JPS59121203A - Method and apparatus for controlling fluid pressure cylinder - Google Patents

Method and apparatus for controlling fluid pressure cylinder

Info

Publication number
JPS59121203A
JPS59121203A JP57233972A JP23397282A JPS59121203A JP S59121203 A JPS59121203 A JP S59121203A JP 57233972 A JP57233972 A JP 57233972A JP 23397282 A JP23397282 A JP 23397282A JP S59121203 A JPS59121203 A JP S59121203A
Authority
JP
Japan
Prior art keywords
flow path
valve
pressure
opening
pressure cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57233972A
Other languages
Japanese (ja)
Other versions
JPH0338443B2 (en
Inventor
Toyoaki Ueno
豊明 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP57233972A priority Critical patent/JPS59121203A/en
Publication of JPS59121203A publication Critical patent/JPS59121203A/en
Publication of JPH0338443B2 publication Critical patent/JPH0338443B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize the speed of a piston while it is shifted from high speed movement to high output movement by controlling the degree of opening of a flowrate control valve for supplying pressurized fluid by a preset valve opening coefficient. CONSTITUTION:As the pressure of oil in an oil feeding pipe 34 exceeds a preset pressure, a solenoid 38 operates, and a flow passage changeover valve 39 is changed over to the side of a tank line 40, and by this, the speed of a piston 43 tends to fall. However, an operating condition detector 48 detects the open/ close movement of the flow passage change-over valve 39, and it supplies a displacement value signal to an opening coefficient setter 49, and this signal is then supplied to a flowrate control valve control unit 52, and by this command, the opening of a flowrate control valve 35 becomes larger. Consequently, the piston can maintain high and constant speeds.

Description

【発明の詳細な説明】 本発明は流体圧シリンダにおいてピストンの速度と出力
とを制御する方法およびその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for controlling piston speed and power in a hydraulic cylinder.

油圧等を用いた流体圧シリンダにおいては、ピストンの
高速移動時には出力が小さくて高出力の必要な場合には
ピストンが低速で進むという特性を有する用途が多い。
In many applications, fluid pressure cylinders using hydraulic pressure or the like have a characteristic that the output is small when the piston moves at high speed, and the piston moves at low speed when high output is required.

第1図ないし第3図はそれぞれこの種の用途に供せられ
る従来の油圧シ1ノンダの油圧回路図であってこれを同
図に基いて説明すると、壕ず第1図に示すものは一般に
回流作動式と呼ばれるもので、!、油圧シリン2゛1の
ヘッドエンド室2は、流量制御弁3を備えた配管4によ
って油圧源5との間を接続されている。また圧力弁6を
備え油圧シリンダ1のロッドエンド室7に接続された配
管8と前記配管4との間は、逆止弁9を備えたランアラ
ンド用の配管10によって接続されている。そして油圧
シリンダ1のピストンロッド11の作用端は例えばダイ
カストマシンなどの射出成形装置の射出プランジャ(C
直結されており、油圧源5から供給された油は流量調節
弁3を通ってヘッドエンド室2に入り、ピストン12を
前進させる。この結果、ロッドエンド室7の7由は逆止
弁9を通ってヘッドエンド室2に入る。しだがって、ピ
ストン12はピストンロッド11の径と同一のシリンダ
を作動させたのと同じ速度、すなわち、  、g、<)
y12o“−)2−R倍となり、ヒストンロッド11の
径 高速作動させることができる。また、ピストン12カ前
進してピストンロッド11の負荷が増大すると、ヘッド
エンド室2の圧力が増大して圧力弁6が作動し、ロッド
エンド室7の油は圧力弁6を通過して外部へ排出される
。この結果、シリンダ出力はR倍となるが速度は百に減
する。
Figures 1 to 3 are hydraulic circuit diagrams of conventional hydraulic cylinders used for this type of use, and to explain them based on the figures, the one shown in Figure 1 without trenches is generally It's called a recirculation type! The head end chamber 2 of the hydraulic cylinder 2'1 is connected to a hydraulic power source 5 by a pipe 4 equipped with a flow control valve 3. Further, a pipe 8 provided with a pressure valve 6 and connected to a rod end chamber 7 of the hydraulic cylinder 1 and the pipe 4 are connected by a run-around pipe 10 provided with a check valve 9. The working end of the piston rod 11 of the hydraulic cylinder 1 is connected to an injection plunger (C) of an injection molding device such as a die-casting machine.
The oil supplied from the hydraulic source 5 passes through the flow control valve 3 and enters the head end chamber 2 to advance the piston 12. As a result, the rod end chamber 7 enters the head end chamber 2 through the check valve 9. Therefore, the piston 12 operates at the same speed as if it were actuating a cylinder whose diameter is the same as that of the piston rod 11, i.e., ,g,<)
y12o"-)2-R times, and the diameter of the histone rod 11 can be operated at high speed. Also, when the piston 12 moves forward and the load on the piston rod 11 increases, the pressure in the head end chamber 2 increases and the pressure The valve 6 is activated, and the oil in the rod end chamber 7 passes through the pressure valve 6 and is discharged to the outside.As a result, the cylinder output increases by R times, but the speed decreases by 100.

