation of the FA value in the present invention is as follows.

FA値の算出法 試料の元素分析により炭素と水素との比率(0/H)を
算出する。またプロトン−NMHにより芳香族性炭素に
結合している水素の比率(Har)を算出する。これら
あ分析値から、下記のBraun −Ladnerの式
によりFA値を算出する。
Calculation method of FA value Calculate the ratio of carbon to hydrogen (0/H) by elemental analysis of the sample. Further, the ratio of hydrogen bonded to aromatic carbon (Har) is calculated using proton-NMH. From these analysis values, the FA value is calculated using the Braun-Ladner formula below.

[FA値は全炭素中の芳香族性炭素の比率を示す指標で
ある〕 また、以下の実施例において、部および係は、重量部、
重量%を意味する。
[FA value is an index indicating the ratio of aromatic carbon in total carbon] In addition, in the following examples, parts and parts are parts by weight,
Means weight %.

実施例1 20θメツシユ以下に粉砕した豪州モーエル石炭700
部(無水無灰炭基準)に、沸点/10〜≠20℃の石炭
液化油1gO部、別途調製した沸点1t20℃以上でF
A値が0.73の石炭液化の重質留分10部、鉄として
5部に相当する平均粒径3μの鉄鉱石、および鉄に対1
7て等モルの硫黄を混合してスラリーとした。これをオ
ートクレーブに仕込んで水素を圧太し、≠25℃、20
0 kVcnLGで乙O分間第一次水添反応を行なった
。反応生成物からガス状生成物を除去し、さらに蒸留し
て水、沸点/i0℃以下の軽沸留分、沸点/ ’g’ 
0〜ll−20℃の溶剤留分、沸点4t20℃以上の重
質留分に分離した。
Example 1 Australian Moel coal 700 crushed to 20θ mesh or less
(based on anhydrous ash-free coal), 1 g O part of coal liquefied oil with a boiling point of 10 to 20°C, and 1 t of separately prepared boiling point 20°C or higher F
10 parts of heavy distillate of coal liquefaction with an A value of 0.73, iron ore with an average particle size of 3μ corresponding to 5 parts of iron, and 1 part of iron.
7 and mixed with equimolar sulfur to form a slurry. This was placed in an autoclave, compressed with hydrogen, heated to ≠25°C, and heated to 20°C.
The primary hydrogenation reaction was carried out for 0 minutes at 0 kVcnLG. Gaseous products are removed from the reaction product and further distilled to produce water, boiling point/i, light boiling fraction below 0°C, boiling point/'g'
It was separated into a solvent fraction with a temperature of 0 to 11-20°C and a heavy fraction with a boiling point of 4t and 20°C or higher.

生成物の収率は下記の通りであった(無水無灰炭基準)
。また、重質留分のFA値は0.7/であった。
The yield of the product was as follows (based on anhydrous ash-free charcoal)
. Moreover, the FA value of the heavy fraction was 0.7/.

水、−酸化炭素、二酸化炭素    2タ%C1〜C5
炭化水素         ♂ヂ軽沸留分      
 l6係 溶剤留分        2/% 重質留分       30% 次いで、重質留分を脱灰したのち、これに対して無灰基
準で60%の溶剤留分および鉄として5%の鉄鉱石、並
びに鉄に対して等モルの硫黄を混合してオートクレーブ
に仕込み、水素を圧入して、pto℃、230 kg/
cr?L、Gで60分間第二次水添反応を行なった。生
成物の収率は下記の通りであった(無灰重質留分基準)
。また、重質留分のF、 A値は0.7タであった。
Water, - carbon oxide, carbon dioxide 2ta% C1-C5
Hydrocarbon ♂dilight boiling fraction
16 Solvent fraction 2/% Heavy fraction 30% Next, after deashing the heavy fraction, 60% solvent fraction on an ash-free basis and 5% iron ore as iron, and A mixture of equimolar sulfur and iron was placed in an autoclave, hydrogen was injected into the autoclave, and the temperature was 230 kg/pto℃.
cr? A second hydrogenation reaction was carried out with L and G for 60 minutes. The yield of the product was as follows (based on ash-free heavy distillate):
. Furthermore, the F and A values of the heavy fraction were 0.7ta.

