JPS59119740A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS59119740A
JPS59119740A JP22670482A JP22670482A JPS59119740A JP S59119740 A JPS59119740 A JP S59119740A JP 22670482 A JP22670482 A JP 22670482A JP 22670482 A JP22670482 A JP 22670482A JP S59119740 A JPS59119740 A JP S59119740A
Authority
JP
Japan
Prior art keywords
electrode
dirt
film
semiconductor device
element portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22670482A
Other languages
Japanese (ja)
Inventor
Kenji Maeguchi
前口 賢二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22670482A priority Critical patent/JPS59119740A/en
Publication of JPS59119740A publication Critical patent/JPS59119740A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To prevent the generation of currents by a parasitic MOS transistor by obviating the formation of a path, through which currents are easy to flow to the side surface of an element section from the surface, without adding an impurity to the side surface. CONSTITUTION:Recessed sections 22 are formed to a p type Si substrate 21, an SiO2 thin-film 24 and a p type poly Si layer 25 are superposed, the film 24 is exposed onto a projecting section 23 through reactive ion etching, poly Si 26 is left on the side surface, and the surface is coated with SiO2 27. SiO2 28 is left in the recessed sections 22 through an etch-back. A first gate electrode 291 in MoSi extending on the layers 26, 28 is manufactured. The layer 26 of the side surface functions as a second gate electrode 292. n<+> Layers 31, 32 are formed to the element section 23 while using the electrodes 291, 292 as masks, the surface is coated with SiO2 33, and electrodes 351, 352 are formed. Since a work function of the electrode 292 to the Si substrate 21 is larger than that of the electrode 291, Vth of a parasitic MOS element generated on the longitudinal side surface of the electrode 291 of the n<+> layers 31, 32 can be made higher than that of the element of the surface, and a current increase by the parasitic element can be prevented.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は寄生トランジスタの発生を抑制した半導体装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device in which the generation of parasitic transistors is suppressed.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

周知の如く、集積回路においては素子間の電気的分離技
術が非常に重要な技術であり、これに関し様々な提案が
なされている。
As is well known, electrical isolation technology between elements is a very important technology in integrated circuits, and various proposals have been made regarding this technology.

従来、素子分離技術を用いた半導体装置は、大別して第
1図に示す如(Si基板1表面にS io 2膜2で分
離された島状の素子部3を設け、かつこの素子部3表面
にダート絶縁膜4を設けるとともに、このダート絶縁膜
4上に一部が5in2膜2上に延在するようにダート電
極5を設けた構造のもの、及び第2図に示す如くサファ
イア基板11上に島状の素子部(半導体層)12を設け
、かつこの半導体層12上にダート絶縁膜13を介して
ダート電極14を設けた、いわゆるSO8(5ilic
on on 5apphire )構造のものとに分け
られる。
Conventionally, semiconductor devices using element isolation technology can be broadly classified as shown in FIG. A structure in which a dirt insulating film 4 is provided on the sapphire substrate 11 and a dirt electrode 5 is provided on the dirt insulating film 4 so as to partially extend over the 5in2 film 2, as shown in FIG. An island-shaped element portion (semiconductor layer) 12 is provided on the semiconductor layer 12, and a dirt electrode 14 is provided on the semiconductor layer 12 via a dirt insulating film 13.
on on 5apphire) structure.

