JPS5912156B2 - Fuel loading method for boiling water reactors - Google Patents

Fuel loading method for boiling water reactors

Info

Publication number
JPS5912156B2
JPS5912156B2 JP53094927A JP9492778A JPS5912156B2 JP S5912156 B2 JPS5912156 B2 JP S5912156B2 JP 53094927 A JP53094927 A JP 53094927A JP 9492778 A JP9492778 A JP 9492778A JP S5912156 B2 JPS5912156 B2 JP S5912156B2
Authority
JP
Japan
Prior art keywords
control rod
fuel
cycle
fuel bundle
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53094927A
Other languages
Japanese (ja)
Other versions
JPS5522135A (en
Inventor
利久 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP53094927A priority Critical patent/JPS5912156B2/en
Publication of JPS5522135A publication Critical patent/JPS5522135A/en
Publication of JPS5912156B2 publication Critical patent/JPS5912156B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 本発明は、各燃料棒の燃焼度を平均化させ、常時出力分
布の平坦化を計った沸騰水型原子炉の燃料装荷方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel loading method for a boiling water reactor that averages the burnup of each fuel rod and flattens the power distribution at all times.

従来沸騰水型原子炉の取替炉心においては、炉心全体に
ほぼ一様に新燃料を分散させるスキャツタ装荷方式を採
ることが多い。
Replacement cores for conventional boiling water reactors often employ a scatter loading method that distributes new fuel almost uniformly throughout the core.

この方式では、制御棒に隣接するように配置した(制御
棒セルという)4本の燃料バンドルは、それぞれ照射度
の異る別個の取替燃料グループに属していて、各制御棒
セルの4本の燃料バンドルの平均燃焼度がほぼ一様の値
に維持され、サイクルを通じて出力が平坦化され、かつ
燃料の移動操作回数が少くて済む。
In this system, the four fuel bundles placed adjacent to the control rods (called control rod cells) each belong to a separate replacement fuel group with a different irradiance, and the four fuel bundles in each control rod cell The average burnup of the fuel bundle is maintained at a nearly uniform value, flattening the power output throughout the cycle, and requiring fewer fuel transfer operations.

この方式の実例を第1.2,3図に示す。Examples of this method are shown in Figures 1.2 and 3.

第1図は初期サイクルの照射前の状態を示し、燃料バン
ドルは0,1,2,3サイクルの照射経歴のもの1.2
,3.4を配置しており、1サイクルの照射による炉心
平均燃焼度は5GWD/STあるが、■サイクル後の燃
料バンドルは、未照射燃料(0,0GWD/5T)l−
+21サイクル照射済燃料(5,0GWD/5T)2−
)32サイクル照射済燃料(10,0GWD/5T)3
−+43サイクル照射済燃料(15,OGwp/5T)
4−+D (廃棄)に変化する(第2図)。
Figure 1 shows the state before irradiation during the initial cycle, and the fuel bundles are from 0, 1, 2, and 3 cycles of irradiation history1.2
, 3.4, and the average core burnup after one cycle of irradiation is 5GWD/ST, but the fuel bundle after the ■ cycle is unirradiated fuel (0.0GWD/5T) l-
+21 cycle irradiated fuel (5,0GWD/5T) 2-
) 32-cycle irradiated fuel (10,0GWD/5T) 3
-+43 cycle irradiated fuel (15,OGwp/5T)
Changes to 4-+D (discarded) (Figure 2).

そして廃棄燃料バンドルDは新燃料バンドル1に交換す
る。
Then, the discarded fuel bundle D is replaced with a new fuel bundle 1.

こうしてサイクル毎に順次に新燃料を補給して、循環す
る。
In this way, new fuel is sequentially supplied and circulated for each cycle.

一方原子炉運転中に炉心に挿入されている制御棒の無形
的な配置は、第3図A1. A2 、 B1. B2の
4種である。
On the other hand, the intangible arrangement of control rods inserted into the reactor core during reactor operation is shown in Figure 3 A1. A2, B1. There are 4 types of B2.

図中X印が、格子状に整列する制御棒セルのうち、制御
棒が挿入されたものを示す。
In the figure, X marks indicate cells into which control rods are inserted among the control rod cells arranged in a grid.

