JPS6230395B2 - - Google Patents

Info

Publication number
JPS6230395B2
JPS6230395B2 JP55124223A JP12422380A JPS6230395B2 JP S6230395 B2 JPS6230395 B2 JP S6230395B2 JP 55124223 A JP55124223 A JP 55124223A JP 12422380 A JP12422380 A JP 12422380A JP S6230395 B2 JPS6230395 B2 JP S6230395B2
Authority
JP
Japan
Prior art keywords
fuel
rods
power density
control
fuel assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55124223A
Other languages
Japanese (ja)
Other versions
JPS5748684A (en
Inventor
Jiro Ootsuji
Yasukuni Oiyake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Original Assignee
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Genshiryoku Jigyo KK filed Critical Toshiba Corp
Priority to JP55124223A priority Critical patent/JPS5748684A/en
Publication of JPS5748684A publication Critical patent/JPS5748684A/en
Publication of JPS6230395B2 publication Critical patent/JPS6230395B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は運転の操作性および健全性を改善した
沸騰水形原子炉に関する。 一般に沸騰水形原子炉の炉心は第1図ないし第
3図に示す如く構成されている。すなわち、断面
十字形の制御棒A…の周囲には4体の燃料集合体
B…が配置され、単位格子C…を構成している。
そして、このような単位格子C…を多数格子状に
配置して炉心を構成している。また、上記の燃料
集合体B…はたとえば第3図に示す如く断面略正
方形のチヤンネルボツクスD内に燃料棒E…およ
び水棒F,Fを8行8列に格子状に配置して構成
されており、このチヤンネルボツクスDの燃料棒
E…間を冷却材が流通する。ところで、このよう
な沸騰水形原子炉では出力運転時に一部の制御棒
A…を所定のパターンで挿入し、これらの制御棒
A…で炉心の反応度や出力分布の調整をおこな
う。そして、炉心に装荷されている燃料の燃焼の
進行等に対応して挿入されている制御棒のパター
ンの変更をおこない、反応度や出力分布の調整を
おこなう。しかし、出力運転時に制御棒A…の引
抜挿入等の操作をおこなうとこの制御棒A…の周
囲の燃料集合体B…すなわちこの制御棒A…の属
する単位格子C…内の燃料集合体B…の出力密度
が急激に変化し、燃料の健全性を損なう不具合が
あつた。このため、このような制御棒操作をおこ
なう場合には第4図に示す如く制御棒操作をおこ
なう毎に原子炉の出力を第4図中のc→a→bの
如く一時的に低下させ、この出力の低下時に制御
棒操作をおこない、制御棒パターンの変更をおこ
なうようにし、操作される制御棒周囲の燃料集合
体の健全性低下を防止している。そして、上記原
子炉出力の低下はたとえば第5図に示す如く炉心
流量dを低下させ炉心のボイド率を上げることに
よりおこない、出力が低下しているeの間に制御
棒操作をおこなつて制御棒パターンを変更し、こ
の制御棒パターンの変更によつて制御棒密度を段
階的に小さくして燃焼の進行による反応度の低下
等を補償するようにしている。そして、第6図に
示す如くこのような炉心流量dの低下操作と制御
棒操作による制御棒密度fの変更を所定時間毎に
おこない、燃焼の進行に対応して制御棒密度を減
少してゆき、反応度の低下を補償し、また出力分
布を均一に維持するようにしている。しかし、出
力運転状態にある原子炉の出力を制御棒パターン
の変更毎に低下させると原子炉の稼動率が低下す
る不具合が生じる。また、このような制御棒操作
の際には操作する制御棒A…の周囲の燃料集合体
B…の健全性の低下を完全に防止することはでき
ず、また原子炉出力の一時的な低下によつて他の
燃料集合体B…の健全性低下も避けることはでき
ない。このため、出力運転時に操作する制御棒A
…の周囲の燃料集合体B…の出力密度の変化を小
さくして制御棒操作時における原子炉の出力低下
ができるだけ小さくてすむようにし、制御棒パタ
ーン変更時の操作を簡略化して原子炉の稼働率を
向上させるとともに燃料の健全性の低下を防止す
ることが要望されている。そして、このような要
望を達成するために、出力運転中に操作される制
御棒A…の周囲に他の部分の燃料集合体より反応
度の小さな燃料集合体あるいは出力の小さな燃料
集合体を装荷し、制御棒操作の際の出力密度の変
化を緩和し、制御棒操作の際の原子炉出力の低下
幅を小さくして原子炉の稼働率を向上するととも
に燃料の健全性の低下を防止することが考えられ
ている。しかし、このように反応度や出力の小さ
な燃料集合体を出力運転中に操作する制御棒の属
する単位格子以外の単位格子に装荷すると出力分
布に歪みが生ずる可能性があり、定期点検時等に
おける燃料集合体の移動すなわちシヤツフリング
の自由度が減少する不具合があつた。また、反応
度や出力の小さな燃料集合体を特別に製作せず、
燃焼が進行して反応度が低下した燃料集合体を出
力運転中に操作する制御棒の周囲に装荷すること
も考えられている。しかし、このような燃焼の進
行した燃料集合体は燃料被覆管等が機械的に劣化
しており、このようなものを制御棒操作の毎に出
力密度が大きく変化する箇所に装荷することは燃
料の健全性上好ましいものではなかつた。 本発明は以上の事情にもとづいてなされたもの
で、その目的とするところは出力運転中に操作す
る制御棒の周囲の燃料集合体の出力密度の変化が
小さく、制御棒操作の際の原子炉出力の低下幅を
小さくでき、原子炉の稼働率を向上できるととも
に燃料の健全性も向上することができ、また燃料
のシヤツフリングの自由度を低下させることのな
い沸騰水形原子炉を得ることにある。 以下本発明を第7図ないし第19図に示す一実
施例にしたがつて説明する。第7図にはこの一実
施例の炉心1の平面図を示し、この炉心1は多数
の単位格子2…,3…を格子状に配置して構成さ
れている。これらの単位格子2…,3…は第8図
に示す如く断面十字状をなす制御棒4…の周囲に
4体の燃料集合体5…,6…を配置して構成され
ている。そして、上記単位格子2…,3…のうち
原子炉の出力運転時に制御棒パターンの変更等で
操作される制御棒4の属する単位格子3…(以下
これをコントロールセルと称す)には低線出力密
