JPH0410515B2 - - Google Patents

Info

Publication number
JPH0410515B2
JPH0410515B2 JP57234542A JP23454282A JPH0410515B2 JP H0410515 B2 JPH0410515 B2 JP H0410515B2 JP 57234542 A JP57234542 A JP 57234542A JP 23454282 A JP23454282 A JP 23454282A JP H0410515 B2 JPH0410515 B2 JP H0410515B2
Authority
JP
Japan
Prior art keywords
fraction
coal
primary
boiling point
hydrogenation reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57234542A
Other languages
Japanese (ja)
Other versions
JPS59122590A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP23454282A priority Critical patent/JPS59122590A/en
Publication of JPS59122590A publication Critical patent/JPS59122590A/en
Publication of JPH0410515B2 publication Critical patent/JPH0410515B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 本発明は石炭の液化法に関するものであり、特
に石炭から液状生成物を高収率で取得する方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for liquefying coal, and in particular to a method for obtaining a liquid product from coal in high yield.

石炭を水添して液化することは公知である。こ
の技術は大別して一段法と二段法とに分けられ
る。一段法は石炭を触媒と一緒に炭化水素系溶剤
でスラリー状とし、高温高圧下に長時間水添して
液化する方法である。この方法は反応条件が過酷
なため、水素の消費が多く、かつガス状生成物の
生成が多いという問題がある。これに対し二段法
は、石炭を先ず第一次水添により重質分に富む液
化物とし、次いでこの液化物から重質分を分取し
てさらに水添する方法であり、一段法よりも工程
は複雑であるが液状物の収率が高い。
It is known to liquefy coal by hydrogenating it. This technique can be broadly divided into one-stage method and two-stage method. The one-stage method involves slurrying coal together with a catalyst in a hydrocarbon solvent and liquefying it by hydrogenating it at high temperature and pressure for a long period of time. This method has problems in that it requires severe reaction conditions, consumes a lot of hydrogen, and produces a lot of gaseous products. On the other hand, the two-stage method is a method in which coal is first hydrogenated to form a liquefied product rich in heavy components, and then the heavy components are separated from this liquefied product and further hydrogenated. Although the process is complicated, the yield of liquid product is high.

本発明は二段法の改良に関するものであり、石
炭を鉄系触媒の存在下に第一次水添して第一次水
添反応生成物とし、これから沸点が420℃以上の
留分を分取し、この留分をさらに第二次水添する
石炭の液化法において、第一次水添を440℃以下
の温度で触媒の懸濁状態で行なうこと、第一次水
添反応生成物から沸点が420℃以上であつてFA値
が0.65〜0.80である留分を分取して第一次水添反
応帯域に循環すること、第二次水添を第一次水添
よりも高温で触媒の懸濁状態で実施すること、お
よび第二次水添反応生成物から沸点が420℃以上
であつてFA値が0.65〜0.80である留分を分取し
て第一次水添反応帯域に循環することを特徴とす
るものである。
The present invention relates to an improvement of the two-stage process, in which coal is subjected to primary hydrogenation in the presence of an iron-based catalyst to obtain a primary hydrogenation reaction product, from which a fraction with a boiling point of 420°C or higher is separated. In a coal liquefaction method in which this fraction is further subjected to secondary hydrogenation, the primary hydrogenation is carried out at a temperature of 440°C or less in a suspended state of a catalyst, and from the primary hydrogenation reaction product. The fraction with a boiling point of 420℃ or higher and an FA value of 0.65 to 0.80 is separated and recycled to the primary hydrogenation reaction zone, and the secondary hydrogenation is performed at a higher temperature than the primary hydrogenation. The process is carried out with the catalyst in suspension, and a fraction with a boiling point of 420°C or higher and an FA value of 0.65 to 0.80 is collected from the secondary hydrogenation reaction product and then added to the primary hydrogenation reaction zone. It is characterized by the fact that it circulates.