次に、第2図に示すものは一般に増圧シリンダと呼ばれ
るものであって、高速移動用の油圧シリンダ13と、高
出力移動用の油圧シリンダ14とが同軸上に直結されて
いる。ぞして、油圧源5から供給された油は、流量調節
弁3と逆止弁9とを通って油圧シリンダ13のヘッドエ
ンド室15に入シ、ピストン16を前進させる。ピスト
ンロッド17の負荷が増大すると、ヘッドエンド室15
の圧力が増大して圧力弁6が作動し、油は圧力弁6を通
って油圧シリンダ14のヘッドエンド室18に入シピス
トン19を前進させる。この結果、出力は()4+そ+
)用J2.=R倍となるが、速度は百に減する。
Next, what is shown in FIG. 2 is generally called a pressure increase cylinder, in which a hydraulic cylinder 13 for high-speed movement and a hydraulic cylinder 14 for high-output movement are coaxially and directly connected. Then, the oil supplied from the hydraulic source 5 passes through the flow control valve 3 and the check valve 9, enters the head end chamber 15 of the hydraulic cylinder 13, and moves the piston 16 forward. When the load on the piston rod 17 increases, the head end chamber 15
The pressure increases to actuate the pressure valve 6, and oil enters the head end chamber 18 of the hydraulic cylinder 14 through the pressure valve 6 and advances the piston 19. As a result, the output is ()4+so+
) for J2. = R times, but the speed is reduced to 100.

さらに、第3図に示すものは一般にシリンダ切換式と呼
ばれるものであって、一対の高速移【b用油圧シリンダ
20.21と、高出力移動用油圧シリンダ22とが並列
状に配設されていて各シリンダ20,21.22のピス
トンロッド23.24゜25に負荷が直結されている。
Furthermore, the one shown in Fig. 3 is generally called a cylinder switching type, in which a pair of high-speed transfer hydraulic cylinders 20 and 21 and a high-output transfer hydraulic cylinder 22 are arranged in parallel. A load is directly connected to the piston rod 23.24.25 of each cylinder 20, 21.22.

そして油圧源5から供給された油は流量調節弁3を通っ
て油圧シリンダ20,21のヘッドエンド室25.26
に人シピストン27.28を前進させる。負荷が増大ス
ルトヘッドエンドg25,2sの圧力が増大して圧力弁
6が作動し、油幻二圧力弁6を通って油圧シリンダ22
のヘッドエンド室29に入シピストン30を前進させる
。この結果出力は πに減する。
The oil supplied from the hydraulic source 5 passes through the flow control valve 3 to the head end chambers 25 and 26 of the hydraulic cylinders 20 and 21.
27. 28 to move the human piston forward. As the load increases, the pressure at the sult head end g25, 2s increases and the pressure valve 6 operates, passing through the oil pressure valve 6 to the hydraulic cylinder 22.
The piston 30 is advanced into the head end chamber 29 of the engine. As a result, the output is reduced to π.

以上示した油圧シリンダのうち第1図と第2図とに示し
たものは高速#動速度が1 %を超える場合かあるいは
増力比が2〜5程度のものに多く使用され、また第3図
に示すものは高速移動速度が1%未満かあるいは増力比
が5程度以上の場合に多く使用される。
Among the hydraulic cylinders shown above, those shown in Figures 1 and 2 are often used when the high speed exceeds 1% or when the boost ratio is about 2 to 5. The one shown in 1 is often used when the high-speed movement speed is less than 1% or the boosting ratio is about 5 or more.

第4図(a)はこれら従来の油圧シリンダに共通するビ
ストンストロークと出力、速度の関係線図であって、負
荷に直結されたヒストンロッドのストロークSを横軸に
とり、実線で示す出力と点線で示すピストン速度とを縦
軸にとって示している。
FIG. 4(a) is a diagram showing the relationship between the piston stroke, output, and speed common to these conventional hydraulic cylinders, with the horizontal axis representing the stroke S of the histone rod directly connected to the load, and the output shown by the solid line and the dotted line. The vertical axis represents the piston speed.

図において明らかなように油圧供給量を一定にした場合
、前記圧力弁6の作動前は出力、速度が一定であるが、
圧力弁6が作動すると出力が増し速度が減する。このよ
うな特性は、例えば金型の締付は機構のように圧縮率が
小さく、しかも、切換シ特性が問題とならない場合はよ
いが、例えばダイカストマシンの射出装置などのように
圧m率が大きくしかも図(a)に対応して図(blに余
すようにある程度負荷が増大しても高速を保つ必要があ
る場合にはこれに対応することができない。
As is clear from the figure, when the amount of hydraulic pressure supplied is constant, the output and speed are constant before the pressure valve 6 is activated.
When the pressure valve 6 operates, the output increases and the speed decreases. Such characteristics are good in cases where the compression ratio is small, such as in the case of a mechanism for tightening a mold, and where the switching characteristics are not a problem, but for example, in cases where the compression ratio is small, such as in the injection device of a die-casting machine, etc. If the load is large and it is necessary to maintain high speed even if the load increases to a certain extent, as shown in Figure (b1) corresponding to Figure (a), this cannot be handled.