度燃料集合体6…が4体装荷され、またこれらコ
ントロールセル3…以外の単位格子2…には通常
の燃料集合体5…が装荷されている。この通常の
燃料集合体5…は従来から沸騰水形原子炉に多用
されている8×8の燃料集合体であつて、たとえ
ば第9図に示す如く断面略正方形のチヤンネルボ
ツクス7内に62本の燃料棒8…および2本の水棒
9,9を8行8列の格子状に配置したものであ
る。また、上記低線出力密度燃料集合体6…は第
10図に示す如く断面略正方形のチヤンネルボツ
クス7内に80本の燃料棒10…および1本の水棒
11を9行9列の格子状に配列したものであつ
て、燃料棒10…と水棒11の総数が上記通常の
燃料集合体5…より多くなつているものである。
そして、この低線出力密度燃料集合体6…はその
チヤンネルボツクス7、下部タイプレート(図示
せず)等の寸法、形状等が上記通常の燃料集合体
5…と等しく形成されており、コントロールセル
3…以外の単位格子2…内にも装荷できるように
構成されている。また、この低線出力密度燃料集
合体6…は装荷されている燃料のウラン235の平
均濃縮度が通常の燃料集合体5…と等しく、また
燃料棒10…の径が通常の燃料集合体5…の燃料
棒8…の径より小さく、1体当りの燃料の総重量
が通常の燃料集合体5…と等しく、さらに可燃性
毒物や燃料の濃縮度の軸方向の分布等も等しく、
その出力、無限増倍率、軸方向の出力分布等核的
特性が通常の燃料集合体5…と等しく形成されて
いる。したがつて、この低線出力密度燃料集合体
6…は燃料棒10…の本数が多い分だけ燃料棒1
0…の単位長さ当りの出力つまり線出力密度が低
い以外はすべて通常の燃料集合体5…と等しく、
これら通常の燃料集合体5…と機械的、核的に完
全な互換性が得られるように構成されている。な
お、この低出力密度燃料集合体6…と通常の燃料
集合体5…の諸元を次表に示す。また、上記低線
出力密度燃料集合体6…の装荷位置には第7図中
符号Gを附し、この第7図中符号を附していない
位置には通常の燃料集合体5…が装荷されている
ことを示す。
The present invention relates to a boiling water nuclear reactor with improved operability and soundness of operation. Generally, the core of a boiling water nuclear reactor is constructed as shown in FIGS. 1 to 3. That is, four fuel assemblies B are arranged around a control rod A having a cross-shaped cross section, forming a unit cell C.
A reactor core is constructed by arranging a large number of such unit lattices C in the form of a lattice. Further, the above-mentioned fuel assembly B... is constructed by arranging fuel rods E... and water rods F, F in a grid pattern in 8 rows and 8 columns in a channel box D having a substantially square cross section, as shown in FIG. 3, for example. The coolant flows between the fuel rods E of this channel box D. By the way, in such a boiling water reactor, some control rods A are inserted in a predetermined pattern during power operation, and these control rods A adjust the reactivity and power distribution of the reactor core. Then, the pattern of the inserted control rods is changed in accordance with the progress of combustion of the fuel loaded in the reactor core, and the reactivity and power distribution are adjusted. However, when an operation such as pulling out or inserting a control rod A during output operation is performed, the fuel assembly B around the control rod A...that is, the fuel assembly B in the unit cell C to which this control rod A belongs... There was a problem in which the power density of the engine suddenly changed, impairing the integrity of the fuel. For this reason, when performing such control rod operations, as shown in Figure 4, each time the control rods are operated, the output of the reactor is temporarily reduced as shown in c → a → b in Figure 4. When the output decreases, the control rods are operated and the control rod pattern is changed to prevent the health of the fuel assembly around the operated control rods from deteriorating. The above-mentioned reduction in the reactor power is achieved, for example, by lowering the core flow rate d and increasing the void ratio of the reactor core, as shown in Figure 5, and controlling the power by operating the control rods during the period e when the power is decreasing. The rod