しかしながら、前述した第1図図示の半導体装置におい
ては、素子部3のダート電極5の長手方向の側面に素子
部3の表面よりも電流の流れやすい経路が発生するとい
う欠点がある。これを、第1図図示の半導体装置の斜視
図である第3図及びその回路図である第4図を参照して
説明する。即ち、素子部3の表面にはソース領域(S)
、ドレイン領域(D)7、ケ・−ト電極(G)5から構
成される第1のトランジスタ81が形成されている。し
がるに、5io2膜2の膜厚かケ8−ト絶縁膜4よりも
厚いためS ] O02膜2中の正電荷の影響によりそ
のしきい値電圧(V、H)が下ったり、あるいは素子部
3のダート電極4の長手方向のSiO2膜2の側面の形
状が垂直に近いためケ゛−ト絶縁膜4下の電界分布が第
1のトランジスタ81の端部では異なったりする。この
ようなことから、素子部3のダート電極4の長手方向の
側面にも第2のトランジスタ(寄生MO8)ランジスタ
)82が、前記第1のトランジスタ81と並列に形成さ
れる。そして、かかる寄生MO3)ランジスタ82は、
同じダート耐圧下においては一般に第1のトランジスタ
81よりも電流が流れやすく、第5図のダート電圧(V
G) −ドレイン電流(より)特性図に示す如く、低電
流領域で6コブ状の電流増加現象を示す。なお、図中の
(、)は第1のトランジスタ81の特性曲線を、(b)
は寄生MO3)ランジスタ82の特性曲線を夫々示す。
However, the above-described semiconductor device shown in FIG. 1 has a drawback in that a path through which current flows more easily is generated on the longitudinal side surface of the dart electrode 5 of the element portion 3 than on the surface of the element portion 3. This will be explained with reference to FIG. 3, which is a perspective view of the semiconductor device shown in FIG. 1, and FIG. 4, which is a circuit diagram thereof. That is, a source region (S) is formed on the surface of the element section 3.
, a drain region (D) 7, and a gate electrode (G) 5. However, since the thickness of the 5io2 film 2 is thicker than the ketone insulating film 4, the threshold voltage (V, H) may decrease due to the influence of positive charges in the S]O02 film 2, or Since the shape of the side surface of the SiO2 film 2 in the longitudinal direction of the dirt electrode 4 of the element section 3 is nearly vertical, the electric field distribution under the gate insulating film 4 may be different at the end of the first transistor 81. For this reason, a second transistor (parasitic MO8 transistor) 82 is also formed on the longitudinal side surface of the dirt electrode 4 of the element section 3 in parallel with the first transistor 81. The parasitic MO3) transistor 82 is
Under the same dart breakdown voltage, current generally flows more easily than in the first transistor 81, and the dart voltage (V
G) - As shown in the drain current (more) characteristic diagram, a six-bump-like current increase phenomenon is shown in the low current region. Note that (,) in the figure indicates the characteristic curve of the first transistor 81, and (b)
1 and 2 show characteristic curves of the parasitic MO3 transistor 82, respectively.

このことは、集積回路ではダート電圧OV時の電流をよ
り低く抑えることが必要であることと逆行するものであ
る。
This goes against the need for integrated circuits to keep the current at a dart voltage OV lower.

一方、第2図図示のSOS型半導体装置についても、素
子部12の側面の面方位が素子部12表面の面方位(1
00)と異なることがらvTHが下がったり、あるいは
第1図図示の半導体装置と同様に、素子部12の側面の
形状に垂直に近いことからダート絶縁膜下の電界分布が
素子部12の端部では異なる等の理由から第1図図示の
半導体装置と同様、寄生MO8)ランノスタが形成され
る問題が生じた。
On the other hand, also in the SOS type semiconductor device shown in FIG.
00), the vTH decreases, or, as in the semiconductor device shown in FIG. For different reasons, a problem arises in that a parasitic MO8) runnostar is formed, similar to the semiconductor device shown in FIG.

このようなことから、従来、寄生MO8)ランノスタに
よる電流の発生を抑えるために次のような手段が採られ
ている。以下、Si基板を用いた第1図図示の半導体装
置に適用した場合について説明する。即ち、この方法は
、第6図に示す如く素子部3のS IO2膜2寄りの側
面に不純物を添加することによって、素子部3の表面の
不純物濃度よりも高濃度の不純物層9を形成して寄生M
O8)ランジスタのvTHを素子部3表面のトランジス
タよりも高くするものである。かかる半導体装置によれ
ば、素子部3のS iO2膜2寄りの側面に高濃度の不
純物層9が形成されているため、素子部3のSiO2膜
2寄りの側面に素子部3表面よりも電流が流れやすい経
路が発生するのを阻止できる。しかしながら、前述した
装置は、不純物層9の形成に複雑な技術を要するととも
に、素子の微細化につれて不純物層9による末子特性上
の悪影響が無視できなくなり、素子部3表面のトランジ
スタvTHの変動等を招く。
For this reason, conventionally, the following measures have been taken to suppress the generation of current due to the parasitic MO8) runnostar. A case where the present invention is applied to the semiconductor device shown in FIG. 1 using a Si substrate will be described below. That is, in this method, as shown in FIG. 6, an impurity layer 9 having a higher impurity concentration than the surface of the element part 3 is formed by adding impurities to the side surface of the element part 3 closer to the SIO2 film 2. parasitic M
O8) The vTH of the transistor is made higher than that of the transistor on the surface of the element section 3. According to this semiconductor device, since the highly-concentrated impurity layer 9 is formed on the side surface of the element portion 3 closer to the SiO2 film 2, more current flows to the side surface of the element portion 3 closer to the SiO2 film 2 than on the surface of the element portion 3. It is possible to prevent the occurrence of a path through which water easily flows. However, the above-mentioned device requires a complicated technique to form the impurity layer 9, and as the device becomes smaller, the adverse effects of the impurity layer 9 on the terminal characteristics cannot be ignored, and fluctuations in the transistor vTH on the surface of the device section 3, etc. invite