この4種の配置をまとめて示すと、第3図Cの如くなり
、各種を同回数づつ使用すると、中心部領域のどの制御
棒セルにも一様に制御棒が挿入されたことになる。
If these four types of arrangement are collectively shown as shown in FIG. 3C, if each type is used the same number of times, the control rods will be uniformly inserted into every control rod cell in the central region.

こうしてスキャツタ装荷方式に於いて制御棒配置に上記
4種を繰り返して用いることによって燃料燃焼度分布は
平均化され、出力の平坦化ができる。
In this way, by repeatedly using the above four types of control rod arrangement in the scatter loading system, the fuel burnup distribution is averaged and the output can be flattened.

しかし反面に於いて、この4種の制御棒の配置替えは、
従来の方式の大きな欠点ともなっている。
However, on the other hand, the rearrangement of these four types of control rods
This is also a major drawback of the conventional method.

制御棒を引抜いて別位置に挿入させるための操作に煩雑
さがある上に、変換途中に於ける制御棒配置の対称性の
崩れによって出力分布が大きく歪み、また変動を起し、
燃料棒を破損する結果を招くことがあり得るからである
Not only is the operation of pulling out a control rod and inserting it in a different position complicated, but the loss of symmetry in the control rod arrangement during conversion can cause large distortions and fluctuations in the output distribution.
This is because it may result in damage to the fuel rods.

そこで本発明方法は、制御棒挿入の位置を変換せずに燃
料の健全性を高め、かつ出力分布の平坦化を計ることが
できる燃料装荷方法を提供する。
Therefore, the method of the present invention provides a fuel loading method that can improve the integrity of the fuel and flatten the power distribution without changing the control rod insertion position.

第4図以下にその方法を詳しく説明する。The method will be explained in detail below in FIG.

制御棒装荷はスキャツタ方式を採る。The control rods will be loaded using the scatter method.

しかして制御棒セルの格子状整列の縦、横、斜めに一つ
置きとなり、かつ炉心部中心から縦方向にも、横方向に
も、また斜め方向にも対称となる位置に制御棒の配置を
固定的に設ける。
Therefore, the control rods are arranged every other vertically, horizontally, and diagonally in the lattice-like arrangement of the control rod cells, and are arranged symmetrically from the center of the reactor core in the vertical, horizontal, and diagonal directions. be fixedly provided.

例えば前記第3図A1.A2配列の如くにし、この配列
は変更しない。
For example, the above-mentioned FIG. 3 A1. Make it similar to the A2 arrangement, and do not change this arrangement.

第4図の正方形で囲った位置がその一例である。An example is the position surrounded by a square in FIG.

しかして頭初の燃料バンドルは、次の如き燃焼度のもの
を配置する。
Therefore, the initial fuel bundle is arranged with burnup as follows.

制御棒が挿入される制御棒セルに於いては、al−−−
−・・O,OGWD/ST a、・、、、、 5.QQWD/5T a3−−−−10. OGWD/S T a4−−−−・−16,OGWD/ST 制御棒が挿入されない制御棒セルに於いては、bl・・
・・・・ 0.0GWD/5T b2・・・・・・ 4.0GWD/5T b3・・・・・・10. OGWD/S Tb4・・・
・・・14.OGWD/ST こうして原子炉を運転し、炉心平均取得燃焼度約5.0
QWD/STの燃焼末期(1サイクル)になると、第5
図の如(なる。
In the control rod cell into which the control rod is inserted, al---
-...O,OGWD/ST a,...5. QQWD/5T a3---10. OGWD/ST a4-----・-16, OGWD/ST In the control rod cell where no control rod is inserted, bl...
...0.0GWD/5T b2...4.0GWD/5T b3...10. OGWD/S Tb4...
...14. OGWD/ST The reactor is operated in this way, and the core average burnup is approximately 5.0.
At the end of QWD/ST combustion (1 cycle), the 5th
As shown in the diagram.

即ち、第4図al (0,0GWD/ST)→第5図a
′2(4,OGWD/8T)第4図a2(6,0GWD
/ST)→第5図a’3(8,OGWn/sT)第4図
a3(10,0GWD/5T)−+第5図a’4 (1
4,OGWD/ST)第4図a4(14,oGWD//
sT)→第5図d (20,OGWD/ST)に変化す
る。
That is, Fig. 4 al (0,0GWD/ST) → Fig. 5 a
'2 (4, OGWD/8T) Figure 4 a2 (6,0GWD
/ST) → Fig. 5 a'3 (8, OGWn/sT) Fig. 4 a3 (10,0GWD/5T) - + Fig. 5 a'4 (1
4, OGWD/ST) Figure 4 a4 (14, oGWD//
sT)→Fig. 5d (20, OGWD/ST).