そこで従来、前記流fjLtl’1節弁3をタイマやリ
ミットスイッチ等の指令で開くことによ)補なっていだ
が、流量調節弁3の作動タイミングが合わず、図(C)
9図(d)にそれぞれ図(a)に対応して示すように出
力の上昇開始付近で部分的な速度の低下や増加が生じて
、速度変化がばらついたシずれだシして要求される特性
を安定した状態で得ることができなかった。
Conventionally, this was compensated for by opening the flow rate fjLtl'1 control valve 3 using a command from a timer, limit switch, etc., but the operation timing of the flow rate control valve 3 did not match, and as shown in Figure (C).
As shown in Fig. 9 (d), which corresponds to Fig. 9 (a), a partial speed decrease or increase occurs near the start of the output rise, and the speed change becomes uneven and the required speed is shifted. It was not possible to obtain stable characteristics.

本発明は以上のような点に鑑みなされたもので、流体圧
シリンダの出力増減過程において流路切換弁の切換状態
に関連させてあらかじめ設定した弁開度係数によシ圧力
流体供給用の流量制御弁の開度を制御するようにし、か
つこのため、バイパス内に設けた流路切換弁を設定圧力
で作動させる圧力設定器と、流路切換弁の動作を検出し
て流量制御弁を設定一度係数で制御する開度係数設定%
+’iとを設けることによシ、高速移動から高出力移動
に移行する状態においてピストンの速度が安定した高速
状態を維持するように構成して性能の向上を計った流体
圧シリンダの制御方法およびその装置を孫供するもので
ある。以下、本発明の実施例を詳細に説明する。
The present invention has been made in view of the above points, and is based on a valve opening coefficient preset in relation to the switching state of the flow path switching valve in the process of increasing and decreasing the output of the fluid pressure cylinder. The opening degree of the control valve is controlled, and for this purpose, a pressure setting device that operates a flow path switching valve provided in the bypass at a set pressure, and a flow control valve is set by detecting the operation of the flow path switching valve. Opening coefficient setting % once controlled by coefficient
A control method for a fluid pressure cylinder in which the performance is improved by providing a +'i so that the piston speed maintains a stable high-speed state in a state of transition from high-speed movement to high-output movement. and the equipment will be donated. Examples of the present invention will be described in detail below.

第5図は本発明に係る制御方法を説明するために示す本
発明に係る制御装置の実施例の油圧回路図であって、本
実施例は本発明をダイカストマシンの射出袋口における
第1図に示す回流作動式の油圧シリンダに実施した例を
示している。図において、油圧シリンダ31のヘッドエ
ンド室32と圧油供給源33との間は送油管34で連結
されておシ、この送油管34内には、後述する制御装置
によって開度を制御される流量制御弁35が設けられて
いる。また油圧シリンA 6と送油管34とは、油圧シ
リンダ31と流量制御弁35との間において流路37で
連結されておシ、この流路37内にはソレノイド38を
備えた流路切換弁39が配設されている。流路切換弁3
9にはタンクライン40が接続されてお少、ソレノイド
38の作動によって弁が流路3γを連通させる側と、タ
ンクライン40側とに切換えられるように(d成されて
いる。そして、流鈴切換弁39はそのスプールの形状等
によシ図示したよりにそれぞれ絞シ部を介して両方の流
fRr37.40に通じる部分を開閉途中に有している
。符号41で示すものは前記送油v34の流路3T接続
箇所の圧力検出装散部とソレノイド38とを接続する電
気回路42上に設けられた圧力設定器であって、圧力検
出器と比較器をも備えて、!、−シ、任意の設定圧力と
送油管34内の油圧とを比較し油圧が設定圧力を超える
とソレノイド38を作動させて流路37をタンクライン
40側へ切換えるように構成されている。油圧シリンダ
31内において圧油供給源33からの送油で往復動する
ピストン43のピストンロッド44の作用端には、本実
施例の場合、図示していない射出プランジャが固定され
ておシ、この射出プランジャがピストン43の前進によ
シ溶湯を押して金型キャビティ内に射出し、ピストン4
3をさらに前進させることによシその溶湯に押湯作用を
なし得るようにわ4成されている。ピスト/ロッド44
にはこれと一体的に往復動するストライカ45が固定さ
れておシ、またストライカ45の近傍にはこれが出接す
ることによって接点が閉成されるリミットスイッチなど
の位置検出器46がピストンロッド44の軸方向へ移動
調節自在に設けられている。符号47で示すものは流路
切換弁39の切換特性を制御する切換弁制御装置であっ
て、位置検出器46、圧力設定器41.およびソレノイ
ド38との間を電気的に接続されている。さらに、流路
切換弁39にはその弁の開閉動作を検出して信号を発す
る作動状態検出器48が接続されておシ、さらに作動状
態検出器48には、その発する変位値信号を入力して設
定係数で補正する開度係数設定器49が接続されている
。なお、開度係数設定器49は切換弁制御装置47側の
回路とも接続されているように示されているが、回路5
0゜51はいずれか一方が接続されておればよい。符号
52で示すものは、開度係数設定器49と流量制御弁3
5とを接続する電気回路53内に設けられた流量制御弁
制御装置であって、開度係数設定器49の発する信号に
よって作動し、流量制御弁35の開度を制御するように
構成されている。
FIG. 5 is a hydraulic circuit diagram of an embodiment of the control device according to the present invention shown for explaining the control method according to the present invention, and this embodiment is a hydraulic circuit diagram of the embodiment of the control device according to the present invention shown in FIG. An example is shown in which the present invention is applied to a recirculation-operated hydraulic cylinder. In the figure, a head end chamber 32 of a hydraulic cylinder 31 and a pressure oil supply source 33 are connected by an oil feed pipe 34, and the opening degree of the oil feed pipe 34 is controlled by a control device to be described later. A flow control valve 35 is provided. Further, the hydraulic cylinder A 6 and the oil feed pipe 34 are connected by a flow path 37 between the hydraulic cylinder 31 and a flow rate control valve 35, and a flow path switching valve equipped with a solenoid 38 is provided in this flow path 37. 39 are arranged. Flow path switching valve 3
A tank line 40 is connected to 9, and the valve is configured to be switched between the side that communicates the flow path 3γ and the side that communicates with the tank line 40 by the operation of the solenoid 38. The switching valve 39 has a portion in the middle of opening and closing that communicates with both flows fRr37.40 through a throttle portion, as shown in the figure, depending on the shape of the spool. A pressure setting device installed on the electric circuit 42 connecting the pressure detection device at the flow path 3T connection point of v34 and the solenoid 38, and also equipped with a pressure detector and a comparator. , an arbitrary set pressure is compared with the oil pressure in the oil feed pipe 34, and when the oil pressure exceeds the set pressure, the solenoid 38 is activated to switch the flow path 37 to the tank line 40 side.Inside the hydraulic cylinder 31 In this embodiment, an injection plunger (not shown) is fixed to the working end of the piston rod 44 of the piston 43 which reciprocates with oil supplied from the pressure oil supply source 33. The forward movement of piston 4 pushes the molten metal and injects it into the mold cavity.
By further advancing the molten metal, a wafer 4 is formed so that the molten metal can be heated. Piste/rod 44
A striker 45 that reciprocates integrally with the striker 45 is fixed to the piston rod 44, and a position detector 46 such as a limit switch whose contact is closed when the striker 45 comes into contact with the piston rod 44 is located near the striker 45. It is provided to be movable and adjustable in the axial direction. The reference numeral 47 indicates a switching valve control device that controls the switching characteristics of the flow path switching valve 39, and includes a position detector 46, a pressure setting device 41. and the solenoid 38 are electrically connected. Further, an operating state detector 48 is connected to the flow path switching valve 39, and the operating state detector 48 detects the opening/closing operation of the valve and generates a signal. An opening coefficient setter 49 is connected to the opening coefficient setting device 49 for correcting the opening coefficient using a setting coefficient. Although the opening coefficient setter 49 is shown as being connected to the circuit on the switching valve control device 47 side, the circuit 5
It is sufficient that either one of 0°51 is connected. Reference numeral 52 indicates the opening coefficient setting device 49 and the flow rate control valve 3.
5 is a flow control valve control device provided in an electric circuit 53 that connects with the flow control valve 35, and is configured to be activated by a signal generated by the opening coefficient setting device 49 and to control the opening degree of the flow rate control valve 35. There is.

