JPS5858036B2 - Light water reactor and its operation method - Google Patents

Light water reactor and its operation method

Info

Publication number
JPS5858036B2
JPS5858036B2 JP51158335A JP15833576A JPS5858036B2 JP S5858036 B2 JPS5858036 B2 JP S5858036B2 JP 51158335 A JP51158335 A JP 51158335A JP 15833576 A JP15833576 A JP 15833576A JP S5858036 B2 JPS5858036 B2 JP S5858036B2
Authority
JP
Japan
Prior art keywords
fuel
fuel rods
rods
square lattice
loaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51158335A
Other languages
Japanese (ja)
Other versions
JPS5382997A (en
Inventor
利久 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP51158335A priority Critical patent/JPS5858036B2/en
Publication of JPS5382997A publication Critical patent/JPS5382997A/en
Publication of JPS5858036B2 publication Critical patent/JPS5858036B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Feeding And Controlling Fuel (AREA)

Description

【発明の詳細な説明】 本発明は原子力発電所における軽水炉とその運転方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light water reactor in a nuclear power plant and a method of operating the same.

経済的な発電には、原子炉の出力レベルの向上が要求さ
れる。
Economical power generation requires an increase in the power level of nuclear reactors.

原子炉の出力レベルを向上するには、原子炉の出力密度
(KW/J)を向上することが考えられる。
In order to improve the power level of a nuclear reactor, it is possible to improve the power density (KW/J) of the nuclear reactor.

しかしながら、原子炉の出力レベルの上限を制限する要
因の1つGこ燃料棒の表面熱流束がある。
However, one of the factors that limits the upper limit of the power level of a nuclear reactor is the surface heat flux of the fuel rods.

表面熱流束(Kcal/Tll: hr )は燃料棒表
面の単位面積・単位時間当りの伝熱量であるが、原子炉
ではこれと同等の線出力密度(KW/77Z )を慣例
的に使用する。
Surface heat flux (Kcal/Tll: hr) is the amount of heat transferred per unit area and unit time on the surface of a fuel rod, and in nuclear reactors, the equivalent linear power density (KW/77Z) is conventionally used.

この線出力密度は燃料棒軸方向単位長さ当りの発熱量で
あり、表面熱流束に燃料棒円周長さく2πr)を乗じた
ものである。
This linear power density is the calorific value per unit length in the axial direction of the fuel rod, and is obtained by multiplying the surface heat flux by the circumferential length of the fuel rod (2πr).

例えばジルカロイ−2製の被覆管内に入れられた二酸化
ウラン焼結ペレットを7×7の正方格子に配列した燃料
集合体を考える。
For example, consider a fuel assembly in which sintered uranium dioxide pellets placed in a Zircaloy-2 cladding tube are arranged in a 7x7 square lattice.

この燃料集合体が例えば368体直円筒形に近い形状に
配置され、4体の燃料集合体の中央に1体の割合で十字
形断面の制御棒が挿入される。
For example, 368 fuel assemblies are arranged in a shape close to a right cylinder, and a control rod having a cross-shaped cross section is inserted into the center of each of the four fuel assemblies.

いま、前記各燃料集合体の核分裂性物質235Uの平均
濃縮度が一様のものとして装荷されると中性子のもれが
あるので、中性子束は炉心中心部で高く、外周部で低い
ものとなる。
Now, if each fuel assembly is loaded with a uniform average enrichment of 235 U of fissile material, there will be neutron leakage, so the neutron flux will be high at the center of the core and low at the outer periphery. .

したがって、出力も炉中心部で高く、外周部で低いもの
となる。
Therefore, the output is high at the center of the furnace and low at the outer periphery.

すなわち、燃料集合体を構成する燃料棒の線出力密度(
表面熱流束)が炉心中心部で高く、外周部で低い。
In other words, the linear power density (
surface heat flux) is high at the center of the core and low at the outer periphery.

この結果、原子炉運転上の熱的制限である線出力密度等
が制限値を越えてしまうおそれがあり、原子炉運転中の
制御棒運用に困難を伴う可能性がある。
As a result, there is a risk that the linear power density, which is a thermal limit on reactor operation, may exceed the limit value, and there is a possibility that control rod operation during reactor operation may be difficult.

これを改善するために、燃料装荷の方法に色々工夫がな
されている。
In order to improve this, various improvements have been made to fuel loading methods.