本発明について詳細に説明すると、石炭の水添
反応により液状物を製造する際には、一般に反応
温度を高くすると石炭の分解は進むがガス状生成
物の生成比率が大きくなるので、水素消費量が増
加する割には液状物の収率は増加しない。水素消
費量を少くしてかつ液状物の収率を増加させるに
は、反応速度を低下させずに反応温度を下げるこ
とが必要である。
To explain the present invention in detail, when producing a liquid material by the hydrogenation reaction of coal, generally speaking, when the reaction temperature is raised, the decomposition of the coal will proceed, but the production ratio of gaseous products will increase, so the hydrogen consumption will be reduced. Although the amount increases, the yield of liquid does not increase. In order to reduce hydrogen consumption and increase the yield of liquid product, it is necessary to lower the reaction temperature without reducing the reaction rate.

本発明によれば、鉄系触媒を使用し、かつ反応
生成物から分取したFA値が0.65〜0.80の留分を
第一次水添反応帯域に循環することにより、反応
温度が低くても反応が良好に進行して液状物が高
収率で得られる。本発明において循環留分の果す
機能は不明であるが、溶剤としての作用以上の何
らかの効能が寄与しているものと考えられる。
According to the present invention, by using an iron-based catalyst and circulating the fraction with an FA value of 0.65 to 0.80 separated from the reaction product to the primary hydrogenation reaction zone, even if the reaction temperature is low. The reaction proceeds well and a liquid product is obtained in high yield. Although the function played by the circulating fraction in the present invention is unknown, it is thought that some kind of effect beyond its function as a solvent contributes.

本発明で第一次水添で用いる鉄系触媒として
は、酸化鉄、硫化鉄、転炉ダスト、赤泥、鉄鉱石
等があげられるが、好ましくは鉄鉱石を微粉砕し
たものを硫黄で修飾して用いられる(特願昭54−
30737参照)。触媒の使用量は無水無灰炭に対して
鉄として0.5〜20(重量)%、好ましくは1〜10
(重量)%である。なお、所望ならば上述の鉄系
触媒に、モリブデン、コバルト、ニツケル等を併
用してもよい。
The iron-based catalyst used in the primary hydrogenation in the present invention includes iron oxide, iron sulfide, converter dust, red mud, iron ore, etc., but preferably finely ground iron ore is modified with sulfur. (Patent application 1973-
30737). The amount of catalyst used is 0.5 to 20% (by weight) of iron based on anhydrous ash-free coal, preferably 1 to 10%.
(weight)%. If desired, molybdenum, cobalt, nickel, etc. may be used in combination with the above-mentioned iron-based catalyst.

第一次水添反応は440℃以下、好ましくは400〜
440℃、水素分圧50〜500Kg/cm2、好ましくは75〜
300Kg/cm2で行なわれる。反応時間は5〜120分、
好ましくは10〜90分間である。
The primary hydrogenation reaction is 440℃ or less, preferably 400℃ or less
440℃, hydrogen partial pressure 50~500Kg/ cm2 , preferably 75~
It is carried out at 300Kg/ cm2 . Reaction time is 5-120 minutes,
Preferably it is 10 to 90 minutes.

石炭は通常0.1mm以下に粉砕し、炭化水素系溶
剤、循環留分、触媒等と一緒にスラリーとして反
応帯域に供給するのが好ましい。溶剤としてはク
レオソート油なども用いられるが、通常は反応生
成物から分取した180〜420℃の留分が用いられ
る。溶剤の使用量は無水無灰炭に対し、(溶剤+
循環留分)として、1.5〜4.0(重量)倍、好まし
くは2.0〜3.0(重量)倍である。
It is preferable that the coal is usually pulverized to 0.1 mm or less and supplied to the reaction zone as a slurry together with a hydrocarbon solvent, a circulating fraction, a catalyst, and the like. Creosote oil or the like can be used as a solvent, but usually a fraction of 180 to 420°C separated from the reaction product is used. The amount of solvent used is (solvent +
1.5 to 4.0 times (by weight), preferably 2.0 to 3.0 times (by weight).