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、素子部の側
面に不純物を添加することなく、素子部の側面に素子部
表面よりも電流が流れやすい経路が発生することを阻止
した半導体装置を提供するものである。
The present invention has been made in view of the above circumstances, and provides a semiconductor device that prevents the generation of a path through which current flows more easily on the side surface of the element portion than on the surface of the element portion, without adding impurities to the side surface of the element portion. This is what we provide.

〔発明の概要〕[Summary of the invention]

本発明は、絶縁性基板上あるいは半導体基板表面に島状
の素子部を設け、この素子部上に第1のダート絶縁膜を
介して第1のダート電極を設け、同素子部の第1のケ゛
−ト電極の長手方向の側面に第2の絶縁膜を介して前記
第1のゲート電極に電気的に接続する第2のケ°−ト電
極を設け、かつ前記素子部に対する第2のケゝ−ト電極
の仕事関数を同素子部に対する第1のケ゛−ト電極の仕
事関数よりも大きくすることによって、素子部の側面に
素子部表面よりも電流が流れやすい経路が発生すること
を阻止することを図ったものである。
The present invention provides an island-shaped element portion on an insulating substrate or a semiconductor substrate surface, a first dirt electrode is provided on this element portion via a first dirt insulating film, and a first dirt electrode of the element portion A second gate electrode electrically connected to the first gate electrode via a second insulating film is provided on a longitudinal side surface of the gate electrode, and the second gate electrode is connected to the element portion. By making the work function of the first gate electrode larger than the work function of the first gate electrode for the same element part, it is possible to prevent the generation of a path on the side of the element part where current flows more easily than on the surface of the element part. It is intended to do so.

以下、本発明に至る経過について詳述する。Hereinafter, the progress leading to the present invention will be explained in detail.

本発明者は、第1図図示あるいは第2図図示の半導体装
置のダート電極の材質とV。−I、特性の関係をnチャ
ネルとnチャネルの場合について調べたところ、第7図
に示す通りとなった。なお、図中の(a)、(b)、(
C)は夫々高濃度のn型不純物を含む(n+型)多結晶
シリコン、Mo512、高濃度のp型不純物を含むC一
層型・多結晶シリコンからなるケゞ−ト電極を用いた場
合のnチャネルの半導体装置のvG−札特性図、(a’
)+(b’) 、 (c’)は夫々nj型多結晶シリコ
ン、MO3+2、p++多結晶シリコンからなるケ゛−
ト篭極を用いた場合のnチャネルの半導体装置の■。−
■ゎ特性図をを示す。同図より、素子部中のあるアクセ
フ0タ一濃度に対してnチャネルの半導体装置のVTH
(■o=0)はp型多結晶シリコン、MoSi、、、n
+型型詰結晶シリコン順に高い値を示し、かつあるドナ
ー濃度に対してはnチャネルの半導体装置の■、H(よ
り−0)はn型多結晶シリコン、MoS+2、P”型多
結晶シリコンの順に高い値を示すことが明らかである。
The present inventor has discovered the material and V of the dart electrode of the semiconductor device shown in FIG. 1 or 2. -I, characteristics were investigated for n-channel and n-channel cases, and the results were as shown in FIG. Note that (a), (b), (
C) is the case where gate electrodes are made of (n+ type) polycrystalline silicon containing a high concentration of n-type impurity, Mo512, and C single-layer type polycrystalline silicon containing a high concentration of p-type impurity, respectively. vG-tag characteristic diagram of the semiconductor device of the channel, (a'
)+(b') and (c') are cases made of nj-type polycrystalline silicon, MO3+2, and p++ polycrystalline silicon, respectively.
(2) of an n-channel semiconductor device using a gate electrode. −
■ Show the characteristic diagram. From the same figure, the VTH of the n-channel semiconductor device for a certain concentration of axef.
(■o=0) is p-type polycrystalline silicon, MoSi, , n
The values are higher in the order of +-type packed crystalline silicon, and for a certain donor concentration, ■ for n-channel semiconductor devices, and H (more -0) for n-type polycrystalline silicon, MoS+2, and P'' type polycrystalline silicon. It is clear that the values increase in descending order.