例えば、原子炉中心部の燃料集合体の核分裂性物質の量
(平均濃縮度)を減らし、外周部の核分裂性物質の量を
多くしたりしているが、これは出力分布の平均化(こは
大きな効果があるが、反応度の高い燃料集合体を中性子
のもれの大きい外周部に配置しているので、中性子経済
的には悪く、取得燃焼度を減らすことになる。
For example, efforts are being made to reduce the amount of fissile material (average enrichment) in the fuel assembly in the center of the reactor and increase the amount of fissile material in the outer periphery. Although this method has a great effect, since the fuel assembly with high reactivity is placed at the outer periphery where neutron leakage is large, it is bad in terms of neutron economy and reduces the acquired burnup.

取得燃焼度を高めるには、炉心中央部に核分裂性物質の
量を多くした方がよい。
In order to increase the obtained burnup, it is better to increase the amount of fissile material in the center of the reactor core.

また、燃料集合体を構成している燃料棒本数を増加して
、燃料集合体の総伝熱面積を大きくすることにより熱的
制限(こ対する余裕を増すことも考えられる。
It is also conceivable to increase the margin for thermal limitations by increasing the number of fuel rods constituting the fuel assembly and increasing the total heat transfer area of the fuel assembly.

例えば炉心全体を9×9燃料集合体のみで考える。For example, consider the entire reactor core as only 9x9 fuel assemblies.

この場合、熱的制限は現行の8×8燃料集合体よりも熱
伝達表面積が増加し、表面熱流束が低下(線出力密度が
低下)するため改善される。
In this case, thermal limitations are improved over current 8x8 fuel assemblies due to increased heat transfer surface area and lower surface heat flux (lower linear power density).

しかしながら、8×8燃料では64本、9×9燃料では
81本の燃料棒になるため、約27%も燃料棒本数が増
加する。
However, the number of fuel rods increases by about 27%, since 8×8 fuel requires 64 fuel rods and 9×9 fuel requires 81 fuel rods.

燃料集合体の製造コストは燃料棒本数の増大につれて大
幅に増加するため、熱的制限上余裕のある位置の燃料ま
で9×9燃料を使用するのは燃料製造コスト上不利であ
る。
Since the manufacturing cost of a fuel assembly increases significantly as the number of fuel rods increases, it is disadvantageous in terms of fuel manufacturing cost to use 9x9 fuel until the fuel is located at a position where there is sufficient margin due to thermal limitations.

本発明は、このような中性子経済の不利、燃料製造コス
トの不利をできるだけ低減し、熱的制限を満し、燃焼度
取得の向上または出力レベルの向上をはかることを目的
とする。
The present invention aims to reduce such disadvantages in neutron economy and fuel production cost as much as possible, satisfy thermal limitations, and improve burnup acquisition or output level.

この目的は、本発明の特定発明によれば、軽水炉におい
て、炉心を構成する外寸法の等しい多数の燃料集合体に
、外径が小さく本数の多い燃料棒の正方格子配列からな
るものと、外径が大きく本数の少ない燃料棒の正方格子
配列からなるものを用い、前者本数の多い燃料棒からな
る燃料集合体を有する中心領域と、後者本数の少ない燃
料棒からなる燃料集合体のみを装荷するようにした周辺
領域との2領域に炉心を分けることにより遠戚される。
According to the specific invention of the present invention, in a light water reactor, a large number of fuel assemblies with equal external dimensions constituting the core are composed of a square lattice arrangement of fuel rods having a small outer diameter and a large number of fuel rods. A square lattice array of fuel rods with a large diameter and a small number is used, and only the central region with a fuel assembly consisting of a large number of fuel rods in the former and the fuel assembly with a small number of fuel rods in the latter are loaded. By dividing the reactor core into two regions, a peripheral region and a peripheral region,

以下、本発明の第1実施例を説明する。A first embodiment of the present invention will be described below.

前述の燃料集合体の配列において、中心部の7×7燃料
を、この7×7燃料と235Uの量が同じ8×8燃H,
に置き換えた場合、燃料集合体の出力密度(KW/l)
は7×7燃料、8×8燃料とも同じであるから、燃料棒
本数が増した分だけ、8×8燃料の燃料棒の線出力密度
は約12%低下しく表面熱流束の低下は、もう少し小さ
い)、熱的制限に対する余裕が増す結果となる。
In the arrangement of the fuel assembly described above, the 7x7 fuel in the center is replaced with the 8x8 fuel H, which has the same amount of 235U as the 7x7 fuel.
When replaced by , the power density of the fuel assembly (KW/l)
is the same for both 7x7 fuel and 8x8 fuel, so as the number of fuel rods increases, the linear power density of the 8x8 fuel rods decreases by about 12%, and the decrease in surface heat flux is slightly smaller. small), resulting in increased margin for thermal limitations.