以上のように構成された制御装置の動作を第5図および
第4図(b)に基いて説明する。圧油供給源33から流
量制御弁35を経てヘッドエンド室32へ送られた油は
ピストン43を前進させ、またロッドエンド室36内の
油は流路31側へ開いている流路切換弁39を通りて流
路37内を送油路34へ向いピストン43の前進が続け
られる。ピストン43が前進して射出途中までは、ピス
トンロッド44と直結の射出プランジャに負荷があまシ
かからないため、第4図(blにP。−Plで示すよう
に出力が最低でかつ一定であシ、またV。−■、で示す
ようにピストン43の速度が一定である。P、点に達し
たのちピストン43がさらに前進して負荷が増し、出力
PがPlからP2へと上昇して送油管34内の油圧が上
昇する。圧力設定器41にはあらかじめ所定の圧力が設
定されてお)、上昇する送油管34内の油圧がこの設定
圧を超えると、圧力設定器41の検出器と比較器とによ
υ圧力設定器41が信号を発してソレノイド38を作動
させる。したがって、流路切換弁39がタンクライン4
0側へ切換えられてロンドエンド室36内の油の一部が
タンクへ放出され、ピストン43の速度が第4図(b)
に鎖線V 、−V 、で示すように下降しようとする。
The operation of the control device configured as described above will be explained based on FIG. 5 and FIG. 4(b). The oil sent from the pressure oil supply source 33 to the head end chamber 32 via the flow control valve 35 moves the piston 43 forward, and the oil in the rod end chamber 36 is sent to the flow path switching valve 39 which is open to the flow path 31 side. The piston 43 continues to move forward through the flow path 37 toward the oil feed path 34 . Until the piston 43 moves forward and is in the middle of injection, no load is applied to the injection plunger directly connected to the piston rod 44, so the output is at a minimum and constant as shown by P.-Pl in Fig. 4 (bl). , and the speed of the piston 43 is constant as shown by V. - The oil pressure in the oil pipe 34 rises (a predetermined pressure is set in the pressure setting device 41 in advance), and when the rising oil pressure in the oil pipe 34 exceeds this set pressure, the detector of the pressure setting device 41 and The comparator and the υ pressure setting device 41 generate a signal to operate the solenoid 38. Therefore, the flow path switching valve 39
0 side, a part of the oil in the long end chamber 36 is released into the tank, and the speed of the piston 43 increases as shown in FIG. 4(b).
It attempts to descend as shown by the dashed lines V and -V.