水                     乙 饅
C1〜C5炭化水素         12%軽沸留分
        乙係 溶剤留分       27% 重質留分       jo% 以上の結果から、第一次水添反応の生成物から分取した
重質留分のうち、30部を第一次水添反応に循環使用し
、残りの40部を第二次水添反応に使用し、かつ第二次
水添反応生成物から分取した重質留分な第二次水添反応
に循環使用すれば、石炭をすべて溶剤留分以上の液状な
いしガス状物に転換することができる。そして、このと
きの各生成物の収率は下記の通りとなる(無水無灰炭基
準)。
Water Otsu Bun C1 to C5 hydrocarbons 12% Light boiling fraction Otsu solvent fraction 27% Heavy fraction jo% From the above results, the heavy fraction separated from the product of the primary hydrogenation reaction Of this, 30 parts are recycled to the primary hydrogenation reaction, the remaining 40 parts are used to the secondary hydrogenation reaction, and the heavy fraction separated from the secondary hydrogenation reaction product is recycled. By recycling the coal in the secondary hydrogenation reaction, all of the coal can be converted into a liquid or gaseous substance that is more than a solvent fraction. The yield of each product at this time is as follows (based on anhydrous ash-free charcoal).

水、−酸化炭素、二酸化炭素    30%C1〜C5
炭化水素        l5係軽沸留分      
 2部% 溶剤留分       ≠/% 比較例1 200メツシユ以下に粉砕した豪州モーエル石炭700
部(無水無灰炭基準)に、沸点igo−ψ20℃の石炭
液化油(溶剤留分)2’i’0部、鉄として5部に相当
する平均粒径3μの鉄鉱石および鉄に対して当モルの硫
黄を混合してスラリーとした。これをオートクレーブに
仕込んで水素を圧入し、4t2j℃、200kg/ff
l Gで10分間第一次水添反応を行なった。
Water, - carbon oxide, carbon dioxide 30% C1-C5
Hydrocarbons L5 light boiling fraction
2 parts% Solvent fraction ≠/% Comparative example 1 Australian Moel coal 700 crushed to 200 mesh or less
(based on anhydrous ash-free coal), 2'i'0 parts of coal liquefied oil (solvent fraction) with a boiling point of igo-ψ20°C, and iron ore with an average particle size of 3μ, which is equivalent to 5 parts of iron, and iron. The same mole of sulfur was mixed to form a slurry. This was put into an autoclave, hydrogen was injected under pressure, and the temperature was 4t2j℃, 200kg/ff.
The primary hydrogenation reaction was carried out at 1 G for 10 minutes.

反応成績は下記の通りであった。また重質留分のFA値
は0,73であった。
The reaction results were as follows. The FA value of the heavy fraction was 0.73.

水、−酸化炭素、二酸化炭素    22%01〜C5
炭化水素         z饅軽沸留分      
 10% 溶剤留分        0% 重質留分        乙乙饅 次いで、重質留分を脱灰したのち、これに対して無灰基
準で50%の溶剤留分および鉄として5%の鉄鉱石、並
びに鉄に対して等モルの硫黄を混合してオートクレーブ
に仕込み、水素を圧入して11.30℃、230 XJ
/cffl GでAO分間第二次水添反応を行なったと
ころ、実施例1の第二次水添と同様の成績が得られた。
Water, -carbon oxide, carbon dioxide 22%01-C5
Hydrocarbons ナLight boiling fraction
10% solvent fraction 0% heavy fraction Next, after deashing the heavy fraction, 50% solvent fraction on an ash-free basis and 5% iron ore as iron, and Mix equal moles of sulfur to iron, charge it into an autoclave, pressurize it with hydrogen, and heat it at 11.30℃ and 230XJ.
When the secondary hydrogenation reaction was carried out for AO minutes at /cffl G, results similar to those of the secondary hydrogenation in Example 1 were obtained.

従って、第一次および第二次水添により得られた生成物
の収率は下記の通りであった。
Therefore, the yields of products obtained by primary and secondary hydrogenation were as follows.

