JPS6111987B2 - - Google Patents

Info

Publication number
JPS6111987B2
JPS6111987B2 JP23271882A JP23271882A JPS6111987B2 JP S6111987 B2 JPS6111987 B2 JP S6111987B2 JP 23271882 A JP23271882 A JP 23271882A JP 23271882 A JP23271882 A JP 23271882A JP S6111987 B2 JPS6111987 B2 JP S6111987B2
Authority
JP
Japan
Prior art keywords
weight
parts
sample
latent heat
cal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23271882A
Other languages
Japanese (ja)
Other versions
JPS59122575A (en
Inventor
Takahiro Wada
Fumiko Kimura
Ryoichi Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23271882A priority Critical patent/JPS59122575A/en
Priority to PCT/JP1983/000307 priority patent/WO1984001167A1/en
Publication of JPS59122575A publication Critical patent/JPS59122575A/en
Publication of JPS6111987B2 publication Critical patent/JPS6111987B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、CH3CO2Na・3H2Oの融解潜熱を利
用する潜熱蓄熱材に関するものである。 従来例の構成とその問題点 蓄熱材には、物質の顕熱を利用したものと、潜
熱を利用したものとが知られている。潜熱を利用
した蓄熱材は、顕熱を利用した蓄熱材と比較し
て、単位体積当り、また単位質当りの蓄熱量が大
きく、必要量の熱を貯蔵するのに少量でよく、そ
のため畜熱装置の小型化を可能とする。また、潜
熱を利用した蓄熱材は、転移点において一定温度
で蓄熱し、また放熱することができる。特に無機
水化物の融解潜熱を利用した蓄熱材は単位体積当
りの蓄熱量が大きなことで知られている。 ところで、従来よりCH3CO2Na・3H2Oは無機
水化物の中でも特に融解潜熱が大きな物質である
ことが知られている。しかし、CH3CO2Na・
3H2Oの融点は、調和融点ではなく、包晶点であ
るので、融解、凝固の繰返しとともにCH3CO2Na
が容器の底に沈積する、いわゆる相分離現象が進
行する。そのためCH3CO2Na・3H2Oの融解潜熱
は蓄熱、放熱を繰返すことによつて当然のことな
がら減少してしまう。この相分離現象に併う潜熱
の減少が、CH3CO2Na・3H2Oを蓄熱材として応
用する際の大きな問題点であつた。 発明の目的 本発明は融解、凝固を繰返しても、相分離現象
の起こらない、きわめて安定した放熱特性を有す
る潜熱蓄熱材を提供することを目的とするもので
ある。 発明の構成 本発明の特徴は、CH3,CO2Naを53〜69重量%
範囲で含有するCH3CO2NaとH2Oよりなる系に、
増粘剤としてポリビニルアルコール(PVA)、ホ
ルムアデヒド、パラフインを加え、混合したこと
にある。望ましくは、CH3CO2NaとH2Oよりなる
系100重量部に対して、PVAの混合量が0.5〜20重
量部、ホルムアルデヒドの混合量が0.1〜5重量
部、パラフインの混合量が0.1〜5重量部の範囲
にある場合である。 実施例の説明 市販の試薬の、CH3CO2Na・3H2O、ホルムア
ルデヒド、PVA、パラフインおよびH2Oを、第
1表に示す組成になるように所定量配合した。
PVAについては、重合度が約500のもの、約1500
のもの、約2000のものの3種類について実施し、
パラフインについては市販の流動パラフイン、融
点が42℃〜44℃のパラフイン、融点が54℃〜56℃
のパラフインの3種類について実施した。
INDUSTRIAL APPLICATION FIELD The present invention relates to a latent heat storage material that utilizes the latent heat of fusion of CH 3 CO 2 Na.3H 2 O. Conventional Structures and Problems There are two known heat storage materials: one that utilizes the sensible heat of a substance, and the other that utilizes the latent heat. Compared to heat storage materials that use sensible heat, heat storage materials that use latent heat have a larger amount of heat storage per unit volume and per unit mass, and only a small amount is required to store the required amount of heat, so it is not possible to store heat. Enables downsizing of equipment. In addition, a heat storage material using latent heat can store heat at a constant temperature at a transition point and can also radiate heat. In particular, heat storage materials that utilize the latent heat of fusion of inorganic hydrates are known to have a large amount of heat storage per unit volume. By the way, it has been conventionally known that CH 3 CO 2 Na.3H 2 O is a substance with a particularly large latent heat of fusion among inorganic hydrates. However, CH 3 CO 2 Na・
The melting point of 3H 2 O is not the harmonic melting point but the peritectic point, so as CH 3 CO 2 Na
A so-called phase separation phenomenon progresses, in which the liquid is deposited at the bottom of the container. Therefore, the latent heat of fusion of CH 3 CO 2 Na.3H 2 O naturally decreases due to repeated heat storage and heat release. The reduction in latent heat associated with this phase separation phenomenon has been a major problem when applying CH 3 CO 2 Na.3H 2 O as a heat storage material. OBJECTS OF THE INVENTION The object of the present invention is to provide a latent heat storage material that does not cause phase separation even after repeated melting and solidification and has extremely stable heat dissipation properties. Structure of the Invention The feature of the present invention is that CH 3 , CO 2 Na is contained in an amount of 53 to 69% by weight.
In a system consisting of CH 3 CO 2 Na and H 2 O containing within the range,
It is made by adding and mixing polyvinyl alcohol (PVA), formadehyde, and paraffin as thickeners. Preferably, the mixed amount of PVA is 0.5 to 20 parts by weight, the mixed amount of formaldehyde is 0.1 to 5 parts by weight, and the mixed amount of paraffin is 0.1 to 100 parts by weight of the system consisting of CH 3 CO 2 Na and H 2 O. -5 parts by weight. Description of Examples Commercially available reagents such as CH 3 CO 2 Na.3H 2 O, formaldehyde, PVA, paraffin and H 2 O were blended in predetermined amounts so as to have the composition shown in Table 1.
Regarding PVA, those with a polymerization degree of approximately 500 and approximately 1500
This study was carried out on three types of objects, approximately 2,000 objects.
For paraffin, commercially available liquid paraffin, paraffin with a melting point of 42°C to 44°C, melting point of 54°C to 56°C
The experiment was conducted on three types of paraffin.