しかしながら、本装置においては作動状態検出器48が
流路切換弁39の開閉動作を検出して開度係数設定器4
9に変位値信号を入力させるのでこの信号が開度係数設
定器49の設定計数によって補正されたのち流量制御弁
制御袋R52に入力され、その指令によって流量制御弁
35の開度が大きくなることによシ、ピストン43の速
度がV、−V2で示すように高速でかつ定速を保つ。
However, in this device, the operating state detector 48 detects the opening/closing operation of the flow path switching valve 39 and the opening coefficient setting device 4
9 inputs a displacement value signal, this signal is corrected by the set count of the opening coefficient setter 49 and then input to the flow rate control valve control bag R52, and the opening degree of the flow rate control valve 35 is increased by the command. Otherwise, the speed of the piston 43 is kept high and constant as shown by V and -V2.

出力がP2まで上昇すると出力が急激に上昇してP。When the output increases to P2, the output increases rapidly and reaches P.

となり、逆に速度はv2からV3へ急低下する。このP
2−P3 + v2−V3の領域では出力特性が優先さ
れ、速度特性は2次的に決まった値となる。このような
制御か行なわれることによシ、第4図(b)に示す特性
が容易かつ正確に得られる。
On the contrary, the speed suddenly decreases from v2 to V3. This P
In the region of 2-P3 + v2-V3, priority is given to the output characteristics, and the speed characteristics have a secondarily determined value. By performing such control, the characteristics shown in FIG. 4(b) can be easily and accurately obtained.

なお、上記のように出力上昇開始点P1は送油管34内
の油圧によって検知されるが、一方位置検出器46を設
けたことによシ、出力上昇開始点p。
Note that, as described above, the output increase start point P1 is detected by the oil pressure in the oil feed pipe 34, but by providing the position detector 46, the output increase start point P1 can be detected.

に達してストライカ45が位置検出器46の接点を閉成
させると、切換弁制御装置47を経てソレノイド38を
作動させるので、作動時間の微小遅れを防止することが
できる。また、切換弁制御装置47は流路切換弁39の
切換特性すなわち切換速度を制御するものであって、単
純流体圧パイロット作動では特性が得られない場合に使
用する。
When this point is reached and the striker 45 closes the contact of the position detector 46, the solenoid 38 is activated via the switching valve control device 47, so that a slight delay in the activation time can be prevented. The switching valve control device 47 controls the switching characteristics, that is, the switching speed, of the flow path switching valve 39, and is used when the characteristics cannot be obtained by simple fluid pressure pilot operation.

したがって、この切換弁制御装置47の指令信号を開度
係数設定器49へ入力すれば、前記作動状態検出器48
を含む制御回路を使用する必要がない0 第6図は第2図に示す増圧シリンダの場合における制御
装置の油圧回路図であって、第5図と同一符号を付した
ものはこれと同じ構成であるからその説明を省略する。
Therefore, if the command signal of this switching valve control device 47 is input to the opening coefficient setting device 49, the operating state detector 48
It is not necessary to use a control circuit including Since this is just a configuration, its explanation will be omitted.

本装置においては高出力移動用の油圧シリンダ60と高
速移動用の油圧シリンダ61とが直列状に連結されてお
シ、油圧シリンダ60のピストンロッド62が油圧シリ
ンダ61のヘッドエンド室63内に係入されている。ま
た、開閉途中に絞シ切替部を有する流路切換弁39はソ
レノイド38によって開閉するだけであってタンクライ
ンには接続されておらず、その代りに各油圧シリンダ6
0.61のロンドエンド室64゜65にタンクライン6
6.67が接続されている。
In this device, a hydraulic cylinder 60 for high-output movement and a hydraulic cylinder 61 for high-speed movement are connected in series, and the piston rod 62 of the hydraulic cylinder 60 is engaged in the head end chamber 63 of the hydraulic cylinder 61. is included. Further, the flow path switching valve 39 which has a throttle switching part in the middle of opening and closing is only opened and closed by the solenoid 38 and is not connected to the tank line, but instead is connected to each hydraulic cylinder 6.
Tank line 6 in 0.61 rond end chamber 64°65
6.67 is connected.

さらに圧力設定器41と油圧シリンダ61のヘッドエン
ド室63とが電気的に接続されてここの油圧が検出され
るようになっておp、また流路切換弁390回路もヘッ
ドエンド室631C接続されていてこの回路内には流量
制御弁制御袋fat 52によって制御される流量制御
弁68が設けられている。
Further, the pressure setting device 41 and the head end chamber 63 of the hydraulic cylinder 61 are electrically connected so that the oil pressure there is detected, and the flow path switching valve 390 circuit is also connected to the head end chamber 631C. Also provided within this circuit is a flow control valve 68 which is controlled by a flow control valve control bag FAT 52.