上記vTHの違いは、素子部のシリコンとダート電極の
材質の仕事関数の違いから生ずるものである。このよう
なことから、本発明者は寄生MO3)ランジスタのVT
Hをその本来のトランジスタのvTHよりも高くするた
めには、寄生MO8)ランジスタのダート電極の材質と
して仕事関数差の大きいものを選ぶことが有効であるこ
とを究明した。
The above-mentioned difference in vTH results from the difference in work function between the silicon of the element portion and the material of the dart electrode. For these reasons, the inventors have determined that the VT of the parasitic MO3) transistor is
In order to make H higher than the original vTH of the transistor, we have found that it is effective to select a material with a large difference in work function as the material for the dart electrode of the parasitic MO8) transistor.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例であるnチャネルMo8 )ラ
ンジスタを第8図(a)〜(g)に示す製造方法を併記
して説明する。
Hereinafter, an n-channel Mo8) transistor, which is an embodiment of the present invention, will be described with reference to a manufacturing method shown in FIGS. 8(a) to 8(g).

〔1〕まず、第8図(a)に示すp型のSi基板21表
面の素子分離領域に対応する部分をエツチング除去して
開孔部22・・・を形成した。なお、図中の23は素子
部を示す(第8図(b)図示)。
[1] First, a portion of the surface of the p-type Si substrate 21 shown in FIG. 8(a) corresponding to the element isolation region was removed by etching to form the openings 22 . Note that 23 in the figure indicates an element portion (as shown in FIG. 8(b)).

つづいて、熱酸化処理を施して全面に厚さ〜500Xの
薄い酸化膜24を形成した。更にこの酸化膜24上にp
型不純物例えばゼロンが添加された厚さ2000Xの多
結晶シリコン層25を形成した(第8図(c)図示)。
Subsequently, thermal oxidation treatment was performed to form a thin oxide film 24 with a thickness of ~500X over the entire surface. Furthermore, p is formed on this oxide film 24.
A polycrystalline silicon layer 25 having a thickness of 2000× and doped with a type impurity such as zero was formed (as shown in FIG. 8(c)).

次いで、例えば反応性イオンエツチングにより前記多結
晶シリコン層25を前記酸化膜22が露出するまで異方
的にエツチングし、前記菓子部23の側面に酸化膜22
を介して多結晶シリコンノ々ターン26を残存させた。
Next, the polycrystalline silicon layer 25 is etched anisotropically by, for example, reactive ion etching until the oxide film 22 is exposed, and the oxide film 22 is formed on the side surface of the confectionery part 23.
The polycrystalline silicon nozzle 26 was left through.

更に、全面にCVD −5in2膜27を形成した(第
8図(d)図示)。
Further, a CVD-5in2 film 27 was formed on the entire surface (as shown in FIG. 8(d)).