その結果その余裕分だけ出力レベルを増加させることが
可能となる。
As a result, it becomes possible to increase the output level by the margin.

また、燃料棒本数の多い燃料集合体の数は、中心部領域
の燃料に限るので、燃料製造コストの上昇を緩和するこ
とができる。
Further, since the number of fuel assemblies with a large number of fuel rods is limited to the fuel in the central region, an increase in fuel manufacturing cost can be alleviated.

この効果は、7×7燃料と8×8燃料の組み合わせに限
らず、8×8燃料と9×9燃料とでも同じことが言える
This effect is not limited to the combination of 7x7 fuel and 8x8 fuel, but the same can be said for 8x8 fuel and 9x9 fuel.

つぎに、図面を参がしつつ本発明の第2の実施例を説明
する。
Next, a second embodiment of the present invention will be described with reference to the drawings.

まず、第1図に示されるような本発明の軽水炉において
は、炉心1を中心領域2(左下り斜線記入部分)と、中
心領域2を囲む中間領域3(右下り斜線記入部分)と、
外周領域4(空白部分)とに分け、燃料棒配列の異った
燃料集合体5,6゜7を装荷する。
First, in the light water reactor of the present invention as shown in FIG. 1, the reactor core 1 is divided into a central region 2 (shaded area downward to the left), an intermediate region 3 surrounding the central region 2 (shaded area downward to the right),
It is divided into an outer peripheral area 4 (blank area), and fuel assemblies 5, 6.7 with different fuel rod arrangements are loaded therein.

燃料集合体5は第2図に示されるような8×8正方格子
配列であり、燃料集合体6,7は第3図に示されるよう
な7×7正方格子配列である。
The fuel assembly 5 has an 8×8 square lattice arrangement as shown in FIG. 2, and the fuel assemblies 6 and 7 have a 7×7 square lattice arrangement as shown in FIG.

燃料集合体5と6,7は8×8配列と7×7配列の差が
あるものの総核物質(例えば235Uと238g)量は
、例えば7×7は187時、8×8は183に7といっ
たように殆んど変らない。
Although fuel assemblies 5, 6, and 7 are arranged in an 8x8 arrangement and a 7x7 arrangement, the total amount of nuclear material (for example, 235U and 238g) is 187 hours for 7x7, and 183 for 8x8. As such, not much has changed.

なお、ここで燃料集合体5,6における燃料棒の核分裂
性物質(例えば235u)の量は多く、燃料集合体7の
核分裂性物質の量は少ない。
Note that here, the amount of fissile material (for example, 235u) in the fuel rods in the fuel assemblies 5 and 6 is large, and the amount of fissile material in the fuel assembly 7 is small.

核分裂性物質(,235U)量を多くするには、その濃
縮度を上げればよい。
In order to increase the amount of fissile material (235U), it is sufficient to increase its enrichment.

軽水炉の場合、燃料集合体平均濃縮度2%程度の微濃縮
燃料を使用しているので、これを例えば3%程度に濃縮
度を上げるだけで、核分裂性物質量3% は2%−1,5となり、一挙(こ5割増となる。
In the case of light water reactors, slightly enriched fuel with an average fuel assembly enrichment of about 2% is used, so simply increasing the enrichment to about 3% will reduce the amount of fissile material to 3% by 2%-1, 5, which is a 50% increase.

このような炉心では、中心領域および中間領域には23
5Uの多い燃料集合体を、また外周領域(こは235U
の少ない燃料を配置するので中性子経済上有利である。
In such a core, the central and intermediate regions contain 23
The fuel assembly with a large number of 5U is also
This is advantageous in terms of neutron economy since it requires less fuel.

また、中心領域の燃料は燃料棒本数の多い8×8燃料を
使用しているので、′35U量が多くても熱的制限は満
足できる。
Further, since the fuel in the central region is 8×8 fuel with a large number of fuel rods, the thermal limit can be satisfied even if the amount of '35U is large.

中間領域では出力ビーキングが低いので、235U量の
多い7×7燃料でも熱的制限が満足できる。
Since the output peaking is low in the intermediate region, the thermal limit can be satisfied even with 7x7 fuel with a large amount of 235U.