pattern is changed, and by changing the control rod pattern, the control rod density is gradually reduced to compensate for the decrease in reactivity due to the progress of combustion. Then, as shown in Fig. 6, such operations to reduce the core flow rate d and change the control rod density f by controlling the control rods are performed at predetermined intervals, and the control rod density is decreased in accordance with the progress of combustion. , to compensate for the decrease in reactivity and to maintain a uniform output distribution. However, if the output of a nuclear reactor in an output operation state is reduced every time the control rod pattern is changed, a problem arises in that the operating rate of the reactor decreases. Furthermore, during such control rod operations, it is not possible to completely prevent a decline in the integrity of the fuel assembly B surrounding the operated control rod A, and a temporary decrease in reactor power may occur. As a result, deterioration in the health of other fuel assemblies B cannot be avoided. For this reason, control rod A operated during output operation
By minimizing changes in the power density of the fuel assembly B around the..., the reduction in reactor output during control rod operation is minimized, and by simplifying the operation when changing the control rod pattern, the reactor There is a need to improve operating efficiency and to prevent deterioration in fuel integrity. In order to achieve this request, fuel assemblies with lower reactivity or lower output than fuel assemblies in other parts are loaded around control rods A that are operated during output operation. This reduces changes in power density during control rod operation, reduces the range of decrease in reactor power during control rod operation, improves reactor availability, and prevents deterioration of fuel integrity. It is being considered. However, if a fuel assembly with low reactivity or output is loaded into a unit cell other than the unit cell to which the control rods operated during power operation belong, the power distribution may be distorted, making it difficult to There was a problem in which the degree of freedom of movement of the fuel assembly, that is, shuffling, was reduced. In addition, without specially manufacturing fuel assemblies with low reactivity or output,
It is also being considered to load fuel assemblies whose reactivity has decreased due to advanced combustion around control rods that are operated during output operation. However, fuel assemblies with advanced combustion have mechanically deteriorated fuel cladding tubes, etc., and loading such a fuel assembly in a location where the power density changes greatly each time a control rod is operated is not recommended. This was not favorable for the health of the company. The present invention has been made based on the above circumstances, and its purpose is to minimize the change in power density of the fuel assembly around the control rods operated during power operation, and to To obtain a boiling water nuclear reactor that can reduce the range of decrease in output, improve