〔l;〕  次に、エッチバック方式によりCVD −
8r 07膜27を開孔部22・・・にのみ酸化膜24
、多結晶シリコンパターン26を介して残存させ、CV
D −5j02膜・リーン28を形成した(第8図(e
)図式)。つづいて全面に膜厚3000XのMoSi2
膜(図示せず)を形成した後、このMo812膜を写真
蝕刻法によりパターニングして一部が前記多結晶シリコ
ンノぐターン26 ’I  CVD −5to2膜ノ+
ターン28に延在するMo S i2からなる第1のゲ
ート′1扛極29.を形成した。なお、前記ケ゛−ト電
極291下の酸化膜−・、イは第1のダート絶縁膜so
1となる。また、素子部23のダート電極291が延在
する方向の側面の酸化膜7.ノ・lは第2のダート絶縁
膜3o2となり、同側面の多結晶シリコンパ゛ターン5
°!、は第2のゲート電極292となる(第8図(f)
図示)。次いで、前記第1のダート電極291をマスク
としてSi基板21の素子部23にn型不純物例えばリ
ンをイオン注入、熱処理してi型のソース、ドレイン領
域31゜32を形成した後、全面にCVD法により51
02膜33を形成し、しかる後このSiO2膜33の前
記ソース、ドレイン領域31.32に対応する部分にコ
ンタクトホール341s342を開け、これらコンタク
トホール”Lp342を介して前記ソース、ドレイン領
域3’l、32に接続する取出し電極351r352を
設けることによってチャネル領域36を有するnチャネ
ルMo3 )ランジスタを製造した(第8図(g)及び
第9図図示)。
[l;] Next, CVD −
8r 07 Oxide film 24 only in the opening part 22 of the film 27
, remain through the polycrystalline silicon pattern 26, and CV
D-5j02 film Lean 28 was formed (Fig. 8(e)
) diagram). Next, MoSi2 with a film thickness of 3000X was applied to the entire surface.
After forming a film (not shown), this Mo812 film is patterned by photolithography, so that a portion of the Mo812 film is formed into the polycrystalline silicon groove 26'I CVD-5to2 film layer.
A first gate '1 pole 29 .of Mo Si2 extending into the turn 28 . was formed. Note that the oxide film under the gate electrode 291 is the first dirt insulating film so.
It becomes 1. Further, the oxide film 7 on the side surface of the element portion 23 in the direction in which the dart electrode 291 extends. No.l becomes the second dirt insulating film 3o2, and the polycrystalline silicon pattern 5 on the same side
°! , becomes the second gate electrode 292 (Fig. 8(f)
(Illustrated). Next, using the first dirt electrode 291 as a mask, an n-type impurity such as phosphorus is ion-implanted into the element portion 23 of the Si substrate 21, heat-treated to form i-type source and drain regions 31 and 32, and then the entire surface is subjected to CVD. 51 by law
02 film 33 is formed, and then contact holes 341s342 are opened in portions of this SiO2 film 33 corresponding to the source and drain regions 31 and 32, and the source and drain regions 3'l, An n-channel Mo3 transistor having a channel region 36 was manufactured by providing a lead-out electrode 351r352 connected to the channel region 32 (as shown in FIGS. 8(g) and 9).

なお、第9図は第8図(g)をダート電極の長手方向と
直交するように切断した断面図である。
Note that FIG. 9 is a cross-sectional view of FIG. 8(g) taken perpendicular to the longitudinal direction of the dart electrode.

前述の如く製造されるMo8 )ランジスタは、第8図
(g)及び第9図に示す如く、p型のSi基板21表面
にソース、ドレイン領域31.32を設け、これらソー
ス、ドレイン領域31.32間のチャネル領域36上に
第1のケ8−ト絶縁膜30、を介してMo S 12か
らなる第1のケ゛−ト電極29□を設け、更に前記ソー
ス、ドレイン領域31.32の第1のダート電極291
の長手方向の側面に第2のダート絶縁膜302を介して
計型多結晶シリコンパターンからなる第2のケゝ−ト電
極292を設けた構造となっている。
The Mo8) transistor manufactured as described above has source and drain regions 31 and 32 provided on the surface of a p-type Si substrate 21, as shown in FIGS. 8(g) and 9, and these source and drain regions 31.32. A first gate electrode 29 □ made of MoS 12 is provided on the channel region 36 between the source and drain regions 31 and 32 via the first gate insulating film 30 . 1 dart electrode 291
It has a structure in which a second gate electrode 292 made of a square polycrystalline silicon pattern is provided on the side surface in the longitudinal direction with a second dart insulating film 302 interposed therebetween.

