JPS59122575A - Heat-storing material - Google Patents

Heat-storing material

Info

Publication number
JPS59122575A
JPS59122575A JP23271882A JP23271882A JPS59122575A JP S59122575 A JPS59122575 A JP S59122575A JP 23271882 A JP23271882 A JP 23271882A JP 23271882 A JP23271882 A JP 23271882A JP S59122575 A JPS59122575 A JP S59122575A
Authority
JP
Japan
Prior art keywords
weight
parts
heat
paraffin
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23271882A
Other languages
Japanese (ja)
Other versions
JPS6111987B2 (en
Inventor
Takahiro Wada
隆博 和田
Fumiko Kimura
木村 文子
Riyouichi Yamamoto
山本 凉市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23271882A priority Critical patent/JPS59122575A/en
Priority to PCT/JP1983/000307 priority patent/WO1984001167A1/en
Publication of JPS59122575A publication Critical patent/JPS59122575A/en
Publication of JPS6111987B2 publication Critical patent/JPS6111987B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:A heat-storing material that is obtained by adding polyvinyl alcohol, formaldehyde, paraffin, as thickeners, to a system consisting of a specific amount of sodium acetate and water, thus showing stabilized heat dissipation properties, because it is free from phase separation, even when melting and freezing are repeated. CONSTITUTION:The objective heat-storing material is obtained by mixing 100pts.wt. of a sodium acetate-water system containing 53-69wt% of sodium acetate with thickeners, preferably consisting of 0.5-20pts.wt. of PVA, 0.1- 5pts.wt. of formaldehyde and 0.1-5pts.wt. of paraffin. USE:Heat-storing units for air-conditioning.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、CH5cio 2Na @ 3 H2,0の
融M潜熱を利用する潜熱蓄熱材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a latent heat storage material that utilizes the M latent heat of fusion of CH5cio 2Na @ 3 H2,0.

従来例の構成とその問題点 蓄熱材には、物質の顕熱を利用したものと、潜熱を利用
したものとが知られている。潜熱を利用した蓄熱材は、
顕熱を利用した蓄熱材と比較して、嚇位体積当り、また
単位質量当りの蓄熱量が大きく、必要量の熱を貯蔵する
のに少量でよく、そのため蓄熱装置の小型化を可能とす
る。まだ、潜熱を利用した蓄熱材は、転移点において一
定温度て蓄熱し、また放熱することができる。特に無機
水化物の融M潜熱を利用した蓄熱材は単位体積尚りの蓄
熱量か大きなことで知られている。
Conventional Structures and Problems There are known heat storage materials that utilize the sensible heat of substances and those that utilize latent heat. Heat storage materials that utilize latent heat are
Compared to heat storage materials that use sensible heat, it stores a large amount of heat per unit volume and per unit mass, and only requires a small amount to store the required amount of heat, making it possible to downsize the heat storage device. . However, heat storage materials that utilize latent heat can store heat at a constant temperature at a transition point, and can also radiate heat. In particular, heat storage materials that utilize the latent heat of fusion of inorganic hydrates are known to have a large amount of heat storage per unit volume.

トコ口で、従来よI) 0H5CO2Na・3H20は
無機水化物のrF・て蔓特IC融解潜熱が大きな物質で
あることか加1らねテいる。しかし、cH3002Na
 a 3H20(7)融点は、調和融点ではなく、包晶
点であるので、融解、凝固の繰返しとともにCH3CO
2N&が容器の底に沈積する、いわゆる相分離現象が進
行する。
In summary, conventionally I) 0H5CO2Na/3H20 is an inorganic hydrated substance with a large latent heat of fusion. However, cH3002Na
a 3H20(7) The melting point is not the harmonic melting point but the peritectic point, so as the melting and solidification are repeated, CH3CO
A so-called phase separation phenomenon occurs in which 2N& is deposited at the bottom of the container.

そのためCH3CO2Na・3H20の融解潜熱は蓄熱
、放   熱を繰返すことによって当然のことながら減
少してしまう。この相分離現象に伴う潜熱の減少が、C
H3CO2Na・3H20を蓄熱材として応用する際の
犬きな問題点であった。
Therefore, the latent heat of fusion of CH3CO2Na/3H20 naturally decreases due to repeated heat storage and heat release. The decrease in latent heat accompanying this phase separation phenomenon causes C
This was a major problem when applying H3CO2Na/3H20 as a heat storage material.