reactor availability, and improve the soundness of the fuel, and does not reduce the flexibility of fuel shuffling. be. The present invention will be explained below with reference to an embodiment shown in FIGS. 7 to 19. FIG. 7 shows a plan view of the reactor core 1 of this embodiment, and the reactor core 1 is constructed by arranging a large number of unit cells 2..., 3... in a lattice shape. These unit grids 2..., 3... are constructed by arranging four fuel assemblies 5..., 6... around a control rod 4... having a cross-shaped cross section, as shown in FIG. Among the unit cells 2..., 3..., the unit cell 3 (hereinafter referred to as control cell) to which the control rod 4, which is operated by changing the control rod pattern etc. during the reactor's output operation, belongs has a low line. Four power density fuel assemblies 6 are loaded, and the unit grids 2 other than these control cells 3 are loaded with normal fuel assemblies 5. These normal fuel assemblies 5 are 8×8 fuel assemblies that have conventionally been widely used in boiling water reactors, and for example, as shown in FIG. fuel rods 8... and two water rods 9, 9 are arranged in a grid of 8 rows and 8 columns. The low linear power density fuel assembly 6 has 80 fuel rods 10 and one water rod 11 arranged in a lattice of 9 rows and 9 columns in a channel box 7 having a substantially square cross section, as shown in FIG. The total number of fuel rods 10 and water rods 11 is larger than that of the normal fuel assembly 5.
The low linear power density fuel assembly 6... has the same dimensions, shape, etc. of its channel box 7, lower tie plate (not shown), etc. as the normal fuel assembly 5..., and has a control cell. It is configured so that it can also be loaded into unit cells 2 other than 3. In addition, the average enrichment of uranium-235 in the loaded fuel of these low linear power density fuel assemblies 6 is the same as that of the normal fuel assemblies 5, and the diameters of the fuel rods 10 are the same as those of the normal fuel assemblies 5. The diameter of the fuel rods 8 is smaller than that of the fuel rods 8, the total weight of fuel per rod is the same as that of the normal fuel assembly 5, and the axial distribution of burnable poisons and fuel enrichment is also the same.
Its nuclear characteristics such as output, infinite multiplication factor, and axial output distribution are formed to be the same as those of the normal fuel assembly 5. Therefore, in this low linear power density fuel assembly 6..., the number of fuel rods 10 is as large as the number of fuel rods 10...
Everything is the same as the normal fuel assembly 5... except that the output per unit length of 0..., that is, the linear power density is lower.
It is constructed so as to have complete mechanical and nuclear compatibility with these ordinary fuel assemblies 5. The specifications of the low power density fuel assemblies 6 and the normal fuel assemblies 5 are shown in the following table. Further, the loading positions of the low linear power density fuel assemblies 6 are marked with reference numerals G in FIG. Indicates that the