ここで、中間領域には7×7燃料の新燃料(未照射燃料
)を配置し、つぎのサイクルではこの燃料を最外周領域
へ移動し、中間領域へは7×7の新燃料を装荷する炉心
の運用方法をとれば、最外周には235Uの少ない燃料
を装荷することと同一となり、前記実施例と同一の効果
がでる。
Here, 7x7 new fuel (unirradiated fuel) is placed in the middle area, and in the next cycle, this fuel is moved to the outermost area, and 7x7 new fuel is loaded into the middle area. If the core operation method is adopted, it will be the same as loading a small amount of fuel, 235U, on the outermost periphery, and the same effect as in the embodiment described above will be obtained.

ここで、7×7燃料と8×8燃料の組み合わせのかわり
Oこ8×8燃料と9×9燃料の組み合せOこしても同様
である。
Here, instead of the combination of 7x7 fuel and 8x8 fuel, a combination of 8x8 fuel and 9x9 fuel may be used.

つぎに、図面を参照しつつ本発明の第3の実施例を説明
する。
Next, a third embodiment of the present invention will be described with reference to the drawings.

第4図に示されるように、中心領域の燃料集合体5,6
は制御棒9が中心に位置するように装荷する。
As shown in FIG. 4, fuel assemblies 5, 6 in the central region
is loaded so that the control rod 9 is located at the center.

このとき、制御棒9を中心にして燃料5が4体、同様に
燃料6が4体と市松模様に装荷される。
At this time, four fuels 5 and four fuels 6 are loaded in a checkered pattern around the control rod 9.

また、中間領域3には制御棒9が中心に位置するように
4体1組ずつ燃料集合体6が装荷され、さらに外周領域
4には、最外側部分にのみ燃料集合体7が装荷されてい
る。
Furthermore, fuel assemblies 6 are loaded in groups of four in the intermediate region 3 so that the control rods 9 are located at the center, and fuel assemblies 7 are loaded in the outer peripheral region 4 only at the outermost portions. There is.

このような燃料装荷炉心において、原子炉全体に装荷す
る235U量を一定とし、8×8燃料集合体の235U
量を多く、7×7燃料集合体の235U量を少くすると
、8×8燃料集合体の出力密度(KW/l)は7×7燃
料のそれより大きくなる。
In such a fuel-loaded core, the amount of 235U loaded in the entire reactor is constant, and the amount of 235U loaded in the 8x8 fuel assembly is
By increasing the amount and decreasing the amount of 235U in the 7×7 fuel assembly, the power density (KW/l) of the 8×8 fuel assembly becomes greater than that of the 7×7 fuel.

8×8燃料の方が燃料棒本数が多いため、線出力密度は
その分だけ低いことから、線出力密度の運転制限までに
は、7×7燃料以上の余裕があるので、この余裕を7×
7燃料と8×8燃料が同等lこなるよう7×7燃料の出
力密度(KW/l)を下げ、8×8燃料の出力密度を上
げることができる。
Since 8x8 fuel has more fuel rods, the linear power density is correspondingly lower, so there is more margin than 7x7 fuel before the operating limit for linear power density, so this margin is ×
It is possible to lower the power density (KW/l) of the 7x7 fuel and increase the power density of the 8x8 fuel so that the 7x7 fuel and the 8x8 fuel have the same power.

さらに、前記8×8燃料を中心領域に装荷すると、核分
裂性物質の多い燃料が中性子のもれが少なく反応度の大
きい位置におかれることになるので、中性子経済上、効
率が上がり原子炉の実効増倍率が増し、その結果、取得
燃焼度が増大する。
Furthermore, if the 8x8 fuel is loaded in the central region, the fuel containing a large amount of fissile material will be placed in a position where neutron leakage is small and reactivity is high, increasing efficiency in terms of neutron economy and reactor efficiency. The effective multiplication factor increases, resulting in an increase in the obtained burnup.

ここにおいて、中間領域では出力ビーキングがそれ程大
きくないので、8×8燃料でなく7×7燃料の235U
量の多い燃料でもよい。
Here, since the output peaking is not so large in the intermediate region, 235U of 7x7 fuel is used instead of 8x8 fuel.
A large amount of fuel may be used.

また、中性子もれの大きい最外周には235U量の少な
い7×7燃料を装荷する方が中性子経済上効率がよい。
Furthermore, it is more efficient in terms of neutron economy to load 7×7 fuel with a small amount of 235U on the outermost periphery where neutron leakage is large.

この結果8×8燃料は出力密度の高い燃料にのみ使用さ
れることになるので、前述した第2実施例より本数が少
なく、製造コストの低減に効果がある。
As a result, the 8×8 fuel is used only for fuel with high power density, so the number is smaller than in the second embodiment described above, which is effective in reducing manufacturing costs.