しかして、前述した構造のMo8 )ラン・ゾスタにお
いては、多結晶シリコンi+ターンからなる第2のケ゛
−ト電極292はSi基板2ノに対する仕事関数が、M
o8i2からなる第1のダート電極291のSi基板2
1に対する仕事関数よりも大きいため、第10図に示す
如くソース、ドレイン領域31.32の第1のダート電
極291の長手方向の側面に生じるトランジスタ(寄生
MO8)ランノスタ)のVTHをソース、ドレイン領域
3ノ、32表面のトランジスタのvTHよりも約0.5
5V高くできる。したがって、素子特性はソース、ドレ
イン領域31.32表面のトランジスタのV。−ID特
性でほぼ決定され、従来の如き寄生MO8)ランジスタ
による電流増加を阻止することができる。なお、図中の
(、)はソース、ドレイン領域31.32の第1のダー
ト電極の長手方向の側面に生じる寄生トランジスタの特
性曲線を、(b)はソース、ドレイン領域31.32表
面のトランジスタの特性曲線を夫々示す。
Therefore, in the Mo8) run zoster having the above-described structure, the second gate electrode 292 made of polycrystalline silicon i+ turns has a work function for the Si substrate 2 of M
Si substrate 2 of first dirt electrode 291 made of o8i2
Since the work function for the source and drain regions 31 and 32 is larger than the work function for 1, the VTH of the transistor (parasitic MO8 runnostar) generated on the longitudinal side surface of the first dirt electrode 291 of the source and drain regions 31 and 32 is 3, about 0.5 more than vTH of the transistor on the 32 surface.
Can be increased by 5V. Therefore, the device characteristics are V of the transistor on the surface of the source and drain regions 31 and 32. -ID characteristics, and it is possible to prevent the current increase due to the conventional parasitic MO8) transistor. Note that (,) in the figure indicates the characteristic curve of the parasitic transistor occurring on the longitudinal side surface of the first dart electrode in the source and drain regions 31.32, and (b) indicates the characteristic curve of the parasitic transistor on the surface of the source and drain region 31.32. The characteristic curves of

また、本発明によれば、従来の改良された半導体装置の
如く素子部のS iO2膜寄シの側面に高濃度の不純物
層を形成することがないため、複雑な不純物注入技術全
必要とせず製造が簡単で製造歩留シを上げることができ
るとともに、集子が微細化した場合にも素子特性に何ら
悪影響を及ばずことはない。
Furthermore, according to the present invention, unlike conventional improved semiconductor devices, a highly concentrated impurity layer is not formed on the side surface of the SiO2 film in the element portion, so there is no need for any complicated impurity implantation techniques. Manufacture is simple and manufacturing yield can be increased, and even if the collectors are made finer, the device characteristics will not be adversely affected.

なお、上記実施例では第1、第2のダート電極の材質と
して夫々n 型多結晶シリコン、MoSi2を用いたが
、これに限らず、第2のダート電極のSi基板に対する
仕事関数が第1のダート電極のSi基板に対するそれよ
シも大きければあらゆる種類のものを用いることができ
る。ただし、プロセス上ある程度の高温処理(500℃
以上)に耐えられ、かつ寄生MO8)ランジスタ部に多
結晶シリコンを使用する場合にはその多結晶シリコンと
オーεツク接合をとる必要がらMo 。
In the above embodiment, n-type polycrystalline silicon and MoSi2 were used as the materials for the first and second dirt electrodes, respectively, but the present invention is not limited to this. Any type of dirt electrode can be used as long as its distance from the Si substrate is larger. However, a certain amount of high temperature processing (500℃) is required in the process.
8) When polycrystalline silicon is used in the transistor section, it is necessary to form an open junction with the polycrystalline silicon.

TQ 、 Ta 、 Co等の高融点金属、あるいはT
l5I2+Cadi、、等の金属間半導体化合物が望ま
しい。
High melting point metal such as TQ, Ta, Co, or T
Intermetallic semiconductor compounds such as 15I2+Cadi, etc. are desirable.