【表】【table】

【表】 所定量配合した混合物を約70℃まで加熱して、
CH3CO、Na・3H2Oおよびパラフインを融解し、
撹拌機を用いて約60分間はげしく撹拌した。その
結果、白色の粘調な液体が得られた。得られた試
料約100gを、CH3CO2Na・3H2Oの過冷却防止材
であるNa4P2O7・10H2O0.5gとともに、カプセル
中に密封した。そして、それぞれの試料の潜熱を
落下法によつて測定した。試料を封入したカプセ
ルを、約3時間70℃に加熱保持して試料を融解し
た後、約60℃まで温度を下げて、さらに約4時間
保持した。その後、約30℃の水の入つた魔法びん
に入れ、そのときの水温の上昇から試料の潜熱を
求めた。その後、試料を封入したカプセルをウオ
ーターバス中に入れ、70℃と35℃の間で加熱、冷
却を1000回繰返した。その際に、100回後と1000
回後の潜熱を、前述の落下法によつて測定した。
それらの結果を第2表に示す。第2表には評価と
して加熱、冷却を1000回繰返した後の潜熱が45ca
l/g以上のものには〇印を、40cal/g以上45cal/
g未満のものには△印を、また40cal/g未満のも
のには×印をつけた。ところで、当然のことであ
るが〇印のものは、蓄熱量が大きく実用化可能な
ものであり、△印は蓄熱量がそれほど大きくない
が、蓄熱材が安定して動作するので、十分実用化
が可能であると考えられるものである。
[Table] Heat the mixture containing the specified amount to about 70℃,
Melt CH3CO , Na.3H2O and paraffin;
The mixture was vigorously stirred using a stirrer for about 60 minutes. As a result, a white viscous liquid was obtained. Approximately 100 g of the obtained sample was sealed in a capsule together with 0.5 g of Na 4 P 2 O 7 .10H 2 O, which is a supercooling prevention material for CH 3 CO 2 Na.3H 2 O. Then, the latent heat of each sample was measured by the drop method. The capsule containing the sample was heated and held at 70°C for about 3 hours to melt the sample, and then the temperature was lowered to about 60°C and held for about 4 more hours. The sample was then placed in a thermos bottle containing water at approximately 30°C, and the latent heat of the sample was determined from the rise in water temperature at that time. Thereafter, the capsule containing the sample was placed in a water bath and heated and cooled between 70°C and 35°C 1000 times. At that time, after 100 times and 1000
The latent heat after spinning was measured by the drop method described above.
The results are shown in Table 2. Table 2 shows the latent heat of 45ca after repeated heating and cooling 1000 times.
If it is more than l/g, please mark it with ○, if it is more than 40cal/g or more, 45cal/
Those with less than 40 cal/g are marked with △, and those with less than 40 cal/g are marked with x. By the way, as a matter of course, those marked with ○ have a large amount of heat storage and can be put to practical use, and those marked with △ have a not so large amount of heat storage, but the heat storage material operates stably, so it is sufficient for practical use. is considered possible.