反応生成物からはガス状生成物を除き、次いで
蒸留して沸点180℃以下の軽沸留分、沸点180〜
420℃の溶剤留分等を留出させて、沸点が420℃以
上の留分を取得し、その一部は第二次水添反応に
供し、他の一部は第一次水添反応帯域に循環す
る。この循環留分はFA値が0.65〜0.80でなけれ
ばならない。この範囲外のFA値を有する留分を
循環したのでは、石炭の水添分解が良好に進行し
ない。従つて、第一次水添反応は、反応生成物か
ら分取される沸点420℃以上の留分がFA値0.65〜
0.80となるように行なうのが好ましい。若しこの
留分のFA値が0.65〜0.80の範囲外である場合に
は、この留分をさらに蒸留してFA値が0.65〜
0.80となるように調整して循環留分とする。この
循環留分の使用量は、無水無灰炭に対し、後記す
る第二次水添工程からの循環留分との合計で0.1
〜3(重量)倍、好ましくは0.2〜2.0(重量)倍で
ある。この範囲内において、第一次水添工程から
の循環留分を、第二次水添工程からのそれよりも
多くするのが、反応進行上好ましい。なお、第一
次水添反応生成物から分取した沸点420℃以上の
留分は、通常、脱灰工程を経て灰分を除去したの
ち、それぞれの用途に供する。
Gaseous products are removed from the reaction product, and then distilled to produce a light boiling fraction with a boiling point of 180℃ or less, and a light boiling fraction with a boiling point of 180℃ or less.
The solvent fraction at 420℃ is distilled to obtain a fraction with a boiling point of 420℃ or higher, part of which is used for the secondary hydrogenation reaction, and the other part is used in the primary hydrogenation reaction zone. circulate to. This circulating fraction should have an FA value of 0.65-0.80. If a fraction having an FA value outside this range is circulated, the hydrogenolysis of coal will not progress satisfactorily. Therefore, in the primary hydrogenation reaction, the fraction with a boiling point of 420°C or higher separated from the reaction product has an FA value of 0.65 to
It is preferable to do this so that the value is 0.80. If the FA value of this fraction is outside the range of 0.65 to 0.80, this fraction is further distilled until the FA value is 0.65 to 0.80.
Adjust it to 0.80 and use it as a circulating fraction. The usage amount of this circulating fraction is 0.1 in total, including the circulating fraction from the second hydrogenation process described later, based on the anhydrous ash-free coal.
~3 times (by weight), preferably 0.2 to 2.0 times (by weight). Within this range, it is preferable for the reaction to proceed that the recycled fraction from the first hydrogenation step is larger than that from the second hydrogenation step. Incidentally, the fraction with a boiling point of 420° C. or higher collected from the primary hydrogenation reaction product is usually subjected to a deashing step to remove ash before being used for its respective purpose.

第二次水添反応は、第一次水添反応で得られた
沸点420℃以上の留分に触媒および所望により溶
剤を添加して、触媒の懸濁状態で行なわれる。溶
剤としては第一段水添と同じく反応生成物から分
取した沸点180〜420℃の留分を用いるのが好まし
い。溶剤の使用量は沸点420℃以上の留分に対し
0.3〜3.0(重量)倍、好ましくは0.5〜2.0(重量)
倍である。また、触媒も第一次水添におけるのと
同様な鉄系触媒が用いられる。触媒の使用量は、
沸点420℃以上の留分に対し、鉄として0.5〜20
(重量)%、好ましくは1〜10(重量)%である。
なお、硫黄で修飾するのが好ましいこと及びニツ
ケル、モリブデン、コバルト等が併用してもよい
ことも第一次水添と同様である。
The second hydrogenation reaction is carried out by adding a catalyst and, if desired, a solvent to the fraction having a boiling point of 420° C. or higher obtained in the first hydrogenation reaction, with the catalyst suspended. As the solvent, it is preferable to use a fraction with a boiling point of 180 to 420°C separated from the reaction product as in the first stage hydrogenation. The amount of solvent used is based on the fraction with a boiling point of 420℃ or higher.
0.3-3.0 (weight) times, preferably 0.5-2.0 (weight)
It's double. Further, as the catalyst, an iron-based catalyst similar to that used in the primary hydrogenation is used. The amount of catalyst used is
0.5 to 20 as iron for fractions with boiling point of 420℃ or higher
(weight)%, preferably 1 to 10 (weight)%.
Note that, as in the case of primary hydrogenation, it is preferable to modify with sulfur, and nickel, molybdenum, cobalt, etc. may be used in combination.

