JPS59119710A - Iron core - Google Patents

Iron core

Info

Publication number
JPS59119710A
JPS59119710A JP57226736A JP22673682A JPS59119710A JP S59119710 A JPS59119710 A JP S59119710A JP 57226736 A JP57226736 A JP 57226736A JP 22673682 A JP22673682 A JP 22673682A JP S59119710 A JPS59119710 A JP S59119710A
Authority
JP
Japan
Prior art keywords
powder
iron
core
average particle
iron core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57226736A
Other languages
Japanese (ja)
Other versions
JPH0416004B2 (en
Inventor
Hiromichi Horie
宏道 堀江
Mikiro Morita
森田 幹郎
Itsuo Arima
有馬 逸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57226736A priority Critical patent/JPS59119710A/en
Priority to US06/564,847 priority patent/US4543208A/en
Priority to EP83113121A priority patent/EP0112577B2/en
Priority to DE8383113121T priority patent/DE3365486D1/en
Priority to CA000444324A priority patent/CA1218283A/en
Publication of JPS59119710A publication Critical patent/JPS59119710A/en
Publication of JPH0416004B2 publication Critical patent/JPH0416004B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0094Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with organic materials as the main non-metallic constituent, e.g. resin

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a core which has excellent frequency characteristics of permeability and high flux density by a method wherein either one or both of iron powder and ferroalloy magnetic powder, which have specific average particle diameter, and the powder of electrical insulating binding resin and electrical insulating inorganic compound, which is to be mixed with former material or materials and whose content is specified, are introduced to form the core. CONSTITUTION:Either one or both of iron powder and ferroalloy magnetic powder, which have average particle diameter of 10-100mum, and the powder of electrical insulating binding resin and electrical insulating inorganic compound, which is mixed with the former material or materials of 1.5-4.0vol%, are introduced to form a core. If the average particle diameter of the iron powder or the ferroalloy magnetic powder is defined as Dmum and the specific resistivity as rhomuOMEGA-cm, the relation rho/D<2>>=4X10<-3> should be established. The average particle diameter of the inorganic compound powder should be specified to be less than 20mum. The iron powder may be such as pure iron powder, Fe-Si alloy powder and Fe-Al alloy powder and the resin may be such as epoxy, polyamide and polyester and the inorganic compound may be such as calcium carbonate and silica.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、鉄心に関し、更に詳しくは、透磁率の周波数
特性が優れ、且つ、高い磁束密度を有する鉄心に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an iron core, and more particularly to an iron core having excellent frequency characteristics of magnetic permeability and high magnetic flux density.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、交流を直流に変換する装置、直流を交流に変換す
る装置、成る周波数の交流を異なる周波数の交流に変換
する装置及び所謂チョッパ等の直流を直流に変換する装
置等のような電力変換装置、或いは無接点遮断器等の電
気機器には、その電気回路構成要素として、サイリスタ
又はトランジスタに代表される半導体スイッチング素子
並びにこれに接続されたターンオンストレス緩和用リア
クトル、転流リアクトル、エネルギー蓄積用リアクトル
或いはマツチング用変圧器等が使用されているO このような電力変換装置の例として、第1図に直流を交
流に変換する装置の電気回路図を示す。
Conventionally, power conversion devices such as devices that convert alternating current to direct current, devices that convert direct current to alternating current, devices that convert alternating current of different frequencies to alternating current of different frequencies, devices that convert direct current to direct current such as so-called choppers, etc. , or an electrical device such as a non-contact circuit breaker, has a semiconductor switching element represented by a thyristor or transistor as its electrical circuit component, and a turn-on stress relieving reactor, commutation reactor, or energy storage reactor connected to this. Alternatively, a matching transformer or the like is used. As an example of such a power conversion device, FIG. 1 shows an electric circuit diagram of a device that converts direct current into alternating current.

第1図の電力変換装置は、半導体スイッチング素子1、
ターンオンストレス緩和用リアクトル2及びマツチング
用変圧器3によ多構成されているものである。
The power converter shown in FIG. 1 includes a semiconductor switching element 1,
It is composed of a turn-on stress relieving reactor 2 and a matching transformer 3.

これらのりアクドルや変圧器には、半導体装置イツチン
グに伴い、100KHzから場合によっては500 K
Hzを超える程度にまで達する高い周波数成分を含有す
る電流が流れることがある。
These electric currents and transformers have a frequency range of 100 KHz to 500 KHz in some cases due to semiconductor device switching.
Currents containing high frequency components, even reaching levels above Hz, may flow.

このようなりアクドルや変圧器を構成している鉄心には
、従来、次のようなものが使用されている。即ち、 (&)  層間絶縁を施した薄い電磁鋼板又はパーマロ
イ板等を積層して作製した積層鉄心、 (b)  カーブニル鉄微粉、パーマロイ微粉等を、例
えば、フェノール樹脂等の樹脂を使用して結着せしめた
、所謂ダストコア、或いは (c)  酸化物系磁性材料を焼結して作製した、所謂
フェライトコア 等が挙げられる。
Conventionally, the following types of iron cores have been used to construct such axles and transformers: That is, (&) a laminated core made by laminating thin electromagnetic steel plates or permalloy plates with interlayer insulation; (b) a laminated iron core made by laminating carbonyl iron fine powder, permalloy fine powder, etc. using a resin such as phenol resin; (c) A so-called ferrite core made by sintering an oxide-based magnetic material, and the like.