【表】【table】

【表】 第2表のデータを解析する。試料1から試料10
は、CH3CO2Naの含有量を52重量%から70重量%
まで変化させた、CH3CO2NaとN2Oよりなる系
100重量部に、PVAを2重量部、ホルムアルデヒ
ドを0.5重量部、パラフインを1.0重量部加えて混
合したものである。CH3CO2Naの含有量が52重量
%の試料1では、第1回凝固時に放出する熱量
は、55cal/gと大きいが、融解凝固を1000回繰返
した後では潜熱は37cal/gと小さくなる。
CH3CO2NaとH2Oよりなる系のCH3CO2Naの含有
量が54重量部である試料2では、融解凝固を1000
回繰返した後の潜熱が50cal/gとなり、試料1と
比較してかなり大きくなる。そして、CH3CO2Na
とH2Oよりなる系がCH3CO2Naを54〜68重量%の
範囲で含有する試料2から試料6では融解、凝固
を1000回繰返しても、潜熱は50cal/g以上を有す
る。しかし、CH3CO2NaとH2Oよりなる系の
CH2CO2Naの含有量が70重量%の試料10では、
1000回後の潜熱が39cal/gとなり、潜熱の大きな
試料3と比較するとかなり小さくなる。また、こ
のような増粘剤を含む蓄熱材では、潜熱が最大に
なるのは、CH3CO2NaとH2Oよりなる系の組成が
CH3CO2Na・3H2Oの定比組成、つまり
CH3CO2Naの60.28重量%より、H2O過剰側の組
成すなわちCH3CO2Naの56〜58重量%付近である
ことがわかる。 試料11から試料17は、CH3CO2Naを56重量%含
有するCH3CO2NaとH2Oよりなる系を100重量
部、PVAを2重量部、ホルムアルデヒドを0.5重
量部と一定にしてパラフインの混合量を0重量%
から10重量%の範囲で変化させたものである。パ
ラフインを混合していない試料11では、第1回目
の潜熱は57cal/gと大きいが、100回後の潜熱が
50cal/g、1000回後の潜熱が38cal/gと大きく減
少する。パラフインを0.1重量部混合した試料12
では、1000回後の潜熱は49cal/gとなり、試料11
と比較してかなり大きくなる。そしてパラフイン
を0.5重量部から5重量部の範囲で含有した試料
13から試料16では、1000回後の潜熱は50cal/g以
上と大きい。しかしパラフインを10重量部混合し
た試料17では、1000回後の潜熱は44cal/gと低
下する。 試料18から試料22は、CH3CO2Naを56重量%含
有するCH3CO2NaとH2Oよりなる系を100重量
部、PVAを2重量部、パラフインを1重量部と
一定に保つて、ホルムアルデヒドの混合量を0重
量部から10重量部の範囲で変化させたものであ
る。ホルムアルデヒドを混合していない試料18で
は、第1回目の潜熱は58cal/gと大きいが、100
回後には48cal/g、1000回後には38cal/gと小さ
くなる。ホルムアルデヒドを0.1重量部混合した
試料19では、1000回後の潜熱は48cal/gとなり、
試料18に比較してかなり減少の度合が小さくなつ
ている。ホルムアルデヒドを0.2重量部から5重
量部の範囲で含有する試料20、試料21では、1000
回後の潜熱は50cal/g以上と大きい。しかし、ホ
ルムアルデヒドを10重量部混合した試料22では
1000回後の潜熱が44cal/gと低下する。 試料23から試料29は、CH3CO2Naを56重量%含
有するCH3CO2NaとH2Oよりなる系を100重量
部、ホルムアルデヒドを0.5重量部、パラフイン
を1重量部と一定に保つて、PVAを0重量部か
ら30重量部の範囲で変化させたものである。
PVAを混合していない試料23では、第1回目の
潜熱は58cal/gと大きいが、100回後には45cal/
g、1000回後には34cal/gまで低下する。PVAを
0.1重量部含有する試料24では、1000回後の潜熱
は43cal/gとなり、試料23と比較してかなり大き
くなる。そして、PVAを0.5重量部から10重量部
の範囲で含有した試料25から試料27で、1000回後
の潜熱が50cal/g以上と大きい。しかし、PVAを
30重量部混合した試料29では、1000回後の潜熱は
43cal/gとなり、試料26と比較してかなり小さく
なる。 試料30と試料31は、パラフインとして今まで市
販の流動パラフインを用いていたのを、融点が室
温以上のものを用いた場合である。潜熱は流動パ
ラフインを用いた場合とほとんど違いは認められ
ない。 試料32と試料33は、PVAとして重合度が約
1500のものと、約2000のものを用いた場合であ
る。この場合も、潜熱はPVAとして重合度が500
のものを用いた場合と、ほとんど違いは認められ
ない。 以上示したように、CH3CO2Naを53〜69重量%
の範囲で含有するCH3CO2NaとH2Oよりなる系
に、増粘剤として、PVAとホルムアルデヒドそ
れににパラフインを混合することによつて、融解
と凝固を繰返しても、蓄熱量がほとんど変化しな
い安定した性能を有する蓄熱材を得ることができ
る。そして、その望ましい組成としては、第2表
で〇印を付した組成の領域、つまり、CH3CO2Na
とH2Oよりなる系100重量部に対して、PVAを0.5
〜20重量部、ホルムアルデヒドを0.1〜5重量
部、パラフインを0.1〜5重量部の範囲で加えた
場合である。 ところで、本発明における増粘剤において、
PVAは、ホルムアルデヒドの働きによつて互い
に架橋し、蓄熱材融液中に分散して、蓄熱材融液
の粘度を増加させて、CH3CO2Naの沈降を防止す
る。そしてパラフインは、蓄熱材融液とPVAの
界面で働き、CH3CO2Na・3H2Oの融解と凝固に
伴つて、融液とPVAが分離してしまうのを防止
しているものと考えられる。 発明の効果 本発明は、上述のように、CH3CO2Naを53重量
%〜69重量%の範囲で含有するCH3CO2NaとH2O
よりなる系に、相分離を防止する増粘剤として、
PVAとホルムアルデヒド、パラフインを混合し
た畜熱材であるので、蓄熱と放熱を繰返しても蓄
熱量が変化せず、きわめて安定した性能を有す
る。したがつて本発明は、空調用の蓄熱装置をは
じめとして、蓄熱を利用するあらゆる方向に応用
可能なものである。
[Table] Analyze the data in Table 2. Sample 1 to sample 10
CH 3 CO 2 Na content from 52% to 70% by weight
A system consisting of CH 3 CO 2 Na and N 2 O that has been changed to
100 parts by weight, 2 parts by weight of PVA, 0.5 parts by weight of formaldehyde, and 1.0 parts by weight of paraffin were mixed. In sample 1 with a CH 3 CO 2 Na content of 52% by weight, the amount of heat released during the first solidification is large at 55 cal/g, but after repeating melting and solidification 1000 times, the latent heat is small at 37 cal/g. Become.