発明の目的 本発明は融解、凝固を繰返しても、相分離現象の起こら
ない、きわめて安定した放熱特性を有する潜熱蓄熱材を
提供することを目的とするものて本発明の特徴は、OH
sco 2NILを53〜693〜69重量部含有する
CH3CO2NaとH2Oよりなる系に、増粘剤として
、ポリビニルアルコール(PvA)、ホルムアルデヒド
、パラフィンを加え、混合したことにある。望ましくは
、CH3CO2NaとH2Oよシなる系100重量部に
対して、PVAの混合量が0,6〜20重量部、ホルム
アルデヒドの混合量が0.1〜5重量部、パラフィンの
混合量が0.1〜5重量部の範囲にある場合である。
Purpose of the Invention The object of the present invention is to provide a latent heat storage material that does not cause phase separation even after repeated melting and solidification and has extremely stable heat dissipation properties.
The system consists of adding and mixing polyvinyl alcohol (PvA), formaldehyde, and paraffin as thickeners to a system consisting of CH3CO2Na and H2O containing 53 to 693 to 69 parts by weight of sco2NIL. Preferably, the mixing amount of PVA is 0.6 to 20 parts by weight, the mixing amount of formaldehyde is 0.1 to 5 parts by weight, and the mixing amount of paraffin is 0.6 to 20 parts by weight, based on 100 parts by weight of the system consisting of CH3CO2Na and H2O. This is the case in the range of 1 to 5 parts by weight.

実施例の説明 市販の試薬の、CH3C0zNa−3H20、*ルムア
ルデヒド、PVA 、パラフィ吻およびH2Oを、第1
表に示す組成になるように所定量配合した。pvAにつ
いては、重合度が約600のもの、約16c。
Description of Examples Commercially available reagents CH3C0zNa-3H20, *lumaldehyde, PVA, paraffin and H2O were
A predetermined amount was blended to obtain the composition shown in the table. Regarding pvA, the degree of polymerization is about 600, about 16c.

のもの、約2000のものの3種類について実施し、パ
ラフィンについては市販の流動パラフィン。
About 2,000 types of paraffin were used, and commercially available liquid paraffin was used.

融点が42°C〜44℃のパラフィン、融点が64℃〜
66°Cのパラフィンの3種類について実施しだ。
Paraffin with a melting point of 42°C to 44°C, a melting point of 64°C to
Experiments were conducted on three types of paraffin at 66°C.

(以下余白) 所定量配合した混合物を約70′Gまで加熱して、CH
3CO2Na・3H20およびパラフィンを融解し、攪
拌機を用いて約60分間はげしく攪拌した。その結果、
白色の粘調な液体が得られた。得られた試料約100y
−を、CH3CO2Na−3H20(D過冷却防止材で
あるNaaP20710H200,5y−とともに、カ
プセル中に密封した。そして、それぞれの試料の潜熱を
落下法によって測定した。試料を封入したカプセルを、
約3時間7o′Cに加熱保持して試料を融解した後、約
60℃まで温度を下げて、さらに約4時間保持した。そ
の後、約30℃の水の入った魔法びんにみれ、そのとき
の水温の上昇から試料の潜熱を求めた。その後、試料を
封入したカプセルをウォーターバス中に入れ、700C
と36℃の間で加熱、冷却を1000回繰返した。その
際に、100回後と1000回後の潜熱を、前述の落下
法によって測定した。それらの結果を第2表に示す。第
2表には評価として加熱、冷却を100o回繰返した後
の潜熱が45 cal/f以上のものには○印を、40
 al/f以上454?未満のものにはΔ印を、甘た4
00Vγ未満のものにはX印をつけた。ところで、当然
のことであるが○印のものは、蓄熱量が大きく実用化可
能なものであり、Δ印は蓄熱量がそれほど大きくないが
、蓄熱材が安定して動作するので、十分実用化が可能で
あると考えられるものである。
(Left below) Heat the mixture in a predetermined amount to about 70'G, and
3CO2Na.3H20 and paraffin were melted and stirred vigorously for about 60 minutes using a stirrer. the result,
A white viscous liquid was obtained. Obtained sample approximately 100y
- was sealed in a capsule with CH3CO2Na-3H20 (D supercooling prevention material NaaP20710H200,5y-.Then, the latent heat of each sample was measured by the drop method.The capsule containing the sample was
After heating and holding at 7 o'C for about 3 hours to melt the sample, the temperature was lowered to about 60°C and held for about 4 more hours. Thereafter, the sample was placed in a thermos bottle containing water at approximately 30°C, and the latent heat of the sample was determined from the rise in water temperature at that time. After that, the capsule containing the sample was placed in a water bath and heated to 700C.
Heating and cooling were repeated 1000 times between and 36°C. At that time, the latent heat after 100 times and after 1000 times was measured by the above-mentioned drop method. The results are shown in Table 2. In Table 2, as an evaluation, those with a latent heat of 45 cal/f or more after repeated heating and cooling 100 degrees are marked with an ○, and those with a latent heat of 40
Al/f or more 454? If it is less than 4, mark it with Δ.
Those with a value less than 00Vγ are marked with an X. By the way, as a matter of course, those marked with ○ have a large amount of heat storage and can be put to practical use, and those marked with Δ have a not so large amount of heat storage, but the heat storage material operates stably, so it is sufficient for practical use. is considered possible.