また第4図b1(0,0GWD/5T)−+第5図b’
、(6,0GWD/ST)第4図b2(4,0GWD/
ST)→第5図b′3(to、OGWD/ST)第4図
b3(1o、o GWD/ST)→第5図b’、(16
,OGWD/8T)第4図b4(14,o GWD/S
T)→第5図d(20,0GWD/胛)に変わる。
Also, Fig. 4 b1 (0,0GWD/5T) - + Fig. 5 b'
, (6,0GWD/ST) Fig. 4 b2 (4,0GWD/ST)
ST) → Figure 5 b'3 (to, OGWD/ST) Figure 4 b3 (1o, o GWD/ST) → Figure 5 b', (16
, OGWD/8T) Fig. 4 b4 (14, o GWD/S
T) → change to Figure 5 d (20,0GWD/fly).

寿命を終えたd、dは廃棄処分にし、新燃料と交換する
(第6図)。
When the lifespan of d and d has ended, they are disposed of and replaced with new fuel (Figure 6).

しかし、この時同時に(第7図に示すように)、制御棒
に隣接した燃料バンドルa’2 t a′3t a′4
を制御棒に隣接しなかった燃料バンドルb’2 t b
′3t b’4と交換する。
However, at the same time (as shown in FIG. 7), the fuel bundle a'2 t a'3t a'4 adjacent to the control rod
The fuel bundle b'2 t b that was not adjacent to the control rod
Exchange with '3t b'4.

この交換は、b′!、b′3.b′4を1つの制御棒セ
ルからでなく3つの制御棒セルから選択して行う。
This exchange is b'! , b'3. b'4 is performed not from one control rod cell but from three control rod cells.

(この場合a′2とb′2の交換だけでも効果がある。(In this case, simply exchanging a'2 and b'2 is effective.

a/3t a′41 b’3 j t(4は燃焼が充分
進んでおり、核分裂性物質の量が減少しており、大きな
出力を期待できないから、それ程留意しなくてもよいか
らである)。
a/3t a'41 b'3 j t (For 4, the combustion has progressed sufficiently and the amount of fissile material has decreased, so a large output cannot be expected, so there is no need to pay much attention to it.) .

こうしてまた1サイクルの照射が終了したとき、新燃料
の補給と共に、再び制御棒に接した制御棒セルの燃料バ
ンドルを接しない燃料バンドルの同一照射サイクル経歴
のものと交換する。
When one cycle of irradiation is completed in this way, new fuel is replenished and the fuel bundle of the control rod cell that is in contact with the control rod is replaced again with a fuel bundle that has not been in contact with the control rod and has undergone the same irradiation cycle.

この交換の繰返しにより、4サイクルを一周期として各
燃料バンドルは1サイクル宛制御棒に隣接することにな
る。
By repeating this exchange, each fuel bundle will be adjacent to the control rod destined for one cycle, with each cycle being four cycles.

これは、従来に於いて行われた方式、4種のパターンを
繰返して各燃料バンドルに制御棒を1度づつ挿入させる
のと同様の結果となる。
This is similar to the conventional method of inserting control rods into each fuel bundle once by repeating four different patterns.

このようにしたことによる出力上の作用効果を次に述べ
る。
The effects of this arrangement on output will be described below.

第8図は、制御棒と燃料バンドルとの配置関係である。FIG. 8 shows the arrangement relationship between control rods and fuel bundles.

このような形状で制御棒が挿入されたときとないときと
の燃料棒の出力分布を三群二次元拡散コードで計算した
結果が第1表である。
Table 1 shows the results of calculations using the three-group two-dimensional diffusion code for the power distribution of the fuel rods with and without the control rods inserted in this shape.

Aは制御棒のあるとき、Bはないときを示す。A indicates when the control rod is present, B indicates when there is no control rod.

A、Bそれぞれの(ltl)位置の燃料棒出力を比較す
ると、A・・・・・・0.41B・・・・・・1.20
で、制御棒挿入時は、出力が低く抑えられて、核分裂性
物質の消耗は少く、燃え残ることが分る。
Comparing the fuel rod outputs at the (ltl) positions of A and B, A...0.41B...1.20
It can be seen that when the control rods are inserted, the output is kept low, and the fissile material is consumed less and remains burnt.