For sample 2, which is a system consisting of CH 3 CO 2 Na and H 2 O and has a CH 3 CO 2 Na content of 54 parts by weight, melting and solidification was performed at 1000 parts by weight.
The latent heat after repetition is 50 cal/g, which is considerably larger than that of sample 1. and CH 3 CO 2 Na
Samples 2 to 6, in which the system consisting of and H 2 O contains CH 3 CO 2 Na in a range of 54 to 68% by weight, have latent heats of 50 cal/g or more even after repeating melting and solidification 1000 times. However, the system consisting of CH 3 CO 2 Na and H 2 O
For sample 10 with a CH 2 CO 2 Na content of 70% by weight,
The latent heat after 1000 cycles is 39 cal/g, which is considerably smaller than Sample 3, which has a large latent heat. In addition, in heat storage materials containing such thickeners, the latent heat is maximized when the composition of the system consisting of CH 3 CO 2 Na and H 2 O is
The stoichiometric composition of CH 3 CO 2 Na・3H 2 O, i.e.
From the 60.28% by weight of CH 3 CO 2 Na, it can be seen that the composition is on the excess H 2 O side, that is, around 56 to 58% by weight of CH 3 CO 2 Na. For samples 11 to 17, the system consisting of CH 3 CO 2 Na and H 2 O containing 56% by weight of CH 3 CO 2 Na was kept constant at 100 parts by weight, PVA was 2 parts by weight, and formaldehyde was kept at 0.5 parts by weight. The amount of paraffin mixed is 0% by weight.
The content was varied within a range of 10% by weight. In sample 11, which does not contain paraffin, the latent heat at the first run is as large as 57 cal/g, but the latent heat after the 100th run is as high as 57 cal/g.
50 cal/g, the latent heat after 1000 times decreases significantly to 38 cal/g. Sample 12 mixed with 0.1 part by weight of paraffin
Then, the latent heat after 1000 cycles is 49 cal/g, and sample 11
considerably larger compared to and samples containing paraffin in a range of 0.5 parts by weight to 5 parts by weight.
For samples 13 to 16, the latent heat after 1000 cycles is as large as 50 cal/g or more. However, in sample 17 in which 10 parts by weight of paraffin was mixed, the latent heat after 1000 cycles decreased to 44 cal/g. For samples 18 to 22, the system consisting of CH 3 CO 2 Na and H 2 O containing 56% by weight of CH 3 CO 2 Na was kept constant at 100 parts by weight, PVA at 2 parts by weight, and paraffin at 1 part by weight. The amount of formaldehyde mixed was varied from 0 parts by weight to 10 parts by weight. In sample 18, which did not contain formaldehyde, the first latent heat was as large as 58 cal/g, but 100
It decreases to 48 cal/g after 1,000 repetitions and 38 cal/g after 1000 repetitions. For sample 19 mixed with 0.1 part by weight of formaldehyde, the latent heat after 1000 cycles was 48 cal/g,
Compared to sample 18, the degree of decrease is considerably smaller. Sample 20 and sample 21 containing formaldehyde in the range of 0.2 parts by weight to 5 parts by weight,