このように構成することによシ、第4図(b)に示すv
。−v、 、 po−p、の間は圧油が流路37.流量
制御弁68.流路切換弁39を通って油圧シリンダ61
のヘッドエンド室63に送入され、ロンドエンド室65
の油はタンクライン6γへ放出される。そして負荷によ
りロンドエンド室65の油圧が所定圧を超えると、圧力
設定器41がこれを検出して流路切換弁39を閉ざす方
向に作動させ、作動状態検出器48がこれを検出して開
度係数設定器49に信号を送ることにより、流量制御弁
制御装置52を介して流量制御弁35が開く。したがっ
て第4図(b)のv、 、 p、点以降は、圧油が油圧
シリンダ60に送入されてピストンロッド62が前進す
るとともに、油圧シリンダ61のヘッドエンド室63内
の油圧も上昇し続ける。すなわち、v、、p、点以降は
両油圧シリンダ60.61が一体となったのと同じであ
って第5図に示す制御装置と同様にして流量制御弁35
の開度が制御さhる。但し、この場合には、流路切換弁
39が閉じておシ、制御は圧力設定器41−切換弁制御
装領47−開度係数設定器49の回路によって行なわれ
る。
By configuring in this way, the v shown in FIG. 4(b)
. -v, , pop, the pressure oil flows through the flow path 37. Flow control valve 68. The hydraulic cylinder 61 passes through the flow path switching valve 39.
is sent to the head end chamber 63 and the rond end chamber 65
of oil is discharged into tank line 6γ. When the hydraulic pressure in the long end chamber 65 exceeds a predetermined pressure due to load, the pressure setting device 41 detects this and operates the flow path switching valve 39 in the direction of closing, and the operating state detector 48 detects this and operates the flow path switching valve 39 to close it. By sending a signal to the degree coefficient setter 49, the flow control valve 35 is opened via the flow control valve controller 52. Therefore, after points v, , p in FIG. 4(b), pressure oil is fed into the hydraulic cylinder 60 and the piston rod 62 moves forward, and the oil pressure in the head end chamber 63 of the hydraulic cylinder 61 also rises. continue. That is, after points v, , p, the two hydraulic cylinders 60 and 61 are integrated, and the flow rate control valve 35 is operated in the same way as the control device shown in FIG.
The opening degree of the opening is controlled. However, in this case, the flow path switching valve 39 is closed and control is performed by the circuit of pressure setting device 41 - switching valve control unit 47 - opening coefficient setting device 49.

なお、第3図に示すシリンダ切換式の流体圧シリンダに
対する制御装置については図示と説明とを省略するが、
第6図に示す制御装置と全く同じような構成によって制
御を行なうことができる。
Note that the illustration and description of the control device for the cylinder switching type fluid pressure cylinder shown in FIG. 3 will be omitted;
Control can be performed by a configuration completely similar to that of the control device shown in FIG.

また、前記各制御装置は多用途向として電気処理による
作動に9いて説明したが、単純な制御でかつ特性の調整
数が少ない場合は、流路切換弁39と流量制御弁35と
を機械的に関連させることも可能である。さらに前記各
装置の実施例は、ダイカストマシンの射出装置用の油圧
シリンダに実施した例を示したが、各種の流体圧プレス
用や射出成形機の射出用、圧縮プレス用、建設機械用等
In addition, although each of the control devices described above has been described as being operated by electrical processing for multi-purpose use, when the control is simple and the number of adjustment of characteristics is small, the flow path switching valve 39 and the flow rate control valve 35 may be operated mechanically. It is also possible to relate to Further, in the embodiments of each of the above-mentioned devices, an example was shown in which it was implemented in a hydraulic cylinder for an injection device of a die-casting machine, but it is also applicable to various fluid pressure presses, injection molding machine injections, compression presses, construction machinery, etc.

各種の油圧シリンダに実施することができ、特に圧縮率
の大きい油圧シリンダに実施した場合に効果が顕著であ
る。
It can be applied to various types of hydraulic cylinders, and the effect is particularly noticeable when applied to hydraulic cylinders with high compression ratios.