ここで、7×7燃料、8×8燃料との組み合わせのかわ
りに8×8燃料と9×9燃料との組み合わせを考えても
よい。
Here, instead of the combination of 7x7 fuel and 8x8 fuel, a combination of 8x8 fuel and 9x9 fuel may be considered.

また、中間領域の燃料には、燃料棒本数の少ない新燃料
(未照射燃料)を装荷し、次サイクルにおいて中心領域
および外周領域の燃料棒本数の少ない燃料装荷位置(第
4図の燃料6,7Gこ該当)4こ装荷するようにしても
、前記の燃料6,7の配置と目等の効果がある。
In addition, new fuel (unirradiated fuel) with a small number of fuel rods is loaded into the fuel in the intermediate area, and in the next cycle, fuel loading positions with a small number of fuel rods in the center area and outer peripheral area (fuel 6 in Fig. 4, Even if four (7G) fuels are loaded, the effects of the arrangement of the fuels 6 and 7, etc., can be obtained.

つぎに、前述したようにして燃料集合体の装荷を行なっ
た本発明に係る軽水炉の運転状態の1例を説明する。
Next, an example of the operating state of the light water reactor according to the present invention in which fuel assemblies are loaded as described above will be described.

第5図(こは本発明軽水炉運転時の制御棒操作のパター
ンが示されている。
FIG. 5 shows a control rod operation pattern during operation of the light water reactor according to the present invention.

図中×印は深挿入、*と十印は浅挿入、空白部分は全引
抜きの各状態である。
In the figure, the x mark indicates deep insertion, the * and 10 marks indicate shallow insertion, and the blank area indicates full withdrawal.

この図から明らかなように、中心領域において、8×8
燃料集合体に対しては、制御棒が深挿入状態で運転され
ている。
As is clear from this figure, in the central area, 8×8
The control rods are operated in a deeply inserted state into the fuel assembly.

この8×8燃料集合体の制御棒は燃焼(こよる反応度変
化の補償のために主として用いられ、サイクル期間中燃
焼が進む(こ従って引き抜かれて、挿入深さ、挿入本数
が減少し、サイクル末期において制御棒は全引き抜きさ
れる。
The control rods of this 8x8 fuel assembly are mainly used to compensate for reactivity changes caused by combustion, and combustion progresses during the cycle (thus they are withdrawn, reducing the insertion depth and number of rods inserted). At the end of the cycle, the control rods are completely withdrawn.

サイクル期間中、長期に渡り、深く制御棒が挿入されて
いる燃料は、他の燃料と比較して燃焼が進まないため、
制御棒が引き抜かれる時点においては、他の燃料より出
力が太きい。
Fuel with control rods inserted deeply for a long period of time during the cycle does not burn as well as other fuels, so
At the time the control rods are withdrawn, the output is greater than that of other fuels.

したがって、線出力密度の小さい、8×8燃料を深挿入
匍脚棒とした方が熱的制限上有利である。
Therefore, it is more advantageous in terms of thermal limitations to use 8×8 fuel, which has a low linear power density, as a deep insertion rod.

また、浅挿入制御棒についても、中心領域では8×8燃
料とし、中間および外周領域では7×7燃料としている
Furthermore, for the shallowly inserted control rods, 8×8 fuel is used in the central region, and 7×7 fuel is used in the middle and outer peripheral regions.

浅挿入制御棒は出力分布の調整のためサイクル期間中4
こ挿入度が頻繁に変化するため、制御棒の引き抜き操作
前後で出力分布の変化が大きい。
Shallow insertion control rods are used during the cycle to adjust the power distribution.
Since the degree of insertion changes frequently, the output distribution changes significantly before and after the control rod withdrawal operation.

出力ビーキングの大きい中心領域では、この変化幅も大
きいため、線出力密度の低い8×8燃料を浅挿入制御棒
位置とすることは、線出力密度変化が小さくなるので、
燃料棒の被覆管の健全性上は都合がよい。
In the central region where the power peaking is large, the range of this change is large, so placing the 8x8 fuel with low linear power density in the shallowly inserted control rod position will reduce the change in linear power density.
This is advantageous in terms of the integrity of the fuel rod cladding.

すなわち、線出力密度の増大変化が太きいと燃料棒のペ
レットと被覆管の機械的相互作用が過大になり燃料被覆
管が破損する場合があるため、この出力増大をできるだ
け小さくすることが望ましい。
That is, if the increase in linear power density is large, the mechanical interaction between the pellets of the fuel rod and the cladding becomes excessive and the fuel cladding may be damaged, so it is desirable to reduce this increase in power as much as possible.