The latent heat after rotation is large, over 50 cal/g. However, in sample 22 containing 10 parts by weight of formaldehyde,
The latent heat after 1000 cycles drops to 44 cal/g. For samples 23 to 29, the system consisting of CH 3 CO 2 Na and H 2 O containing 56% by weight of CH 3 CO 2 Na was kept constant at 100 parts by weight, formaldehyde at 0.5 parts by weight, and paraffin at 1 part by weight. The amount of PVA was varied from 0 parts by weight to 30 parts by weight.
In sample 23, which does not contain PVA, the latent heat at the first time is as high as 58 cal/g, but after 100 times it is 45 cal/g.
g, decreases to 34 cal/g after 1000 times. PVA
In sample 24 containing 0.1 part by weight, the latent heat after 1000 cycles is 43 cal/g, which is considerably larger than sample 23. Samples 25 to 27 containing PVA in a range of 0.5 parts by weight to 10 parts by weight had a large latent heat of 50 cal/g or more after 1000 cycles. However, PVA
For sample 29 mixed with 30 parts by weight, the latent heat after 1000 cycles is
It becomes 43 cal/g, which is considerably smaller than that of sample 26. In Samples 30 and 31, commercially available liquid paraffin was used as the paraffin, but one with a melting point above room temperature was used. There is almost no difference in latent heat from when liquid paraffin is used. Samples 32 and 33 have a degree of polymerization of PVA.
1500 and about 2000. In this case too, the latent heat is PVA with a degree of polymerization of 500
There is almost no difference from the case of using . As shown above, CH 3 CO 2 Na is 53-69% by weight.
By mixing PVA, formaldehyde, and paraffin as thickeners in a system consisting of CH 3 CO 2 Na and H 2 O containing within the range of A heat storage material having stable performance that does not change can be obtained. The desirable composition is the composition range marked with a circle in Table 2, that is, CH 3 CO 2 Na
and H 2 O, 0.5 parts by weight of PVA
-20 parts by weight, formaldehyde in an amount of 0.1 to 5 parts by weight, and paraffin in an amount of 0.1 to 5 parts by weight. By the way, in the thickener in the present invention,
PVA crosslinks with each other under the action of formaldehyde and is dispersed in the heat storage material melt, increasing the viscosity of the heat storage material melt and preventing precipitation of CH 3 CO 2 Na. Paraffin is thought to work at the interface between the heat storage material melt and PVA, preventing the melt and PVA from separating as CH 3 CO 2 Na・3H 2 O melts and solidifies. It will be done. Effects of the Invention As described above, the present invention provides CH3CO2Na and H2O containing CH3CO2Na in a range of 53% to 69% by weight .
As a thickener to prevent phase separation in a system consisting of
Since it is a heat storage material that is a mixture of PVA, formaldehyde, and paraffin, the amount of heat storage does not change even after repeated heat storage and heat release, and it has extremely stable performance. Therefore, the present invention is applicable to all applications that utilize heat storage, including heat storage devices for air conditioning.