また、上記実施例ではnチャネルMosトランジスタの
場合について述べたが、これに限らず、pチャイ・ルM
OSトランジスタあるいはCMo8  )ランソスタに
も同様に適用できる。更に、上記実施例ではS+基板を
用いたトランジスタの場合について述べたが、これに限
らない。例えば、第11図に示す如くサファイア基板4
1上に島状の素子部42を設け、かっこの素子部42表
面にソース、ドレイン領域(いずれも図示せず)を設け
、更にこれらソース、ドレイン領域間のチャネル領域4
3上に第1のダート絶縁膜44゜を介して層型多結晶シ
リコンからなる第1のダート電極45.f設け、前記ソ
ース、ドレイン領域の第1のダート電極45.の長手方
向の側面にMo S + 2からなる第2のダート電極
452を第2のケ゛−ト絶縁膜442を介して設けたS
OS構造の半導体装置に適用できる。その他So■(5
iliconon In5ulator )型の半導体
装置にも適用できる。
Further, in the above embodiment, the case of an n-channel Mos transistor has been described, but the case is not limited to this.
It can be similarly applied to an OS transistor or a CMo8) transistor. Furthermore, although the above embodiments have described the case of a transistor using an S+ substrate, the present invention is not limited to this. For example, as shown in FIG.
An island-shaped element portion 42 is provided on the parenthesized element portion 42, source and drain regions (none of which are shown) are provided on the surface of the parenthesized element portion 42, and a channel region 4 between these source and drain regions is provided.
A first dirt electrode 45.3 made of layered polycrystalline silicon is disposed on the first dirt insulating film 44. A first dirt electrode 45.f is provided in the source and drain regions. A second dirt electrode 452 made of MoS+2 is provided on the side surface in the longitudinal direction of the S.
It can be applied to semiconductor devices with an OS structure. Other So■(5
It can also be applied to semiconductor devices of the iliconon inverter) type.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、素子部の側部に素子
部表面よシも電流が流れやすい経路が発生することを阻
止し得る素子特性の良好な半導体装置を提供できるもの
である。
As described in detail above, according to the present invention, it is possible to provide a semiconductor device with good element characteristics that can prevent the generation of paths in the sides of the element part where current flows more easily than the surface of the element part.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の81基板を有する半導体装置の断面図、
第2図は従来のSOS構造の半導体装置の断面図、第3
図は第1図図示の半導体装置の斜視図、第4図は第1図
及び第3図の回路図、第5図は第1図及び第3図図示の
半導体装置のvo−ID特性図、第6図は第1図及び第
3図図示の半導体装置を改良した半導体装置の断面図、
第7図は第1図図示あるいは第2図図示の半導体装置の
ダート電極の材質とVG−ID特性との関係を示す特性
図、第8図(a)〜(g)は本発明の一実施例であるM
o8型トランソスタを得るための製造工程を示す断面図
、第9図は第8図(g)を第1のゲート電極の長手方向
と直交する方向に切断した断n■1図、第10図は第8
図(g)及び第9図図示のMO8型トランノスタのV。 −■。特性図である。 第11図は本発明の他の実施例を示すSO8型半導体装
置の断面図である。 2ノ・・・p型のSt基板、22・・・開孔部、23゜
42・・・島状の素子部、24・・・薄い酸化膜、25
・・・多結晶シリコン層、26・・・多結晶シリコンパ
ターン(電極材料層)、27・・・CvD−8IO2膜
、2B ・・・(−VD −8102膜ハターン、29
1.292 。 451.452・・・ゲート電極、13y 301 g
 3(72H”Ir442・・・ダート絶縁膜、31・
・・n 型のソース領域、32・・・n+型のドレイン
領域、33・・・S i02膜、”1+342・・・コ
ンタクトホール、351゜352・・・取出し電極、3
6.43・・・チャネル領域、4〕・・・サファイア基
板。 出願人代理人  弁理士 鈴 江 武 彦り<s  3
  rq 第4図 第5図 第7図 第8図 第8囚 第9図 P21
FIG. 1 is a cross-sectional view of a conventional semiconductor device having 81 substrates.
Figure 2 is a cross-sectional view of a conventional SOS structure semiconductor device;
The figure is a perspective view of the semiconductor device shown in FIG. 1, FIG. 4 is a circuit diagram of FIGS. 1 and 3, and FIG. 5 is a vo-ID characteristic diagram of the semiconductor device shown in FIGS. 1 and 3. FIG. 6 is a sectional view of a semiconductor device improved from the semiconductor devices shown in FIGS. 1 and 3;
FIG. 7 is a characteristic diagram showing the relationship between the material of the dirt electrode and the VG-ID characteristics of the semiconductor device shown in FIG. 1 or FIG. 2, and FIGS. 8(a) to (g) are one embodiment of the present invention M as an example
9 is a cross-sectional view showing the manufacturing process for obtaining an O8 type transformer, and FIG. 9 is a cross-sectional view of FIG. 8th
V of the MO8 type trannostar shown in Figure (g) and Figure 9. −■. It is a characteristic diagram. FIG. 11 is a sectional view of an SO8 type semiconductor device showing another embodiment of the present invention. 2no...p-type St substrate, 22...opening portion, 23°42...island-shaped element portion, 24...thin oxide film, 25
...Polycrystalline silicon layer, 26...Polycrystalline silicon pattern (electrode material layer), 27...CvD-8IO2 film, 2B...(-VD-8102 film pattern, 29
1.292. 451.452...Gate electrode, 13y 301g
3 (72H"Ir442... dirt insulating film, 31.
...n type source region, 32...n+ type drain region, 33...Si02 film, "1+342...contact hole, 351°352...extracting electrode, 3
6.43...Channel region, 4]...Sapphire substrate. Applicant's agent Patent attorney Takehiko Suzue <s 3
rq Figure 4 Figure 5 Figure 7 Figure 8 Prisoner 8 Figure 9 P21