以上の説明により明らかなように本発明によれば、流体
圧シリンダの出力増減過程において流路切換弁の切換状
態に関連させてあらかじめ設定した弁開度係数によシ圧
力流体供給用の流量制御弁の開度を制御するようにし、
かっこのため、バイパス内に設けた流路切換弁を設定圧
力で作動させる圧力設定器と、流路切換弁の動作を検出
して流量制御弁を設定開度係数で制御する開度係数設定
器を設けることによシ、高速移動から高出方移動に移行
する状態において、ピストンの速度が安定した高速状態
を維持するので、圧縮力が安定し流体圧シリンダの性能
が著しく向上する。そして、これを射出成形装置に用い
れば、所望の射出状態と良品質の射出成形品を確実容易
に得ることができる。
As is clear from the above description, according to the present invention, the flow rate for supplying pressure fluid is controlled by the valve opening coefficient preset in relation to the switching state of the flow path switching valve during the output increase/decrease process of the fluid pressure cylinder. To control the opening degree of the valve,
For brackets, there is a pressure setting device that operates the flow path switching valve installed in the bypass at a set pressure, and an opening coefficient setting device that detects the operation of the flow path switching valve and controls the flow control valve with the set opening coefficient. By providing this, the speed of the piston is maintained at a stable high speed state in the state of transition from high-speed movement to high-output movement, so that the compression force is stabilized and the performance of the fluid pressure cylinder is significantly improved. If this is used in an injection molding apparatus, it is possible to reliably and easily obtain injection molded products with desired injection conditions and good quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図はそれぞれ従来の油圧シリンダの油
圧回路図を示し、第1図は回流作動式油圧シリンダの油
圧回路図、第2図は増圧油圧シリンダの油圧回路図、第
3図はシリンダ切換式油圧シリンダの油圧回路図、嫡4
図はピストンのストロークと出力、速度との関係線図を
示し、第4図(&)は従来の制御装置を用いない場合の
関係線図、第4図(b)は本発明に係る制御装置を用い
た場合の関係線図、第4図(e) 、 (d)はそれぞ
れ従来の補正手段を用いた場合の関係線図、第5図およ
び第6図は本発明に係る流体圧シリンダの制御方法を説
明するために示す本発明に係る制御装置のそれぞれ異な
る実施例を示し、第5図は回流作動式油圧シリンダに対
する制御装置の油圧回路図、第6図は増圧油圧シリンダ
に対する制御装置の油圧回路図である。 31・・・・油圧シリンダ、32・ ・・ヘッドエンド
室、33・・・・圧油供給源、34・・・・送油管、3
5・・・・流量制御弁、36・・・・ロンドエンド室、
31・・・・RR139・・・・流路切換弁、4o・・
・・タンクライン、41・・・・圧力設定器、47・・
・・切換弁制御装置、48・・・・作動状態検出器、4
9・・・・開度係数設定器、52・・・・流量制御弁制
鵞装置、60・・・・高出力用油圧シリンダ、61・・
・・高速用油圧シリンダ、63・・・・ヘッドエンド室
、68・・・・流量制御弁。 特許出願人 宇部*並株式会社 代 理 人  山  川  政  樹(ほか1名)第1
図 第3図 第4図 (C1)           (b)(C)    
      (d)
Figures 1 to 3 respectively show hydraulic circuit diagrams of conventional hydraulic cylinders, Figure 1 is a hydraulic circuit diagram of a recirculation type hydraulic cylinder, Figure 2 is a hydraulic circuit diagram of a pressure boosting hydraulic cylinder, and Figure 3 is a hydraulic circuit diagram of a conventional hydraulic cylinder. is the hydraulic circuit diagram of the cylinder switching type hydraulic cylinder, 4th grade.
The figure shows a relationship diagram between piston stroke, output, and speed, FIG. 4 (&) is a relationship diagram when a conventional control device is not used, and FIG. 4 (b) is a relationship diagram of a control device according to the present invention. FIGS. 4(e) and 4(d) are relationship diagrams when using the conventional correction means, respectively, and FIGS. 5 and 6 are relationship diagrams when using the fluid pressure cylinder according to the present invention. Different embodiments of the control device according to the present invention are shown to explain the control method, and FIG. 5 is a hydraulic circuit diagram of the control device for a recirculation-actuated hydraulic cylinder, and FIG. 6 is a hydraulic circuit diagram of the control device for a pressure-increasing hydraulic cylinder. FIG. 31... Hydraulic cylinder, 32... Head end chamber, 33... Pressure oil supply source, 34... Oil feed pipe, 3
5...Flow control valve, 36...Ron end chamber,
31...RR139...Flow path switching valve, 4o...
...Tank line, 41...Pressure setting device, 47...
...Switching valve control device, 48...Operating state detector, 4
9... Opening coefficient setting device, 52... Flow rate control valve control device, 60... Hydraulic cylinder for high output, 61...
...High-speed hydraulic cylinder, 63...Head end chamber, 68...Flow control valve. Patent applicant: Ube*Nami Co., Ltd. Agent: Masaki Yamakawa (and 1 other person) 1st
Figure 3 Figure 4 (C1) (b) (C)
(d)

Claims (3)

【特許請求の範囲】[Claims] (1)流体圧シリンダの出力増減過程において流路切換
弁の切換状態に関連させてあらかじめ設定した弁開度係
数によシ圧力流体供給用の流量制御弁の開度を制御する
ことを特徴とする流体圧シリンダの制御方法。
(1) The opening of the flow rate control valve for supplying pressure fluid is controlled by a valve opening coefficient set in advance in relation to the switching state of the flow path switching valve during the output increase/decrease process of the fluid pressure cylinder. A method of controlling a fluid pressure cylinder.
(2)流体圧シリンダのヘッドエンド室と圧力流体供給
源との間の流体管内に設けられた流量制御弁と、前記流
体管と前記流体圧シリンダのロンドエンド室との間の流
路内に設けられこの流路をタンクラインへ切換可能な流
路切換弁と、前記流体圧シリンダの出力増減関連諸元を
検出して設定圧力と比較し前記流路切換弁を切換えさせ
る圧力設定器と、前記流路切換弁の切換動作を検出して
設定開度係数と比較し制御装置を介して前記流量制御弁
の開度を制御する開度係数設定器とを備えだことを特徴
とする流体圧シリンダの制御装置。
(2) A flow control valve provided in a fluid pipe between the head end chamber of the fluid pressure cylinder and the pressure fluid supply source, and a flow path between the fluid pipe and the rond end chamber of the fluid pressure cylinder. a flow path switching valve that is provided and capable of switching this flow path to a tank line; a pressure setting device that detects output increase/decrease-related specifications of the fluid pressure cylinder, compares it with a set pressure, and switches the flow path switching valve; and an opening coefficient setting device that detects the switching operation of the flow path switching valve, compares it with a set opening coefficient, and controls the opening of the flow rate control valve via a control device. Cylinder control device.
(3)高速移動用流体圧シリンダのヘッドエンド室と圧
力流体供給源とを連結する流路および高出力移動用流体
シリンダのヘッドエンド室と圧力流体供給源とを連結す
る流路内にそれぞれ設けられた流量制御弁と、前記高速
移動用流体圧シリンダ側流路内に設けられた開閉自在な
流路切換弁と、前記高速移動用流体圧シリンダの出力増
減関連諸元を検出し設定圧力と比較して前記流路切換弁
を切換える圧力設定器と、前記流路切換弁の切換動作を
検出して設定開度係数と比較し制御装置を介し前記いず
れかの流量制御弁の開度を選択的に制御する開度係数設
定器とを備えたことを特徴とする流体圧シリンダの制御
装置。
(3) Provided in the flow path connecting the head end chamber of the fluid pressure cylinder for high-speed movement and the pressure fluid supply source, and the flow path connecting the head end chamber of the fluid pressure cylinder for high output movement and the pressure fluid supply source, respectively. Detects the flow rate control valve, the flow path switching valve that can be opened and closed provided in the high-speed movement fluid pressure cylinder side flow path, and the output increase/decrease related specifications of the high-speed movement fluid pressure cylinder, and determines the set pressure. A pressure setting device that compares and switches the flow path switching valve, and detects the switching operation of the flow path switching valve and compares it with a set opening degree coefficient to select the opening degree of one of the flow rate control valves through a control device. 1. A control device for a fluid pressure cylinder, comprising: an opening coefficient setting device for controlling the opening coefficient.
JP57233972A 1982-12-27 1982-12-27 Method and apparatus for controlling fluid pressure cylinder Granted JPS59121203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57233972A JPS59121203A (en) 1982-12-27 1982-12-27 Method and apparatus for controlling fluid pressure cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57233972A JPS59121203A (en) 1982-12-27 1982-12-27 Method and apparatus for controlling fluid pressure cylinder