Claims (1)

【特許請求の範囲】 1 酢酸ナトリウム(CH3CO2Na)を53〜69重量
%の範囲で含有する、酢酸ナトリウムと水よりな
る系に、増粘剤として、ポリビニルアルコール、
ホルムアルデヒドおよびパラフインを加えた混合
物であることを特徴とする蓄熱材。 2 酢酸ナトリウムと水よりなる系100重量部に
対して、ポリビニルアルコールを0.5〜20重量
部、ホルムアルデヒドを0.1〜5重量部、パラフ
インを0.1〜5重量部の範囲で加え、混合したこ
とを特徴とする特許請求の範囲第1項記載の蓄熱
材。
[Claims] 1. A system consisting of sodium acetate and water containing sodium acetate (CH 3 CO 2 Na) in the range of 53 to 69% by weight, polyvinyl alcohol, as a thickener,
A heat storage material characterized by being a mixture containing formaldehyde and paraffin. 2. 0.5 to 20 parts by weight of polyvinyl alcohol, 0.1 to 5 parts by weight of formaldehyde, and 0.1 to 5 parts by weight of paraffin are added and mixed to 100 parts by weight of a system consisting of sodium acetate and water. A heat storage material according to claim 1.
JP23271882A 1982-09-17 1982-12-28 Heat-storing material Granted JPS59122575A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP23271882A JPS59122575A (en) 1982-12-28 1982-12-28 Heat-storing material
PCT/JP1983/000307 WO1984001167A1 (en) 1982-09-17 1983-09-14 Thermal energy storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23271882A JPS59122575A (en) 1982-12-28 1982-12-28 Heat-storing material

Publications (2)

Publication Number Publication Date
JPS59122575A JPS59122575A (en) 1984-07-16
JPS6111987B2 true JPS6111987B2 (en) 1986-04-05

Family

ID=16943693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23271882A Granted JPS59122575A (en) 1982-09-17 1982-12-28 Heat-storing material

Country Status (1)

Country Link
JP (1) JPS59122575A (en)

Also Published As

Publication number Publication date
JPS59122575A (en) 1984-07-16

Similar Documents

Publication Publication Date Title
US4292189A (en) Thermal energy storage composition comprising sodium sulfate decahydrate; sodium carbonate decahydrate; and sodium tetraborate decahydrate
US4561989A (en) Heat storage material
US2706716A (en) Heat storage material
Feilchenfeld et al. Calcium chloride hexahydrate: a phase-changing material for energy storage
US4406806A (en) Thermal energy storage
JPS6111987B2 (en)
JPS6111988B2 (en)
JPH0310674B2 (en)
JPS6031586A (en) Thermal energy storage material
JPH0310675B2 (en)
JPS6031587A (en) Thermal energy storage material
US4465611A (en) Heat storage material
JPH0860141A (en) Thermal storage medium
JPS6324029B2 (en)
JPS6367513B2 (en)
JPS5947286A (en) Heat storage material
EP0054758A1 (en) Hydrated MgCl2 or Mg(NO3)2/MgCl2 reversible phase change compositions
JPS60155285A (en) Thermal energy storage material composition
JPS6121579B2 (en)
JPH11323320A (en) Latent heat storage agent composition
JPS59170179A (en) Heat storage material
SU1404516A1 (en) Heat-accumulating composition
JPS5941381A (en) Heat storage material
JPH0215598B2 (en)
JPH0524954B2 (en)