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁性基板上あるいは半導体基板表面に設けられ
た島状の素子部と、この素子部上に第1のダート絶縁膜
を介して設けられた第1のr−ト電極と、同素子部の第
1のダート電極の長手方向の側面に第2のダート絶縁膜
を介して設けられ、前記第1のケ゛−ト電極と電気的に
接続する第2のダート電極とを具備する半導体装置にお
いて、前記素子部に対する第2のダート電極の仕事関数
が同素子部に対する第1のダート電極の仕事関数より大
きいことを特徴とする半導体装置。
(1) An island-shaped element portion provided on an insulating substrate or the surface of a semiconductor substrate, a first r-to electrode provided on this element portion via a first dirt insulating film, and the same element. A semiconductor device comprising: a second dirt electrode provided on a longitudinal side surface of the first dirt electrode of the part via a second dirt insulating film and electrically connected to the first gate electrode. 2. A semiconductor device according to claim 1, wherein the work function of the second dirt electrode relative to the element portion is larger than the work function of the first dirt electrode relative to the element portion.
(2)第1のダート電極が高濃度のn型不純物を含む多
結晶シリコンからなり、かつ第2のダート電極が金属間
半導体化合物からなることを特徴とする特許請求の範囲
第1項記載の半導体装置。
(2) The first dirt electrode is made of polycrystalline silicon containing a high concentration of n-type impurity, and the second dirt electrode is made of an intermetallic semiconductor compound. Semiconductor equipment.
JP22670482A 1982-12-27 1982-12-27 Semiconductor device Pending JPS59119740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22670482A JPS59119740A (en) 1982-12-27 1982-12-27 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22670482A JPS59119740A (en) 1982-12-27 1982-12-27 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS59119740A true JPS59119740A (en) 1984-07-11

Family

ID=16849330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22670482A Pending JPS59119740A (en) 1982-12-27 1982-12-27 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS59119740A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61271854A (en) * 1985-05-27 1986-12-02 Nec Corp Semiconductor-element isolating structure and manufacture thereof
JP2007081329A (en) * 2005-09-16 2007-03-29 Toshiba Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61271854A (en) * 1985-05-27 1986-12-02 Nec Corp Semiconductor-element isolating structure and manufacture thereof
JP2007081329A (en) * 2005-09-16 2007-03-29 Toshiba Corp Semiconductor device

Similar Documents

Publication Publication Date Title
TWI627759B (en) Integrated circuits with capacitors and methods for producing the same
JPH02144969A (en) Mos type field-effect transistor formed in semiconductor layer on insulator substrate
KR0138959B1 (en) Manufacture of gate electrode of cmos device
JPS6243549B2 (en)
JPS59119740A (en) Semiconductor device
JPH06349856A (en) Thin-film transistor and its manufacture
JPS59195870A (en) Semiconductor device
JPS597231B2 (en) Method for manufacturing insulated gate field effect semiconductor device
JPS62262462A (en) Semiconductor device
JPS60175458A (en) Semiconductor device and manufacture thereof
JPS6119174A (en) Semiconductor device
JPH01264265A (en) Semiconductor device and its manufacture
JPS62154784A (en) Semiconductor device
JPS61292374A (en) Semiconductor device and its manufacture
JPH0684939A (en) Manufacture of mis field-effect semiconductor device
JPS62245671A (en) Manufacture of semiconductor integrated circuit device
JPS5816569A (en) Vertical type mosfet
JPS6020582A (en) Mis transistor and manufacture thereof
KR0140635B1 (en) Thin film transistor
JPH04139765A (en) Semiconductor device
JPS60133755A (en) Manufacture of semiconductor device
JPS61231763A (en) Semiconductor device and manufacture of the same
JPS5966158A (en) Semiconductor device
JPS6252470B2 (en)
JPS6159750A (en) Semiconductor device and manufacture of the same