(以下余 白) 第2表のテークを解析する。試料1から試料10は、C
H3C02Na (7)含有量を62市量チから70重
量%まで変化させた、CH3CO2NaとH2Oよりな
る系100重量部に、PVAを2重量部、ホルムアルデ
ヒドを0.6重量部、パラフィンを1.0重量部加えて
混合したものである。CH3GO2Naの含有量が62
市量チの試料1では、第1回凝固時に放出する熱量は、
55 cal/y−と大きいか、融解凝固を1000回
繰返した後では潜熱は37 J7’pと小さくなる。C
H3C02NaとH2Oよりなる系のCHsCO2Na
の含有量が64重量部である試料2では、融解凝固を1
000回繰返した後の潜熱が60071/jfとなり、
試料1と比較してかなり大きくなる。そして、CH3C
O2NaとH2Oよりなる系かOH3GO2NILを5
4〜68重量係の範囲で含有する試料2から試料6では
融解、凝固を1000回繰返しても、潜熱は5oωvy
t以上を有する。しかし、CH3CO2NaとH2Oよ
シなる系ノCH3CO2Na (7)含有量が70重量
%の試料1oでは、1000回後の潜熱が39 ca1
7’y−となり、潜熱の大きな試料3と比較するとかな
り小さくなる。また、この上うな増粘剤を含む蓄熱材で
は、潜熱が最大になるのは、CHsco 2N2LとH
2Oよりなる系の組成がCH3C02Na−3H20の
電比組成、つまりCH3CO2Naの60.28市量チ
より、H20過剰側の組成すなわちCH3co 2Na
のも6〜58重量係付近であることがわかる。
(Left below) Analyze the takes in Table 2. Samples 1 to 10 are C
H3C02Na (7) 2 parts by weight of PVA, 0.6 parts by weight of formaldehyde, and 1.0 parts by weight of paraffin were added to 100 parts by weight of a system consisting of CH3CO2Na and H2O whose content was varied from 62% by weight to 70% by weight. Parts by weight were added and mixed. CH3GO2Na content is 62
For sample 1, which is commercially available, the amount of heat released during the first solidification is:
The latent heat is as large as 55 cal/y-, or as small as 37 J7'p after melting and solidification is repeated 1000 times. C
CHsCO2Na, a system consisting of H3C02Na and H2O
In sample 2, in which the content of
The latent heat after repeating 000 times is 60071/jf,
It is considerably larger than Sample 1. And CH3C
The system consisting of O2Na and H2O or OH3GO2NIL is 5
Samples 2 to 6 containing a weight ratio of 4 to 68 had a latent heat of 5oωvy even if melting and solidification were repeated 1000 times.
t or more. However, in sample 1o, which has a CH3CO2Na (7) content of 70% by weight, which is a system consisting of CH3CO2Na and H2O, the latent heat after 1000 cycles is 39 cal.
7'y-, which is considerably smaller than Sample 3, which has a large latent heat. In addition, among heat storage materials containing thickeners, the ones with maximum latent heat are CHsco 2N2L and H
The composition of the system consisting of 2O is the electric ratio composition of CH3C02Na-3H20, that is, the composition on the H20 excess side from the 60.28 commercial quantity of CH3CO2Na, that is, CH3co2Na
It can be seen that the weight ratio is around 6-58.