【表】 以上の如く構成された本発明の一実施例は出力
運転状態において前記コントロールセル3…内の
制御棒4…を用いて第11図ないし第18図に示
す如き制御棒パターンの変更をおこない、燃焼の
進行に対応して反応度や出力分布の調整をおこな
いつつ運転をする。すなわち、燃焼度
1500MWD/Tまでの初期の段階ではまず第11
図に示す如くコントロールセル3…内の制御棒4
…の13本を均一に分布して挿入し、燃焼度が
200MWD/Tに達したら第12図に示す如く各
制御棒4…の引抜ノツチ数を大きくして反応度等
の調整し、燃焼度1500MWD/Tに達したら第1
3図に示す如く制御棒4…の引抜ノツチ数を下げ
て反応度の調整をする。なお、第11図ないし1
8図中各ます目は単位格子2…,3…を示し、ま
たます目中の数字はその制御棒4…の引抜ノツチ
数を示す。この引抜ノツチ数は全挿入が0、全引
抜が48であり、また数字の記されていないます目
はその制御棒4…の引抜ノツチ数が48すなわち全
引抜であることを示す。そして、燃焼度が
3000MWD/Tまで進行したら第14図に示す如
く挿入制御棒4…の配置および本数を変える。そ
して燃焼度4500MWD/Tでは第15図に示す如
く中央の制御棒4を引抜ノツチ数8まで挿入し、
また燃焼度6000MWD/Tでは第16図に示す如
く中央の制御棒4をふたたび全引抜とするととも
に挿入制御棒4…の引抜ノツチ数を上げる。さら
に燃焼度7000MWD/Tでは第17図に示す如く
挿入制御棒4…の配置をさらに変えるとともにそ
の本数を減らし、未期の燃焼度9000MWD/Tで
は第18図に示す如く全部の制御棒4…を引抜
く。そしてこのようにしてコントロールセル3…
内の制御棒4…のパターンを順次変更しながら反
応度の変化を補償し、また出力分布を均一に維持
しながら運転をおこなうものである。そして、上
記コントロールセル3…内には前記の如き低線出
力分布燃料集合体6…が装荷されており、この低
線出力分布燃料集合体6…はその燃料棒10…の
単位長さ当りの線出力密度が小さいので、第19
図に示す如く通常の燃料集合体5…をコントロー
ルセル3…に装荷した場合の制御棒操作時の燃料
棒の最大線出力密度(第19図中gで示す)に比
べてこの低線出力密度燃料集合体6…の燃料棒1
0…の最大線出力密度(第19図中hで示す)は
全サイクル燃焼度を通して小さい。よつてこの分
だけ制御棒操作時の出力密度の変化が緩和され、
制御棒操作時の原子炉出力の低下幅を少なくで
き、原子炉の稼働率が向上するものである。ま
た、コントロールセル3…内に装荷されている低
線出力密度燃料集合体6…の燃料棒10…の最大
線出力密度に余裕があるので、制御棒操作時にお
ける原子炉出力の低下幅を従来より小さく、かつ
この低線出力密度燃料集合体6…の燃料棒10…
の最大線出力密度を従来より小さくすることもで
き、原子炉の稼働率の向上と燃料の健全性の向上
の両方を得ることもできるものである。また、制
御棒操作時の原子炉出力の低下幅を小さくするこ
とにより、コントロールセル3…以外の単位格子
2…の通常の燃料集合体5…の出力密度の変化も
小さくなり、これらの健全性も向上できるもので
ある。また、この一実施例のものはコントロール
セル3…以外の単位格子2…に装荷される燃料集
合体5…を従来と同様の8行8列の燃料棒8…を
有するものとしたので、これら燃料集合体5…は
従来と同様のものが使用できる。また、低線出力
密度燃料集合体6…は燃料棒10…を9行9列と
したので、他の燃料集合体5…と核的特性を等し
くするために燃料の総重量を等しくしても燃料棒
10…の径の減少がそれ程過大とはならず、燃料
棒10…の機械的強度等も実用上充分に得られる
とともに燃料棒10…の最大線出力密度の低下は
30%近く得られ、実用上充分な余裕が得られるも
のである。そして、この低線出力密度燃料集合体
6…は通常の燃料集合体5…と寸法、形状および
核的特性を等しくしてあるので完全な互換性が得
られ、定期点検時等における燃料のシヤツフリン
グの自由度を低下させることもない。 なお、本発明は上記の一実施例には限定されな
い。 たとえば低線出力密度燃料集合体および他の燃
料集合体の燃料棒の本数およびその配列は必らず
しも上記のものに限定されず、要はコントロール
セルに装荷される低線出力密度燃料集合体の燃料
棒の本数を他の燃料集合体より多くし、またその
核的特性を等しくすればよいものである。 また、コントロールセル内の全部に低線出力密
度燃料集合体を装荷する必要はなく、コントロー
ルセル内の一部だけに低線出力密度燃料集合体を
装荷してもよい。 上述の如く本発明は出力運転時に操作される制
御棒の属する単位格子内のうちの少なくとも一体
を他の単位格子内に装荷される燃料集合体より燃
料棒の本数が多くかつ核的特性の等しい低線出力
密度燃料集合体を装荷したものである。したがつ
てこの低線出力密度燃料集合体の燃料棒の単位長
さ当りの線出力密度が小さくなり、よつて出力運
転時に制御棒を操作してもこの操作した制御棒の
周囲に装荷されている低線出力密度燃料集合体の
燃料棒の出力密度の変化が小さく、よつて制御棒
操作の際の原子炉出力の低下を最小限とすること
ができ、原子炉の稼働率が向上し、また低線出力
密度燃料集合体の燃料棒の出力密度が小さく、ま
た制御棒操作時の原子炉出力の低下幅が小さくて
すむので燃料の健全性も向上する。さらにこの低
線出力密度燃料集合体と通常の燃料集合体とはそ
の燃料棒の数が異なるだけで核的特性が互に等し
く、互換性が得られるので定期点検等の際の燃料
のシヤツフリングの自由度が低下することもない
等その効果は大である。
[Table] One embodiment of the present invention configured as described above changes the control rod pattern as shown in FIGS. 11 to 18 using the control rods 4 in the control cells 3 in the output operation state. The fuel is operated while adjusting the reactivity and output distribution in response to the progress of combustion. In other words, burnup
At the initial stage up to 1500MWD/T, the 11th
As shown in the figure, the control rod 4 in the control cell 3...
Insert 13 rods of... evenly and check the burnup.
When the burnup reaches 200MWD/T, increase the number of withdrawal notches of each control rod 4 as shown in Fig. 12 to adjust the reactivity, etc., and when the burnup reaches 1500MWD/T, the first
As shown in Figure 3, the reactivity is adjusted by lowering the number of withdrawal notches of the control rods 4. In addition, Figures 11 to 1
In Fig. 8, each square indicates a unit cell 2..., 3..., and the number in the square indicates the number of extraction notches of the control rod 4.... The number of withdrawal notches is 0 for full insertion and 48 for full withdrawal, and the squares with no numbers indicate that the number of withdrawal notches for the control rod 4 is 48, that is, full withdrawal. And the burnup level is