次に第2表A t Bは、l0QWD/STまで制御棒
が挿入され続けて引抜かれた場合と、l0GWD/ST
まで制御棒が引抜かれ続けた場合の出力分布を計算した
ものである。
Next, Table 2 A t B shows the case where the control rod is continuously inserted and withdrawn up to 10QWD/ST, and the case where the control rod is continuously inserted and withdrawn until 10GWD/ST.
This is a calculation of the power distribution if the control rod continues to be withdrawn until

同じ<(1−1)位置の燃料棒の出力はA・・・・・・
1,36B・・・・・・1.07となる。
The output of the fuel rod at the same <(1-1) position is A...
1,36B...1.07.

従って若し、制御棒を固定的に配置して運転した場合に
は、燃料バンドル内の最大出力は(1−1)位置の燃料
棒に表われ、1.36にも達することがあり得ることを
示している。
Therefore, if the control rods are fixedly arranged and operated, the maximum output in the fuel bundle will appear at the fuel rod at the (1-1) position and can reach as much as 1.36. It shows.

更に第3表A、Bは同様に50WD/STまでの制御棒
の有無を比較した出力分布である。
Further, Tables A and B in Table 3 similarly compare power distributions with and without control rods up to 50WD/ST.

Aに於ける(1−1)位置の燃料棒出力は1.26で、
ここで制御棒を引抜いて10 QW D/STまで燃焼
させた場合の出力分布は第4表に示す通りであって(1
−1)燃料棒出力は1.15となる。
The fuel rod output at position (1-1) at A is 1.26,
The power distribution when the control rod is pulled out and burned to 10 QW D/ST is as shown in Table 4 (1
-1) The fuel rod output will be 1.15.

上記第2表に示した1、36より大巾に低下させられる
ことが分る。
It can be seen that it is significantly lower than 1 and 36 shown in Table 2 above.

即ち制御棒の挿入、引抜きを適当に配分することによっ
て燃料棒の局部的出力増大を抑えて出力分布を平坦化す
る。
That is, by appropriately distributing the insertion and withdrawal of control rods, local increases in the output of the fuel rods are suppressed and the output distribution is flattened.

しかして本発明の方法では、制御棒設置位置を定着して
、制御棒操作の煩雑さを確消し、かつ燃料交換を簡素化
し、しかも上記のように燃料の健全性を確保して、出力
分布の平坦化を計った特徴ある沸騰型原子炉の燃料人荷
方法とすることができる。
However, the method of the present invention fixes the control rod installation position, eliminates the complexity of control rod operation, simplifies fuel exchange, and ensures the soundness of the fuel as described above, resulting in power distribution. This is a unique method of fuel loading for boiling reactors that aims to flatten the surface area.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の炉心に於ける燃料装荷配置の燃焼初期の
状態説明図、第2図は同燃焼末期の状態説明図、第3図
は制御棒の無形的な配置を示すパターン図、第4図は本
発明の一実施例を説明する燃料装荷配置の当サイクル燃
焼初期の状態説明図、第5図は同燃焼末期の状態説明図
、第6図は同次サイクルへ移行する途中の状態説明図、
第7図は同次サイクル燃焼初期の状態説明図、第8図は
燃料バンドルと制御棒の関係を説明する制御棒セルの拡
大した横断面図である。
Figure 1 is an explanatory diagram of the fuel loading arrangement in a conventional core at the initial stage of combustion, Figure 2 is an explanatory diagram of the final stage of combustion, Figure 3 is a pattern diagram showing the intangible arrangement of control rods, Figure 4 is an explanatory diagram of the state of the fuel loading arrangement at the beginning of combustion in this cycle to explain an embodiment of the present invention, Figure 5 is an explanatory diagram of the state at the end of combustion, and Figure 6 is the state in the middle of transition to the next cycle. Explanatory diagram,
FIG. 7 is an explanatory diagram of the state at the initial stage of homogeneous cycle combustion, and FIG. 8 is an enlarged cross-sectional view of the control rod cell, illustrating the relationship between the fuel bundle and the control rods.