前記第4図に示される燃料集合体の装荷と、第5図Gこ
示される制御棒の挿入で運転され、第1サイクルが終了
したとき、第4図の燃料集合体を第6図に(N)で示さ
れるもの、すなわち、中心領域内における燃料集合体5
は8×8燃料の未照射燃料Nと、その外側に隣在する中
間領域における燃料集合体6は7×7燃料の未照射燃料
Nと交換し、残余の部分は第1サイクルにおけるままの
状態で第2サイクルの運転を行なう。
When the first cycle is completed by loading the fuel assembly shown in FIG. 4 and inserting the control rods shown in FIG. 5G, the fuel assembly shown in FIG. N), i.e. the fuel assembly 5 in the central region.
The unirradiated fuel N of 8x8 fuel is replaced with the unirradiated fuel N of 7x7 fuel, and the fuel assembly 6 in the intermediate region adjacent to the outside thereof is replaced with unirradiated fuel N of 7x7 fuel, and the remaining part remains as it was in the first cycle. Perform the second cycle operation.

この場合、制御棒のパターンは第5図(こ示される状態
に戻される。
In this case, the control rod pattern is returned to the state shown in FIG.

第2サイクルの末期(こ近づいたとき、再び第5図にお
いて深挿入としている制御棒を引抜くよう運転する。
When approaching the end of the second cycle, the control rod, which is deeply inserted in FIG. 5, is again pulled out.

第2ザイクル終了後、第7図に示されるようOこ、中心
領域において(N)で示される位置の燃料を8×8燃料
の、中間領域の燃料を7×7燃料の未照射燃料と交換す
る。
After the completion of the second cycle, as shown in Figure 7, the fuel at the position indicated by (N) in the center area is replaced with 8x8 fuel, and the fuel in the middle area is replaced with unirradiated fuel at 7x7 fuel. do.

これにより図中(n)で示される第2サイクルで装荷さ
れた未照射燃料はそのまま球し、図中(N)で示された
ものは、中心領域内の燃料集合体と中間領域の燃料集合
体と中間領域の燃料集合体についてほとんどすべて未照
射燃料に交換されることになる。
As a result, the unirradiated fuel loaded in the second cycle, indicated by (n) in the figure, becomes a sphere, and the fuel assembly indicated by (N) in the figure is the fuel assembly in the center region and the fuel assembly in the intermediate region. Almost all of the fuel assemblies in the body and intermediate regions will be replaced with unirradiated fuel.

さらに中心領域の交換されていない燃料および最外周部
分の燃料集合体7は1つ内側の外周領域の燃料集合体に
より交換され、(N)の位置にあった燃料及び、中心領
域の(N)、(II)でない位置にあった燃料、外周領
域の燃料のうち燃焼が充分進んだものは未照射の7×7
燃料と交換して1つ内側の外周領域Gこ装荷される。
Further, the unreplaced fuel in the center area and the fuel assembly 7 in the outermost peripheral area are replaced by the fuel assembly in the outer peripheral area one space inside, and the fuel in the position (N) and the fuel assembly 7 in the central area (N) are replaced. , (II), and fuel in the outer peripheral area where combustion has progressed sufficiently is the unirradiated 7x7
In exchange for fuel, the outer circumferential area G one space inside is loaded.

このようにして第3サイクルの運転が行なわれ、サイク
ル末期には第5図に示される状態の深挿入の制御棒の引
抜きが行なわれる。
In this way, the third cycle of operation is carried out, and at the end of the cycle, the deeply inserted control rod is withdrawn as shown in FIG.

第3サイクル終了後は再び第1サイクルに戻り、その後
は第1〜第3サイクルの順に従って反復運転される。
After the third cycle is completed, the operation returns to the first cycle, and thereafter, the operation is repeated in the order of the first to third cycles.

運転に際し、第5図に示される深挿入の制御棒は、所定
の出力が得られる間は、全挿入のままで運転され、出力
維持が困難になったときに引抜くことOこなり、中心領
域Oこおける燃料集合体の核分裂性物質量は第1サイク
ル末期においても充分な量があり、以下第2サイクル、
第3サイクル末期(こおいても、いずれも炉心サイクル
末期に充分な核分裂性物質量が存在し、中性子経済性も
よく熱料交換の手間が省けるなど優れた利点を有する。
During operation, the deeply inserted control rods shown in Figure 5 are operated with fully inserted until a predetermined output is obtained, and when it becomes difficult to maintain the output, they cannot be pulled out. The amount of fissile material in the fuel assembly in region O is sufficient even at the end of the first cycle.
At the end of the third cycle (also at the end of the core cycle), there is a sufficient amount of fissile material at the end of the core cycle, the neutron economy is good, and the effort of heat exchange can be saved.