When the process reaches 3000MWD/T, the arrangement and number of insertion control rods 4 are changed as shown in Fig. 14. At a burnup of 4500MWD/T, insert the central control rod 4 up to the number of withdrawal notches (8) as shown in Figure 15.
Further, at a burnup of 6000 MWD/T, as shown in Fig. 16, the central control rod 4 is fully withdrawn again and the number of withdrawal notches of the inserted control rods 4 is increased. Furthermore, at a burnup of 7,000 MWD/T, as shown in Fig. 17, the arrangement of the inserted control rods 4... is further changed and the number of inserted control rods 4... Pull it out. And in this way, control cell 3...
The pattern of the control rods 4 in the reactor 4 is sequentially changed to compensate for changes in reactivity, and operation is performed while maintaining a uniform output distribution. The above-mentioned low linear power distribution fuel assembly 6 is loaded in the control cell 3, and the low linear power distribution fuel assembly 6 has a high power distribution per unit length of the fuel rod 10. Since the linear power density is small, the 19th
As shown in the figure, this linear power density is lower than the maximum linear power density of the fuel rod (indicated by g in Fig. 19) during control rod operation when a normal fuel assembly 5... is loaded into the control cell 3... Fuel rod 1 of fuel assembly 6...
The maximum linear power density (indicated by h in FIG. 19) of 0... is small throughout the entire cycle burnup. Therefore, the change in power density during control rod operation is alleviated by this amount,
This reduces the amount of decrease in reactor output during control rod operation and improves reactor operating efficiency. In addition, since there is a margin in the maximum linear power density of the fuel rods 10 of the low linear power density fuel assemblies 6 loaded in the control cells 3, it is possible to The fuel rods 10... of the smaller and lower linear power density fuel assemblies 6...
It is also possible to make the maximum linear power density of the reactor smaller than before, and it is possible to obtain both an improvement in the operating rate of the reactor and an improvement in the soundness of the fuel. In addition, by reducing the range of decrease in reactor power during control rod operation, changes in the power density of normal fuel assemblies 5 of unit cells 2 other than control cells 3 are also reduced, and their integrity is reduced. This can also be improved. In addition, in this embodiment, the fuel assemblies 5 loaded in the unit grids 2 other than the control cells 3 have fuel rods 8 arranged in 8 rows and 8 columns as in the conventional case. The fuel assembly 5 can be the same as the conventional one. In addition, since the low linear power density fuel assembly 6... has fuel rods 10 arranged in 9 rows and 9 columns, even if the total weight of the fuel is the same in order to make the nuclear characteristics equal to that of the other fuel assemblies 5... The reduction in the diameter of the fuel rods 10 is not excessive, the mechanical strength of the fuel rods 10 is sufficient for practical use, and the maximum linear power density of the fuel rods 10 is not reduced.