Publications (2)

Publication Number Publication Date
JPS59121203A true JPS59121203A (en) 1984-07-13
JPH0338443B2 JPH0338443B2 (en) 1991-06-10

Family

ID=16963520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57233972A Granted JPS59121203A (en) 1982-12-27 1982-12-27 Method and apparatus for controlling fluid pressure cylinder

Country Status (1)

Country Link
JP (1) JPS59121203A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62151601A (en) * 1985-12-26 1987-07-06 Hitachi Constr Mach Co Ltd Single rod cylinder driving circuit
WO1994013959A1 (en) * 1992-12-04 1994-06-23 Hitachi Construction Machinery Co., Ltd. Hydraulic regenerator
US7076413B2 (en) 2000-11-16 2006-07-11 Smc Kabushiki Kaisha Simulation result displaying apparatus for a pneumatic device and record of displayed result
AT524160A1 (en) * 2020-08-19 2022-03-15 Engel Austria Gmbh Hydraulic drive device for a shaping machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62151601A (en) * 1985-12-26 1987-07-06 Hitachi Constr Mach Co Ltd Single rod cylinder driving circuit
WO1994013959A1 (en) * 1992-12-04 1994-06-23 Hitachi Construction Machinery Co., Ltd. Hydraulic regenerator
JP3139769B2 (en) * 1992-12-04 2001-03-05 日立建機株式会社 Hydraulic regeneration device
US7076413B2 (en) 2000-11-16 2006-07-11 Smc Kabushiki Kaisha Simulation result displaying apparatus for a pneumatic device and record of displayed result
AT524160A1 (en) * 2020-08-19 2022-03-15 Engel Austria Gmbh Hydraulic drive device for a shaping machine
AT524160B1 (en) * 2020-08-19 2022-06-15 Engel Austria Gmbh Hydraulic drive device for a shaping machine

Also Published As

Publication number Publication date
JPH0338443B2 (en) 1991-06-10

Similar Documents

Publication Publication Date Title
US4022269A (en) Die cast machines
CN109963669B (en) Hydraulic control for a casting unit of an injection molding machine and method for controlling a casting unit of an injection molding machine
CN109909476B (en) Extrusion pin control device and die casting machine having the same
US5547619A (en) Toggle type injection molding process
KR100523172B1 (en) Method for controlling injection in a die casting machine and apparatus for the same
US4019561A (en) Injection apparatus for die cast machines
US7017649B2 (en) Die casting machine and casting method
JPS59121203A (en) Method and apparatus for controlling fluid pressure cylinder
JP2994511B2 (en) Injection speed control method for die casting machine
JPH1158398A (en) Method and device for controlling mold clamping pressure in straight-hydraulic mold clamping system
GB2099610A (en) A control device for the hydraulic circuit of an injection moulding machine
US3964537A (en) Method for pressure casting
JPS60242028A (en) Injection compression molding method
JP3055441B2 (en) Control method of injection molding machine
JP3240265B2 (en) Hydraulic control method of mold clamping device
JP3607368B2 (en) Injection control device for injection molding machine
JP3338310B2 (en) Injection control method and apparatus for die casting machine
JP2001300714A (en) Die casting machine
JPH06142884A (en) Injection device of die casting machine
JP4230066B2 (en) Brake circuit of injection molding machine and control method thereof
JPH021522Y2 (en)
JP2592111B2 (en) Hydraulic cylinder pressure control device
JPH06134829A (en) Braking device in injection molding machine
JP2863024B2 (en) Hydraulic drive for injection of die casting machine
JP2564237B2 (en) Control method of injection molding machine