試料11から試料1了は、OH3GO2N&を56重計
係含有するCHsCO2NaとH2Oよりなる系を1ω
重散部、PVAを2重量部、ホルムアルデヒドを0.5
ITf量部と一定・(こしてパラフィンの混合量をOl
lから10市量チ、“し範沖て変化させたものである。
Samples 11 to 1 represent a system consisting of CHsCO2Na and H2O containing 56 weights of OH3GO2N&.
Heavy dispersion part, 2 parts by weight of PVA, 0.5 parts by weight of formaldehyde
It is constant with the amount of ITf (the amount of paraffin mixed is
It is a change from 1 to 10 market volume.

・ζラツインを2JA倫していない試料11では、第1
回目の潜熱は57 、u;;yりと大きいか、100回
後の潜熱が50 tvV f 、 1000回後の潜熱
が38 caV y−と大きく減少する。パラフィンを
0.1重量部混合した試料12では、1000回後の潜
熱は49詠/)となり、試料11と比較してかなり大き
くなる。そしてパラフィンを0.5重量部から6重量部
の範囲で含有した試料13から試料16では、1000
回後の潜熱は60ωIl/y−以上と大きい。しかしパ
ラフィンを10重量部混合した試料17では、1000
回後の潜熱は44ωVy−と低下する。
・In sample 11, which does not have ζ rat twin 2JA, the first
The latent heat after the 100th cycle is 50 tvV f , and the latent heat after the 1000th cycle is 38 caV y -, which is a large decrease. In sample 12, in which 0.1 part by weight of paraffin was mixed, the latent heat after 1000 cycles was 49 e/), which is considerably larger than sample 11. In samples 13 to 16 containing paraffin in the range of 0.5 parts by weight to 6 parts by weight, 1,000 parts by weight
The latent heat after rotation is as large as 60ωIl/y- or more. However, in sample 17 in which 10 parts by weight of paraffin was mixed, 1000
The latent heat after rotation decreases to 44ωVy-.

試料18から試料22は、CH3CO2Naを66重量
%含有するCH3CO2NaとH2Oよりなる系を10
0重量部、PVAを2重量部、パラフィンを1重量部と
一定に保って、ホルムアルデヒドの混合量を○重景部か
ら10重量部の範囲で変化させたものである。ホルムア
ルデヒドを混合していない試料18では、第1回目の潜
熱は58ωI/y−と大きいが、100回後には48 
aivf 、 1000回後には38 、l/y−と小
さくなる。ホルムアルデヒドを0.1重量部混合した試
料19では、1000回後の潜熱は48cJy−となり
、試料18に比較してかなシ減少の度合が小さくなって
いる。ホルムアルデヒドを0.2重量部から5重量部の
範囲で含有する試料20.試料21では、1000回後
の潜熱ば6oa17y−以上と大きい。しかし、ホルム
アルデヒドを10重量部混合した試料22では1000
回後の潜熱が44d/7と低下する。
Samples 18 to 22 contain 10% of the system consisting of CH3CO2Na and H2O containing 66% by weight of CH3CO2Na.
0 parts by weight, PVA at 2 parts by weight, and paraffin at 1 part by weight, and the amount of formaldehyde mixed was varied in the range from ○ to 10 parts by weight. In sample 18, which does not contain formaldehyde, the latent heat at the first time is as large as 58ωI/y-, but after 100 times it is 48ωI/y-.
aivf becomes small to 38, l/y- after 1000 times. In sample 19, in which 0.1 part by weight of formaldehyde was mixed, the latent heat after 1000 cycles was 48 cJy-, and the degree of decrease in kana was smaller than in sample 18. Sample 20 containing formaldehyde in the range of 0.2 parts by weight to 5 parts by weight. In sample 21, the latent heat after 1000 cycles is as large as 6oa17y- or more. However, in sample 22 in which 10 parts by weight of formaldehyde was mixed, 1000
The latent heat after cooling decreases to 44d/7.

試料23から試料29は、CHsho 2Naを56重
量%含有するCH3CO2Na(!l:H20よシなる
系を100重量部、ホルムアルデヒドを0.5重量部、
ノシラフィンを1重量部と一定に保って、PVAを0重
量部から30重量部の範囲で変化させたものである。
Samples 23 to 29 contained 100 parts by weight of CH3CO2Na (!l:H20) containing 56% by weight of CHsho 2Na, 0.5 parts by weight of formaldehyde,
Nosilafine was kept constant at 1 part by weight, and PVA was varied from 0 to 30 parts by weight.