This yields nearly 30%, which provides a sufficient margin for practical use. Since the low linear power density fuel assembly 6 has the same size, shape, and nuclear characteristics as the normal fuel assembly 5, complete compatibility is achieved, and fuel shuffling during periodic inspections, etc. It also does not reduce the degree of freedom of Note that the present invention is not limited to the above embodiment. For example, the number and arrangement of fuel rods in low linear power density fuel assemblies and other fuel assemblies are not necessarily limited to those described above, and in short, the low linear power density fuel assembly loaded in the control cell The number of fuel rods in one fuel assembly should be greater than that in other fuel assemblies, and the nuclear characteristics should be the same. Further, it is not necessary to load the low linear power density fuel assembly into the entire control cell, and the low linear power density fuel assembly may be loaded only into a part of the control cell. As described above, the present invention provides at least one of the unit cells to which the control rods operated during power operation belong, in which the number of fuel rods is larger than that of fuel assemblies loaded in other unit cells and the nuclear properties are the same. It is loaded with a low linear power density fuel assembly. Therefore, the linear power density per unit length of the fuel rods of this low linear power density fuel assembly becomes small, and therefore, even if the control rods are operated during power operation, the load will not be loaded around the operated control rods. Changes in the power density of the fuel rods in the low linear power density fuel assembly are small, and therefore the reduction in reactor power during control rod operation can be minimized, improving reactor availability. In addition, the power density of the fuel rods of the low linear power density fuel assembly is low, and the reduction in reactor power during control rod operation is small, so the integrity of the fuel is improved. Furthermore, this low linear power density fuel assembly and a normal fuel assembly differ only in the number of fuel rods, but have the same nuclear properties and are compatible, so it is easy to shuffle the fuel during periodic inspections, etc. The effects are great, such as no reduction in the degree of freedom.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第6図は従来例を示し、第1図は
炉心の平面図、第2図は単位格子の平面図、第3
図は燃料集合体の平面図、第4図ないし第6図は
運転手順を示す線図である。第7図ないし第19
図は本発明の一実施例を示し、第7図は炉心の平
面図、第8図は単位格子の平面図、第9図は通常
の燃料集合体の平面図、第10図は低線出力密度
燃料集合体の平面図、第11図ないし第18図は
出力運転時の制御棒操作を説明する制御棒パター
ン図、第19図は通常の燃料集合体と低線出力密
度燃料集合体の燃料棒の最大線出力密度を示す線
図である。 1…炉心、2…単位格子、3…単位格子(コン
トロールセル)、4…制御棒、5…燃料集合体、
6…低出力密度燃料集合体、7…チヤンネルボツ
クス、8,10…燃料棒。
Figures 1 to 6 show conventional examples, where Figure 1 is a plan view of the reactor core, Figure 2 is a plan view of a unit cell, and Figure 3 is a plan view of a unit cell.
The figure is a plan view of the fuel assembly, and FIGS. 4 to 6 are diagrams showing the operating procedure. Figures 7 to 19
The figures show one embodiment of the present invention, in which Fig. 7 is a plan view of the core, Fig. 8 is a plan view of a unit cell, Fig. 9 is a plan view of a normal fuel assembly, and Fig. 10 is a low line power output. A plan view of the density fuel assembly, Figures 11 to 18 are control rod pattern diagrams explaining control rod operation during power operation, and Figure 19 shows the fuel of a normal fuel assembly and a low linear power density fuel assembly. FIG. 3 is a diagram showing the maximum linear power density of the rod. 1... Core, 2... Unit cell, 3... Unit cell (control cell), 4... Control rod, 5... Fuel assembly,
6...Low power density fuel assembly, 7...Channel box, 8,10...Fuel rod.