第二次水添反応は第一次水添反応より高温で行
なうことが必要である。これにより沸点420℃以
上の留分が容易に分解して軟質化する。また、こ
のように高温で反応を行なつても、ガス状生成物
の生成は少ない。通常採用される第二次水添反応
の条件は、反応温度450〜480℃、水素分圧50〜
500Kg/cm2、好ましくは150〜300Kg/cm2、反応時
間30〜180分、好ましくは60〜120分間である。
The secondary hydrogenation reaction needs to be carried out at a higher temperature than the primary hydrogenation reaction. As a result, the fraction with a boiling point of 420°C or higher is easily decomposed and softened. Furthermore, even if the reaction is carried out at such a high temperature, only a small amount of gaseous products are produced. The conditions for the second hydrogenation reaction that are usually adopted are a reaction temperature of 450 to 480℃ and a hydrogen partial pressure of 50 to 480℃.
500Kg/ cm2 , preferably 150-300Kg/ cm2 , reaction time 30-180 minutes, preferably 60-120 minutes.

第二次水添反応の反応生成物からは、ガス状生
成物を除き、次いで蒸留して軽沸留分、溶剤留分
等を留出させ、沸点420℃以上の留分を分取して
第一次水添反応帯域に循環する。なお、この留分
のFA値が0.65〜0.80の範囲を外れている場合に
は、第一次水添反応の場合と同じく、この留分を
さらに蒸留してFA値が0.65〜0.80となるように
調整して、第一次水添反応帯域に循環する。
Gaseous products are removed from the reaction product of the second hydrogenation reaction, and then the light boiling fraction, solvent fraction, etc. are distilled off, and the fraction with a boiling point of 420°C or higher is separated. Circulated to the primary hydrogenation reaction zone. In addition, if the FA value of this fraction is outside the range of 0.65 to 0.80, as in the case of the primary hydrogenation reaction, this fraction is further distilled so that the FA value becomes 0.65 to 0.80. and then circulated to the primary hydrogenation reaction zone.

本発明によれば、石炭から高収率で液状生成物
を取得することができる。
According to the present invention, a liquid product can be obtained from coal in high yield.

以下に実施例により本発明をさらに詳細に説明
するが、本発明はその要旨を超えない限り、以下
の実施例に限定されるものではない。
The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to the following Examples unless it exceeds the gist thereof.

なお本発明におけるFA値の計算は下記による
ものとする。
Note that the calculation of the FA value in the present invention is as follows.

FA値の算出法 試料の元素分析により炭素と水素との比率
(C/H)を算出する。またプロトン−NMRに
より芳香族性炭素に結合している水素の比率
(Har)を算出する。これらの分析値から、下記
のBraun−Ladnerの式によりFA値を算出する。
Calculation method of FA value Calculate the ratio of carbon to hydrogen (C/H) by elemental analysis of the sample. In addition, the ratio of hydrogen bonded to aromatic carbon (Har) is calculated by proton-NMR. From these analytical values, the FA value is calculated using the Braun-Ladner formula below.

FA=C/H−1/2(1−Har)/C/H 〔FA値は全炭素中の芳香族性炭素の比率を示
す指標である〕 また、以下の実施例において、部および%は、
重量部、重量%を意味する。
FA=C/H-1/2(1-Har)/C/H [FA value is an index showing the ratio of aromatic carbon in total carbon] In addition, in the following examples, parts and % are ,
Part by weight means % by weight.