以上説明したように、本発明(こよれば、燃料製造コス
トの不利を可及的に低減できるばかりでなく、熱的制限
を満し、燃焼度取得の向上または出力レベルの向上また
は出力レベルの向上をはかることができる。
As explained above, the present invention not only reduces the disadvantage of fuel production cost as much as possible, but also satisfies thermal limitations, improves burnup acquisition, increases output level, or lowers output level. You can make improvements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は炉心領域の分は方説明図、第2図は燃料棒8×
8配列の燃料集合体の装荷状態を示す平面図、第3図は
同じく7×7配列の燃料集合体の装荷状態を示す平面図
、第4図は第1サイクルの燃料装荷説明図、第5図は制
御棒操作パターン、第6図は第2サイクルの燃料装荷説
明図、第7図は第3サイクルの燃料装荷説明図である。 1・・・・・・炉心、2・・・・・・中心領域、3・・
・・・・中間領域、4・・・・・・外周領域、5,6,
7・・・・・・燃料集合体、8・・・・・・ポイズンカ
ーテン、9・・・・・・制御棒。
Figure 1 is an explanatory diagram of the core area, Figure 2 is an 8x fuel rod
FIG. 3 is a plan view showing the loading state of fuel assemblies in 8 arrays; FIG. 3 is a plan view showing the loading state of fuel assemblies in 7×7 array; FIG. The figure shows a control rod operation pattern, FIG. 6 is an explanatory diagram of fuel loading in the second cycle, and FIG. 7 is an explanatory diagram of fuel loading in the third cycle. 1...Core, 2...Central region, 3...
...Middle area, 4...Outer area, 5, 6,
7... Fuel assembly, 8... Poison curtain, 9... Control rod.

Claims (1)

【特許請求の範囲】 1 炉心を構成する外寸法の等しい多数の燃料集合体に
、外径が小さく本数の多い燃料棒の正方格子配列からな
るものと、外径が大きく本数の少ない燃料棒の正方格子
配列からなるものを用い、前者本数の多い燃料棒からな
る燃料集合体を有する中心領域と、後者本数の少ない燃
料棒からなる燃料集合体のみを装荷するようにした周辺
領域との2領域に炉心を分けたことを特徴とする軽水炉
。 2 炉心を構成する外寸法の等しい多数の燃料集合体を
、核分裂性物質量が多く、本数の多い燃料棒の正方格子
配列からなるものと、核分裂性物質量が多く、本数の少
ない燃料棒の正方格子配列からなるものと、核分裂性物
質量が少なく、本数も少ない燃料棒の正方格子配列から
なるものとし、核分裂性物質量および本数ともσこ多い
燃料棒からなる燃料集合体と、核分裂性物質量及び本数
がともに少ない燃料棒からなる燃料集合体とを、炉心の
中心領域Gこ交互配置となるようQこ装荷するととも(
こ、中心領域を囲む中間領域には、核分裂性物質が多く
、本数の少ない燃料棒からなる燃料集合体を装荷し、さ
らに、外周領域には核分裂性物質および本数がともに少
ない燃料棒からなる燃料集合体を装荷して運転する軽水
炉。 3 炉心を構成する外寸法の等しい多数の燃料集合体に
、外径が小さく本数の多い燃料棒の正方格子配列からな
るものと、外径が大きく本数の少ない燃料棒の正方格子
配列からなるものを用い、前者本数の多い燃料棒からな
る燃料集合体を有する中心領域と、後者本数の少ない燃
料棒からなる燃料集合体のみを装荷するようにした周辺
領域との2領域に炉心を分けてなる軽水炉において、第
1サイクルの運転をこの状態で行なった後、前記中心領
域、および該中心領域および前記周辺領域の中間領域の
燃料集合体の一部を未照射燃料からなる燃料集合体と交
換して第2サイクルの運転を行なうようにしたことを特
徴とする軽水炉の運転方法0
[Scope of Claims] 1. In a large number of fuel assemblies with the same external dimensions constituting the core, there are two types: one consisting of a square lattice arrangement of fuel rods with a small outer diameter and a large number, and the other consisting of a square lattice arrangement of fuel rods with a large outer diameter and a small number. Using a square lattice arrangement, the former has two areas, the central area containing fuel assemblies consisting of a large number of fuel rods, and the latter area containing only fuel assemblies consisting of a small number of fuel rods. A light water reactor characterized by having a separate core. 2. A large number of fuel assemblies with the same external dimensions constituting the reactor core are divided into two types: one consisting of a square lattice arrangement of fuel rods with a large amount of fissile material and a large number of fuel rods, and the other consisting of a square lattice arrangement of fuel rods with a large amount of fissile material and a small number of fuel rods. A fuel assembly consisting of a square lattice array, a square lattice array of fuel rods with a small amount of fissile material and a small number of fuel rods, and a fuel assembly consisting of fuel rods with a large amount of fissile material and a small number of fuel rods, When fuel assemblies consisting of fuel rods with a small amount of material and a small number of fuel rods are loaded in an alternating arrangement in the central region of the core (
The intermediate region surrounding the central region is loaded with a fuel assembly consisting of a large amount of fissile material and a small number of fuel rods, and the outer region is loaded with a fuel assembly consisting of both fissile material and a small number of fuel rods. A light water reactor loaded with aggregates and operated. 3. A large number of fuel assemblies with equal external dimensions constituting the reactor core, one consisting of a square lattice arrangement of fuel rods with a small outer diameter and a large number, and the other consisting of a square lattice arrangement of a large number of fuel rods with a large outer diameter. The reactor core is divided into two regions: the former has fuel assemblies with a large number of fuel rods, and the latter has a peripheral region where only fuel assemblies with a small number of fuel rods are loaded. In the light water reactor, after the first cycle is operated in this state, a part of the fuel assembly in the central region and an intermediate region between the central region and the peripheral region is replaced with a fuel assembly made of unirradiated fuel. A light water reactor operating method 0 characterized in that a second cycle operation is performed using
JP51158335A 1976-12-28 1976-12-28 Light water reactor and its operation method Expired JPS5858036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51158335A JPS5858036B2 (en) 1976-12-28 1976-12-28 Light water reactor and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51158335A JPS5858036B2 (en) 1976-12-28 1976-12-28 Light water reactor and its operation method