Claims (1)

【特許請求の範囲】[Claims] 14本の燃料バンドルを正方形に並べてその中心に十字
形の制御棒を挿入できるようにした制御棒セルを一単位
とし、この制御棒セルを格子状に整列させた炉心におい
て、この格子状列の縦、横、斜めに一つ置きとなり、か
つ炉心中心から縦、横、斜めに対称となる制御棒セルの
中心に対応する位置に制御棒を定設し、各制御棒セルに
は0,1゜2.3サイクルの照射済燃料バンドルを配置
して、サイクル毎に4サイクル照射燃料バンドルを新燃
料バンドルと交換する原則を守ると共に、各サイクル毎
に、前記制御棒が挿入される制御棒セルの燃料バンドル
と制御棒の挿入されない制御棒セルに属して未だ制御棒
に隣接したことのない同じ照射サイクル経歴の燃料バン
ドルとを交換するようにしたことを特徴とする沸騰水型
原子炉の燃料装荷方法。
In a reactor core in which 14 fuel bundles are arranged in a square and a control rod cell into which a cross-shaped control rod can be inserted is one unit, and these control rod cells are arranged in a grid, Control rods are set at positions corresponding to the centers of control rod cells that are arranged every other vertically, horizontally, and diagonally and are symmetrical vertically, horizontally, and diagonally from the center of the reactor core.゜2. A control rod cell in which the irradiated fuel bundle of 3 cycles is arranged and the control rod is inserted in each cycle while observing the principle of replacing the 4-cycle irradiated fuel bundle with a new fuel bundle every cycle. A fuel bundle for a boiling water reactor, characterized in that a fuel bundle of the same irradiation cycle that belongs to a control rod cell in which no control rod is inserted and has the same irradiation cycle history and that has never been adjacent to a control rod is replaced. Loading method.
JP53094927A 1978-08-03 1978-08-03 Fuel loading method for boiling water reactors Expired JPS5912156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53094927A JPS5912156B2 (en) 1978-08-03 1978-08-03 Fuel loading method for boiling water reactors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53094927A JPS5912156B2 (en) 1978-08-03 1978-08-03 Fuel loading method for boiling water reactors

Publications (2)

Publication Number Publication Date
JPS5522135A JPS5522135A (en) 1980-02-16
JPS5912156B2 true JPS5912156B2 (en) 1984-03-21

Family

ID=14123594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53094927A Expired JPS5912156B2 (en) 1978-08-03 1978-08-03 Fuel loading method for boiling water reactors

Country Status (1)

Country Link
JP (1) JPS5912156B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6019059U (en) * 1983-07-01 1985-02-08 日立工機株式会社 toner storage container

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111257A1 (en) 2010-03-09 2011-09-15 三菱電機株式会社 Static apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6019059U (en) * 1983-07-01 1985-02-08 日立工機株式会社 toner storage container

Also Published As

Publication number Publication date
JPS5522135A (en) 1980-02-16

Similar Documents

Publication Publication Date Title
JP2915200B2 (en) Fuel loading method and reactor core
US5677938A (en) Method for fueling and operating a nuclear reactor core
US6263038B1 (en) MOX fuel arrangement for nuclear core
JP2004507711A (en) Improved nuclear fuel assemblies
KR20060050547A (en) Advanced first core fuel assembly configuration and method of implementing the same
US6504889B1 (en) Method of operating reactor
WO1993013530A1 (en) Core of reactor, fuel assembly and fuel spacer
JPS5912156B2 (en) Fuel loading method for boiling water reactors
JPS5858036B2 (en) Light water reactor and its operation method
JPH05249270A (en) Core of nuclear reactor
JP3303583B2 (en) Fuel assembly and first loaded core
JP3080663B2 (en) Operation method of the first loading core
JP4044993B2 (en) Reactor fuel loading method
JPH0644055B2 (en) Boiling Water Reactor Core Structure and Fuel Loading Method
JP3828690B2 (en) Initial loading core of boiling water reactor and its fuel change method
JPS6013283A (en) Boiling water reactor
JPH0555836B2 (en)
JPH0527075B2 (en)
JP2852101B2 (en) Reactor core and fuel loading method
JP4368056B2 (en) Fuel assemblies for boiling water reactors
JPS6230395B2 (en)
JPH0650351B2 (en) Reactor core
JPH06186372A (en) Operation method for nuclear reactor
JPH0432355B2 (en)
JPH08129092A (en) Initial loading reactor core