実施例 1 200メツシユ以下に粉砕した濠州モーエル石炭
100部(無水無灰炭基準)に、沸点180〜420℃の
石炭液化油180部、別途調製した沸点420℃以上で
FA値が0.73の石炭液化の重質留分60部、鉄とし
て5部に相当する平均粒径3μの鉄鉱石、および
鉄に対して等モルの硫黄を混合してスラリーとし
た。これをオートクレーブに仕込んで水素を圧入
し、425℃、200Kg/cm2Gで60分間第一次水添反応
を行なつた。反応生成物からガス状生成物を除去
し、さらに蒸留して水、沸点180℃以下の軽沸留
分、沸点180〜420℃の溶剤留分、沸点420℃以上
の重質留分に分離した。生成物の収率は下記の通
りであつた(無水無灰炭基準)。また、重質留分
のFA値は0.71であつた。
Example 1 Taizhou Moer coal crushed to less than 200 mesh
100 parts (based on anhydrous ash-free coal), 180 parts of coal liquefied oil with a boiling point of 180 to 420℃, and separately prepared coal liquefied oil with a boiling point of 420℃ or higher.
A slurry was prepared by mixing 60 parts of a heavy fraction of coal liquefaction with an FA value of 0.73, iron ore with an average particle size of 3 μm corresponding to 5 parts of iron, and sulfur in an equimolar amount to iron. This was placed in an autoclave, hydrogen was introduced under pressure, and a primary hydrogenation reaction was carried out at 425° C. and 200 Kg/cm 2 G for 60 minutes. Gaseous products were removed from the reaction product, and further distilled to separate water, a light boiling fraction with a boiling point of 180℃ or less, a solvent fraction with a boiling point of 180 to 420℃, and a heavy fraction with a boiling point of 420℃ or more. . The yield of the product was as follows (based on anhydrous ash-free charcoal). Furthermore, the FA value of the heavy fraction was 0.71.

水、一酸化炭素、二酸化炭素 26% C1〜C5炭化水素 8% 軽沸留分 16% 溶剤留分 25% 重質留分 30% 次いで、重質留分を脱灰したのち、これに対し
て無灰基準で50%の溶剤留分および鉄として5%
の鉄鉱石、並びに鉄に対して等モルの硫黄を混合
してオートクレーブに仕込み、水素を圧入して、
460℃、230Kg/cm2Gで60分間第二次水添反応を行
なつた。生成物の収率は下記の通りであつた(無
灰重質留分基準)。また、重質留分のFA値は0.75
であつた。
Water, carbon monoxide, carbon dioxide 26% C 1 - C 5 hydrocarbons 8% Light boiling fraction 16% Solvent fraction 25% Heavy fraction 30% Next, after deashing the heavy fraction, 50% solvent fraction and 5% iron on an ash-free basis
of iron ore and sulfur in equal molar proportions to iron were mixed and charged into an autoclave, hydrogen was injected under pressure,
A secondary hydrogenation reaction was carried out at 460° C. and 230 Kg/cm 2 G for 60 minutes. The product yields were as follows (based on ashless heavy fractions): In addition, the FA value of the heavy fraction is 0.75
It was hot.

水 6% C1〜C5炭化水素 12% 軽沸留分 6% 溶剤留分 27% 重質留分 50% 以上の結果から、第一次水添反応の生成物から
分取した重質留分のうち、30部を第一次水添反応
に循環使用し、残りの60部を第二次水添反応に使
用し、かつ第二次水添反応生成物から分取した重
質留分を第二次水添反応に循環使用すれば、石炭
をすべて溶剤留分以上の液状ないしガス状物に転
換することができる。そして、このときの各生成
物の収率は下記の通りとなる(無水無灰炭基準)。
Water 6% C 1 - C 5 hydrocarbons 12% Light boiling fraction 6% Solvent fraction 27% Heavy fraction 50% Based on the above results, the heavy fraction separated from the product of the primary hydrogenation reaction Of this, 30 parts are recycled to the primary hydrogenation reaction, the remaining 60 parts are used to the secondary hydrogenation reaction, and the heavy fraction is fractionated from the secondary hydrogenation reaction product. By recycling the coal in the secondary hydrogenation reaction, all of the coal can be converted into a liquid or gaseous substance that is higher than the solvent fraction. The yield of each product at this time is as follows (based on anhydrous ash-free charcoal).