Claims (1)

【特許請求の範囲】[Claims] 1 出力運転時に操作される制御棒が属する単位
格子に、他の燃料集合体より燃料棒の本数が多
く、かつウラン235の平均濃度および燃料の重量
が他の燃料集合体と等しい低線出力密度燃料集合
体を装荷したことを特徴とする沸騰水形原子炉。
1 Low linear power density in which the unit cell to which the control rods operated during power operation belong has more fuel rods than other fuel assemblies, and the average concentration of uranium-235 and fuel weight are equal to those of other fuel assemblies. A boiling water reactor characterized by being loaded with a fuel assembly.
JP55124223A 1980-09-08 1980-09-08 Bwr type reactor Granted JPS5748684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55124223A JPS5748684A (en) 1980-09-08 1980-09-08 Bwr type reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55124223A JPS5748684A (en) 1980-09-08 1980-09-08 Bwr type reactor

Publications (2)

Publication Number Publication Date
JPS5748684A JPS5748684A (en) 1982-03-20
JPS6230395B2 true JPS6230395B2 (en) 1987-07-02

Family

ID=14880030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55124223A Granted JPS5748684A (en) 1980-09-08 1980-09-08 Bwr type reactor

Country Status (1)

Country Link
JP (1) JPS5748684A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567076U (en) * 1992-02-13 1993-09-03 日本電気株式会社 Insertion / extraction device for extension package

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5382997A (en) * 1976-12-28 1978-07-21 Toshiba Corp Light-water type power reactor and its operation method
JPS547089A (en) * 1977-06-20 1979-01-19 Hitachi Ltd Core structure of reactor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5382997A (en) * 1976-12-28 1978-07-21 Toshiba Corp Light-water type power reactor and its operation method
JPS547089A (en) * 1977-06-20 1979-01-19 Hitachi Ltd Core structure of reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567076U (en) * 1992-02-13 1993-09-03 日本電気株式会社 Insertion / extraction device for extension package

Also Published As

Publication number Publication date
JPS5748684A (en) 1982-03-20

Similar Documents

Publication Publication Date Title
JPH07101237B2 (en) Fuel assembly and nuclear reactor
US4324615A (en) Construction of nuclear reactor core
JP3563727B2 (en) Reactor core
JP3340818B2 (en) Reactor core
JPS6230395B2 (en)
JPH07244184A (en) Reactor core, its operation method and fuel assembly
JP3260600B2 (en) First loading core
JP2966877B2 (en) Fuel assembly
JP3075749B2 (en) Boiling water reactor
JPH0555836B2 (en)
JP3692136B2 (en) Nuclear reactor core
JP2972917B2 (en) Fuel assembly
JPH07209460A (en) Fuel assembly for boiling water reactor, and its core
JP3080663B2 (en) Operation method of the first loading core
JP2852101B2 (en) Reactor core and fuel loading method
JP2610254B2 (en) Boiling water reactor
JP4351798B2 (en) Fuel assemblies and reactors
JP3303583B2 (en) Fuel assembly and first loaded core
JP3894784B2 (en) Fuel loading method for boiling water reactor
JP3237922B2 (en) Fuel assemblies and cores for boiling water reactors
JPH0644055B2 (en) Boiling Water Reactor Core Structure and Fuel Loading Method
JP3309797B2 (en) Fuel assembly
JP2002090487A (en) Reactor core and its operation method
JP3347137B2 (en) Fuel assemblies and boiling water reactor cores
JP3779299B2 (en) Nuclear reactor core