Publications (2)

Publication Number Publication Date
JPS5382997A JPS5382997A (en) 1978-07-21
JPS5858036B2 true JPS5858036B2 (en) 1983-12-23

Family

ID=15669381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51158335A Expired JPS5858036B2 (en) 1976-12-28 1976-12-28 Light water reactor and its operation method

Country Status (1)

Country Link
JP (1) JPS5858036B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607819U (en) * 1983-06-29 1985-01-19 株式会社佐藤鉄工所 Elbow joint flexion/extension training device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5748684A (en) * 1980-09-08 1982-03-20 Tokyo Shibaura Electric Co Bwr type reactor
JPS58131588A (en) * 1982-02-01 1983-08-05 株式会社東芝 Boiling-water reactor
JPH0644056B2 (en) * 1985-10-23 1994-06-08 株式会社日立製作所 Reactor core
JP3419845B2 (en) * 1993-09-27 2003-06-23 株式会社東芝 Core of boiling water reactor and operation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607819U (en) * 1983-06-29 1985-01-19 株式会社佐藤鉄工所 Elbow joint flexion/extension training device

Also Published As

Publication number Publication date
JPS5382997A (en) 1978-07-21

Similar Documents

Publication Publication Date Title
JP2915200B2 (en) Fuel loading method and reactor core
JPH11502022A (en) Fuel loading and operation method of reactor core
JP6503188B2 (en) Reactor core and fuel assembly loading method
JPS5858036B2 (en) Light water reactor and its operation method
JPS6296889A (en) Light water type reactor core and fuel charging method thereof
JP2510612B2 (en) Reactor core and initial reactor core
JPS61102586A (en) Blanket fuel aggregate
JPH05249270A (en) Core of nuclear reactor
JPS59132389A (en) Fuel assembly
JP3894784B2 (en) Fuel loading method for boiling water reactor
JP3080663B2 (en) Operation method of the first loading core
JP3303583B2 (en) Fuel assembly and first loaded core
JPS6013283A (en) Boiling water reactor
JPH0555836B2 (en)
JP2610254B2 (en) Boiling water reactor
JP2525802B2 (en) Fuel assembly for boiling water reactor
JP2958856B2 (en) Fuel assembly for boiling water reactor
JPH065320B2 (en) Fuel assembly for boiling water reactor
JPH0432355B2 (en)
JP4044993B2 (en) Reactor fuel loading method
JP2852101B2 (en) Reactor core and fuel loading method
JPH06118188A (en) Fuel assembly and core for boiling water reactor
JPH0527075B2 (en)
JPS63121789A (en) Nuclear reactor initial charging core
JP2550136B2 (en) Fast breeder reactor core and fast breeder reactor fuel loading method