水、一酸化炭素、二酸化炭素 30% C1〜C5炭化水素 15% 軽沸留分 20% 溶剤留分 41% 比較例 1 200メツシユ以下に粉砕した濠州モーエル石炭
100部(無水無灰炭基準)に、沸点180〜420℃の
石炭液化油(溶剤留分)240部、鉄として5部に
相当する平均粒径3μの鉄鉱石および鉄に対して
当モルの硫黄を混合してスラリーとした。これを
オートクレーブに仕込んで水素を圧入し、425℃、
200Kg/cm2Gで60分間第一次水添反応を行なつた。
反応成績は下記の通りであつた。また重質留分の
FA値は0.73であつた。
Water, carbon monoxide, carbon dioxide 30% C 1 - C 5 hydrocarbons 15% Light boiling fraction 20% Solvent fraction 41% Comparative example 1 Taizhou Moer coal pulverized to less than 200 mesh
100 parts (based on anhydrous ash-free coal), 240 parts of coal liquefied oil (solvent fraction) with a boiling point of 180 to 420°C, iron ore with an average particle size of 3μ, equivalent to 5 parts of iron, and the equivalent molar amount for iron. Sulfur was mixed to form a slurry. This was placed in an autoclave, hydrogen was injected into it, and the temperature was raised to 425°C.
The primary hydrogenation reaction was carried out at 200 Kg/cm 2 G for 60 minutes.
The reaction results were as follows. Also, heavy fraction
The FA value was 0.73.

水、一酸化炭素、二酸化炭素 22% C1〜C5炭化水素 6% 軽沸留分 10% 溶剤留分 0% 重質留分 66% 次いで、重質留分を脱灰したのち、これに対し
て無灰基準で50%の溶剤留分および鉄として5%
の鉄鉱石、並びに鉄に対して等モルの硫黄を混合
してオートクレーブに仕込み、水素を圧入して
430℃、230Kg/cm2Gで60分間第二次水添反応を行
なつたところ、実施例1の第二次水添と同様の成
績が得られた。従つて、第一次および第二次水添
により得られた生成物の収率は下記の通りであつ
た。
Water, carbon monoxide, carbon dioxide 22% C 1 - C 5 hydrocarbons 6% Light boiling fraction 10% Solvent fraction 0% Heavy fraction 66% Next, after deashing the heavy fraction, this 50% solvent fraction and 5% iron on an ash-free basis
of iron ore and sulfur in equal molar proportions to iron were mixed and charged into an autoclave, and hydrogen was injected under pressure.
When the secondary hydrogenation reaction was carried out at 430° C. and 230 Kg/cm 2 G for 60 minutes, results similar to those of the secondary hydrogenation in Example 1 were obtained. Therefore, the yields of the products obtained by the primary and secondary hydrogenation were as follows.

水、一酸化炭素、二酸化炭素 26% C1〜C5炭化水素 14% 軽沸留分 14% 溶剤留分 18% 重質留分 33%Water, carbon monoxide, carbon dioxide 26% C1 - C5 hydrocarbons 14% Light boiling fraction 14% Solvent fraction 18% Heavy fraction 33%

Claims (1)