PVAを混合していない試料23では、第1回目する。Sample 23, which did not contain PVA, was tested for the first time.

PVAを0.1重量部含有する試料24では、1000
回後の潜熱は43ωβ/lとなシ、試料23と比較して
かなり大きくなる。そして、PVAを0.6重量部から
10重量部の範囲で含有した試料25から試料27ては
、1000回後の潜熱がcs o c、p/y以上と太
きい。しかし、PVAを30重量部混合した試料29で
は、1o−oo回後の潜熱ば430Z4/ψとなり、試
料2θと比較してかなり小さくなる。
In sample 24 containing 0.1 part by weight of PVA, 1000
The latent heat after heating is 43ωβ/l, which is considerably larger than that of sample 23. Samples 25 to 27 containing PVA in a range of 0.6 parts by weight to 10 parts by weight had large latent heats of more than cs o c, p/y after 1000 cycles. However, in sample 29 in which 30 parts by weight of PVA was mixed, the latent heat after 1o-oo cycles is 430Z4/ψ, which is considerably smaller than that of sample 2θ.

試料30と試料31は、パラフィンとして今まで市販の
流動パラフィンを用いていたのを、融点が室温以上のも
のを用いた場合である。潜熱は流動パラフィンを用いた
場合とほとんど違いは認められない。
In Samples 30 and 31, commercially available liquid paraffin was used as paraffin, but paraffin with a melting point higher than room temperature was used. There is almost no difference in latent heat compared to when liquid paraffin is used.

試料32と試料33は、PVAとして重合度が約150
0のものと、約2o00のものを用いた場合である。こ
の場合も、潜熱はPVAとして重合度が600のものを
用いた場合と、はとんと違いは認められない。
Sample 32 and Sample 33 have a polymerization degree of about 150 as PVA.
0 and about 2o00. In this case as well, there is no noticeable difference in latent heat from that when PVA with a degree of polymerization of 600 is used.

以上示したように、CH3CO2Naを53〜693〜
69重量部含有するCH3CCl2Na (!: H2
Oよりなる系100重量部に、増粘剤として、PVAと
ホルムアルデヒドそれにパラフィンを混合することによ
って、融解と凝固を繰返しても、蓄熱量がほとんど変化
しない安定した性能を有する蓄熱材を得ることができる
。そして、その望捷しい組成としては、第2表で○印を
付した組成の領域、つまり、CHsCOzNaとH2O
よりなる系100重量部に対して、PVAを0.5〜2
0重量部、ホルムアルデヒドを0.1〜6重量部、パラ
フィンを0.1〜6重量部の範囲で加えた場合である。
As shown above, CH3CO2Na is 53~693~
CH3CCl2Na containing 69 parts by weight (!: H2
By mixing PVA, formaldehyde, and paraffin as thickeners with 100 parts by weight of a system consisting of O, it is possible to obtain a heat storage material with stable performance in which the amount of heat storage hardly changes even after repeated melting and solidification. can. The desirable composition is the composition region marked with a circle in Table 2, that is, CHsCOzNa and H2O.
0.5 to 2 parts of PVA to 100 parts by weight of the system consisting of
0 parts by weight, formaldehyde in the range of 0.1 to 6 parts by weight, and paraffin in the range of 0.1 to 6 parts by weight.

とこ/)T:”、不発明における増粘剤において、PV
Aは、ホルムアルデヒドの働きによって互いに架橋し、
蓄熱材融液中に分散して、蓄熱材融液の粘度を増加させ
て、OH3GO2N2Lの沈降を防止すムそしてパラフ
ィンは、蓄熱材融液とPVAの界面て働き、CH5GO
2Na113H20の融解と凝固に伴って、融液とPV
Aか分離してしまうのを防止してい゛るものと考えられ
る。
PV
A crosslinks with each other by the action of formaldehyde,
Paraffin is dispersed in the heat storage material melt, increases the viscosity of the heat storage material melt, and prevents precipitation of OH3GO2N2L.The paraffin acts as an interface between the heat storage material melt and PVA, thereby increasing the viscosity of the heat storage material melt.
As 2Na113H20 melts and solidifies, the melt and PV
It is thought that this prevents A from separating.