水、−酸化炭素、二酸化炭素    2乙φC1〜C5
炭化水素        lグチ軽沸留分      
 74% 溶剤留分       7g% 重質留分       33% 特許出願人 三菱化成工業株式会社 ほか弘名 代理人 弁理士 長谷用  − ほか1名 東京都千代田区内幸町二丁目1 番1号 ■出 願 人 日本褐炭液化株式会社 東京都千代田区丸の内−丁目8 番2号
Water, -carbon oxide, carbon dioxide 2 φC1~C5
Hydrocarbons Light boiling fraction
74% Solvent fraction 7g% Heavy distillate 33% Patent applicant Mitsubishi Chemical Industries, Ltd. and others Hirona agent Patent attorney Yo Hase - 1 other person 2-1-1 Uchisaiwai-cho, Chiyoda-ku, Tokyo ■Applicant Japan Lignite Liquefaction Co., Ltd. 8-2 Marunouchi, Chiyoda-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims] (1)石炭を鉄系触媒の存在下に第一次水添して第一次
水添反応生成物とし、これから沸点が4L20℃以上の
留分を分取し、この留分をさらに第二次水添する石炭の
液化法において、第一次水添を≠≠0℃以下の温度で触
媒の懸濁状態で行なうこと、第一7次水添反応生成物か
ら沸点が1120℃以上であってFA値がo、、t r
〜0.どOである留分を分取して第一次水添反応帯域に
循環すること、第二次水添を第一次水添よりも高温で触
媒の懸濁状態で実施すること、および第二次水添反応生
成物から沸点が≠20℃以上であってFA値が0馬j〜
o、goである留分を分取して第一次水添反応帯域に循
環することを特徴とする方法。
(1) Coal is subjected to primary hydrogenation in the presence of an iron-based catalyst to obtain a primary hydrogenation reaction product, from which a fraction with a boiling point of 4L20°C or higher is separated, and this fraction is further processed into a second hydrogenation reaction product. In the coal liquefaction method for secondary hydrogenation, the primary hydrogenation is carried out at a temperature of ≠≠0℃ or lower with a catalyst in suspension, and the boiling point of the 7th hydrogenation reaction product is 1120℃ or higher. and the FA value is o,, t r
~0. separating and recycling the fraction which is O2 to the primary hydrogenation reaction zone; carrying out the secondary hydrogenation at a higher temperature than the primary hydrogenation in suspension of the catalyst; The secondary hydrogenation reaction product has a boiling point of ≠20℃ or higher and an FA value of 0~
A method characterized in that o and go fractions are separated and recycled to a primary hydrogenation reaction zone.
JP23454282A 1982-12-28 1982-12-28 Liquefaction of coal Granted JPS59122590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23454282A JPS59122590A (en) 1982-12-28 1982-12-28 Liquefaction of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23454282A JPS59122590A (en) 1982-12-28 1982-12-28 Liquefaction of coal

Publications (2)

Publication Number Publication Date
JPS59122590A true JPS59122590A (en) 1984-07-16
JPH0410515B2 JPH0410515B2 (en) 1992-02-25

Family

ID=16972653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23454282A Granted JPS59122590A (en) 1982-12-28 1982-12-28 Liquefaction of coal

Country Status (1)

Country Link
JP (1) JPS59122590A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140395A (en) * 1984-07-31 1986-02-26 Mitsubishi Chem Ind Ltd Method for liquefying coal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827784A (en) * 1981-08-05 1983-02-18 ザ・ラムス・コムパニ− Coal liquefaction
JPS59109588A (en) * 1982-12-15 1984-06-25 Kobe Steel Ltd Liquefaction of brown coal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827784A (en) * 1981-08-05 1983-02-18 ザ・ラムス・コムパニ− Coal liquefaction
JPS59109588A (en) * 1982-12-15 1984-06-25 Kobe Steel Ltd Liquefaction of brown coal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140395A (en) * 1984-07-31 1986-02-26 Mitsubishi Chem Ind Ltd Method for liquefying coal

Also Published As

Publication number Publication date
JPH0410515B2 (en) 1992-02-25

Similar Documents

Publication Publication Date Title
US4251500A (en) Process for hydrocracking a waste rubber
US3488279A (en) Two-stage conversion of coal to liquid hydrocarbons
EP0177307B1 (en) Catalytic hydroconversion of carbonaceous materials
US4455218A (en) Hydrogenation of carbonaceous material
US1890434A (en) Conversion of solid fuels and products derived therefrom or other materials into valuable liquids
US3796650A (en) Coal liquefaction process
GB1418014A (en) Coal-conversion process
Stranges Friedrich Bergius and the rise of the German synthetic fuel industry
AU668483B2 (en) Method of coal liquefaction
US2234941A (en) Method of synthesizing hydrocarbons
US4176041A (en) Method for reforming low grade coals
US1904586A (en) Conversion of carbonaceous solids into valuable liquid products
US2474345A (en) Recovery of hydrocarbons from oil shale
JPS59122590A (en) Liquefaction of coal
US3617474A (en) Low sulfur fuel oil from coal
US3503867A (en) Process and system for producing synthetic crude from coal
US2191157A (en) Production of lower boiling hydrocarbons from heavy hydrocarbons
EP0128620B1 (en) Multistage process for the direct liquefaction of coal
US4098677A (en) Catalytic cracking process with CO2 -stripped regenerated catalyst
JPS58180587A (en) Coal conversion
JPS5968391A (en) Coal liquefaction
US4519895A (en) Process for converting a carbonaceous material to lower paraffinic hydrocarbons and monocyclic aromatic hydrocarbons
US4388172A (en) Liquefaction of coal
US2127383A (en) Carrying out catalytic reactions
JPS60212486A (en) Liquefaction of subbituminous coal