【特許請求の範囲】[Claims] 1 石炭を鉄系触媒の存在下に第一次水添して第
一次水添反応生成物とし、これから沸点が420℃
以上の留分を分取し、この留分をさらに第二次水
添する石炭の液化法において、第一次水添を440
℃以下の温度で触媒の懸濁状態で行なうこと、第
一次水添反応生成物から沸点が420℃以上であつ
てFA値が0.65〜0.80である留分を分取して第一
次水添反応帯域に循環すること、第二次水添を第
一次水添よりも高温で触媒の懸濁状態で実施する
こと、および第二次水添反応生成物から沸点が
420℃以上であつてFA値が0.65〜0.80である留分
を分取して第一次水添反応帯域に循環することを
特徴とする方法。
1 Coal is subjected to primary hydrogenation in the presence of an iron-based catalyst to produce a primary hydrogenation reaction product, which has a boiling point of 420°C.
In a coal liquefaction method in which the above fraction is fractionated and this fraction is further subjected to secondary hydrogenation, the primary hydrogenation is
The process should be carried out at a temperature below ℃ with the catalyst in suspension, and a fraction with a boiling point of 420℃ or higher and an FA value of 0.65 to 0.80 should be collected from the primary hydrogenation reaction product to prepare the primary water. the secondary hydrogenation is carried out in suspension of the catalyst at a higher temperature than the primary hydrogenation, and the boiling point is
A method characterized in that a fraction having a temperature of 420°C or higher and an FA value of 0.65 to 0.80 is separated and recycled to a primary hydrogenation reaction zone.
JP23454282A 1982-12-28 1982-12-28 Liquefaction of coal Granted JPS59122590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23454282A JPS59122590A (en) 1982-12-28 1982-12-28 Liquefaction of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23454282A JPS59122590A (en) 1982-12-28 1982-12-28 Liquefaction of coal

Publications (2)

Publication Number Publication Date
JPS59122590A JPS59122590A (en) 1984-07-16
JPH0410515B2 true JPH0410515B2 (en) 1992-02-25

Family

ID=16972653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23454282A Granted JPS59122590A (en) 1982-12-28 1982-12-28 Liquefaction of coal

Country Status (1)

Country Link
JP (1) JPS59122590A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08909B2 (en) * 1984-07-31 1996-01-10 三菱化学株式会社 Liquefaction method of coal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827784A (en) * 1981-08-05 1983-02-18 ザ・ラムス・コムパニ− Coal liquefaction
JPS59109588A (en) * 1982-12-15 1984-06-25 Kobe Steel Ltd Liquefaction of brown coal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827784A (en) * 1981-08-05 1983-02-18 ザ・ラムス・コムパニ− Coal liquefaction
JPS59109588A (en) * 1982-12-15 1984-06-25 Kobe Steel Ltd Liquefaction of brown coal

Also Published As

Publication number Publication date
JPS59122590A (en) 1984-07-16

Similar Documents

Publication Publication Date Title
US3997425A (en) Process for the liquefaction of coal
US4486293A (en) Catalytic coal hydroliquefaction process
US3813329A (en) Solvent extraction of coal utilizing a heteropoly acid catalyst
US4176041A (en) Method for reforming low grade coals
JPS581787A (en) Coal liquefaction
US4325800A (en) Two-stage coal liquefaction process with interstage guard bed
US4339329A (en) Liquefaction of coal
JPH0410515B2 (en)
US3503867A (en) Process and system for producing synthetic crude from coal
CA1108544A (en) Coal liquefaction
JPH02107335A (en) Hydrocracking of heavy oil in presence of petroleum coke rulting from operation of heavy oil coke
US4394248A (en) Coal liquefaction process
US4541914A (en) Process for converting coal
JPS5843433B2 (en) coal liquefaction method
JP3484041B2 (en) Coal liquefaction method
US4412908A (en) Process for thermal hydrocracking of coal
JPH0422959B2 (en)
JPS5968391A (en) Coal liquefaction
JPH0135871B2 (en)
US4737266A (en) Method for hydrogenating a solvent-refined coal
JPS59213792A (en) Conversion of coal to oil fraction
JPS60212486A (en) Liquefaction of subbituminous coal
JPS58171478A (en) Liquefaction of coal
JPS6053591A (en) Two-stage liquefaction of coal
JPH05320664A (en) Liquefaction of coal