発明の効果 本発明は、上述のように、CH3co 2Naを53重
量係〜69重量係の範囲で含有するOHsho 2Na
とH2Oよりなる系に、相分離を防止する増粘剤として
、PVAとホルムアルテヒト、ハラフィンヲ混合した蓄
熱材であるのて、蓄熱と放熱を繰返しても蓄熱量が変化
せず、きわめて安定した性能を有する。しだがって本発
明は、空調用の蓄熱装置をはじめとして、蓄熱を利用す
るあらゆる方面に応用可能なものである。
Effects of the Invention As described above, the present invention provides OHsho 2Na containing CH3co 2Na in a range of 53% to 69% by weight.
The heat storage material is a mixture of PVA, formaltech, and halafine as thickeners to prevent phase separation in a system consisting of has. Therefore, the present invention is applicable to all fields that utilize heat storage, including heat storage devices for air conditioning.

Claims (2)

【特許請求の範囲】[Claims] (1)酢酸ナトリウム(CH3CO2N&)を53〜6
93〜69重量部含有する、酢酸ナトリウムと水よりな
る系に、増粘剤として、ポリヒニルアルコール、ホルム
アルテヒドおよびパラフィンを加えた混合物であること
を特徴とする蓄熱材。
(1) Sodium acetate (CH3CO2N &) 53-6
A heat storage material characterized in that it is a mixture of a system consisting of sodium acetate and water containing 93 to 69 parts by weight, to which polyhinyl alcohol, formaldehyde and paraffin are added as thickeners.
(2)酢酸ナトリウムと水よりなる系1o○重量部に対
して、ボリヒニルアルコールを0.6〜20重量部、ホ
ルムアルデヒドを0.1〜5重量部。 パラフィンを0.1〜5重量部の範囲で加え、混合した
ことを特徴とする特許請求の範囲第1項記載の蓄熱材。
(2) 0.6 to 20 parts by weight of borihinyl alcohol and 0.1 to 5 parts by weight of formaldehyde per 10 parts by weight of the system consisting of sodium acetate and water. The heat storage material according to claim 1, characterized in that paraffin is added and mixed in an amount of 0.1 to 5 parts by weight.
JP23271882A 1982-09-17 1982-12-28 Heat-storing material Granted JPS59122575A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP23271882A JPS59122575A (en) 1982-12-28 1982-12-28 Heat-storing material
PCT/JP1983/000307 WO1984001167A1 (en) 1982-09-17 1983-09-14 Thermal energy storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23271882A JPS59122575A (en) 1982-12-28 1982-12-28 Heat-storing material

Publications (2)

Publication Number Publication Date
JPS59122575A true JPS59122575A (en) 1984-07-16
JPS6111987B2 JPS6111987B2 (en) 1986-04-05

Family

ID=16943693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23271882A Granted JPS59122575A (en) 1982-09-17 1982-12-28 Heat-storing material

Country Status (1)

Country Link
JP (1) JPS59122575A (en)

Also Published As

Publication number Publication date
JPS6111987B2 (en) 1986-04-05

Similar Documents

Publication Publication Date Title
Lu et al. Experimental study of the thermal characteristics of phase change slurries for active cooling
US4292189A (en) Thermal energy storage composition comprising sodium sulfate decahydrate; sodium carbonate decahydrate; and sodium tetraborate decahydrate
JPS59122575A (en) Heat-storing material
Sommer Thermodynamics of liquid alloys
JPS6031586A (en) Thermal energy storage material
JPH0310674B2 (en)
JPS5951974A (en) Heat storage material
JPS6031587A (en) Thermal energy storage material
JPS59124982A (en) Thermal energy storage material
JPH0860141A (en) Thermal storage medium
JPS5947286A (en) Heat storage material
US4465611A (en) Heat storage material
JP7137654B1 (en) Latent heat storage material composition
JPS6367513B2 (en)
JPS608380A (en) Heat accumulative material of latent heat
JPS59170179A (en) Heat storage material
SU1404516A1 (en) Heat-accumulating composition
JPS6011575A (en) Latent heat storage material
JPS60155285A (en) Thermal energy storage material composition
Robinson et al. Interaction of low molecular weight polyethylene glycols with sorbitol solution
US4709057A (en) Method of preparing fine crystal particles of maleic anhydride
JPH021194B2 (en)
JPS59152982A (en) Heat accumulative material
JPS6063270A (en) Heat storage material composition
JPS60203689A (en) Thermal energy storage material