これらの中で、積層鉄心は、商用周波数帯域においては
優れた電気特性を示すものの、高い周波数帯域において
は、鉄心の鉄損が著しく、殊に、渦電流損失が周波数の
2乗に比例して増加し、又、鉄心を形成する板材の表面
から内部へ入るにつれ、鉄心材料の表皮効果によって磁
化力が変化しにくくなるという性質を有している。従っ
て、積層鉄心は、高い周波数帯域においては、本来鉄心
材料自身が有している飽和磁束密度よりもはるかに低い
磁束密度でしか使用するととができず、渦電流損失も極
めて大1!いという問題点を有している。
Among these, laminated cores exhibit excellent electrical properties in the commercial frequency band, but in high frequency bands, the core loss is significant, and in particular, the eddy current loss is proportional to the square of the frequency. Furthermore, as the magnetizing force increases from the surface of the plate material forming the core to the inside, it has a property that the magnetizing force becomes difficult to change due to the skin effect of the core material. Therefore, in high frequency bands, laminated cores can only be used at magnetic flux densities that are much lower than the saturation magnetic flux density that the core material itself originally has, and the eddy current loss is also extremely large! It has the problem of

更に、積層鉄心は、高い周波数に対する実効透磁率が、
商用周波数に対する実効透磁率と比較して著しく低いと
いう問題点を有している。これらの問題点を有している
積層鉄心を、高い周波数成分を有する電流が流れる、半
導体スイッチング素子に接続されたりアクドル又は変圧
器等に使用する場合には、実効透磁率及び磁束@度を補
償するために1鉄心自身を大型なものにしなければなら
ず、それに伴い、実効透磁率が低いことと相俟って、銅
損が大きくなるという問題点をも有している。
Furthermore, the effective magnetic permeability of the laminated core at high frequencies is
The problem is that the effective magnetic permeability at commercial frequencies is significantly lower than that at commercial frequencies. When a laminated core with these problems is connected to a semiconductor switching element or used in an accelerator or transformer where a current with high frequency components flows, effective magnetic permeability and magnetic flux@degree are compensated. In order to do this, the single core itself must be made large, which, together with the low effective magnetic permeability, also poses the problem of increased copper loss.

一方、ダストコアと呼ばれる圧粉磁性体が鉄心材料とし
て使用されており、例えば、特許第112235号等に
詳細に説明されている。しかしながら、このようなダス
トコアは、一般に、その磁束密度及び透磁率がかなル低
い値を有するものである。これらの中でも比較的高い磁
束密度を有するカーがニル鉄粉を使用したダストコアに
おいても、その、100OOA/?FIの磁化力におけ
る磁束密度は0.1Tをやや上回る程度であり、透磁率
は1、25 X I F5H/m程度のものである。従
って、ゲストコアを鉄心材料として使用したりアクドル
又は変圧器等においては、磁束密度や透磁率の低さを補
償するために、鉄心の巨大化が避けられず、それに伴い
、リアクトル又は変圧器等の銅損が大きくなるという問
題点を有している。
On the other hand, a powder magnetic material called a dust core is used as an iron core material, and is described in detail in, for example, Japanese Patent No. 112235. However, such dust cores generally have very low values for their magnetic flux density and magnetic permeability. Among these, Kerr has a relatively high magnetic flux density, even in the dust core using nil iron powder, which has a magnetic flux density of 100OOA/? The magnetic flux density at the magnetizing force of FI is a little over 0.1 T, and the magnetic permeability is about 1.25 x I F5H/m. Therefore, when guest cores are used as core materials, or in accudres, transformers, etc., in order to compensate for the low magnetic flux density and magnetic permeability, it is unavoidable that the core becomes large, and accordingly, reactors, transformers, etc. The problem is that copper loss increases.

又、小型の電気機器に使用されているフェライトコアは
、高い固有抵抗値及び比較的硬れた高周波特性を有して
いる。しかしながら、フェライトコアは、10000 
A 7mの磁化力における磁束密度が0.4T程度と低
く、鉄心の使用温度範囲である一40〜120℃におい
て、透磁率並びに同一磁化力における磁束密度の値がそ
れぞれ数十チも変化するという問題点を有している。こ
のため、フェライトコアを、半導体スイッチング素子に
接続されたりアクドル又は変圧器等の鉄心材料とじて使
用する場合には、磁束密度が低いために、鉄心を大型に
する必要がある。しかし、フェライトコアは、焼結体で
あるために、大型鉄心の製造が困難であシ、鉄心として
は適さないものである。又、フェライトコアは、その低
磁束密度に起因する銅損が大きいこと、透磁率及び磁束
密度が温度で大きな影響を受けるために、リアクトルや
変圧器に使用した場合にその特性変化が大きいこと、更
には、電磁鋼板等と比較した場合に磁歪が大きいので鉄
心から発せられる騒音が大きくなること等の問題点を有
している。
Further, ferrite cores used in small electrical devices have high specific resistance values and relatively hard high frequency characteristics. However, the ferrite core is 10,000
A: The magnetic flux density at a magnetizing force of 7 m is as low as about 0.4 T, and the magnetic permeability and the magnetic flux density at the same magnetizing force change by several tens of degrees in the operating temperature range of the iron core, 140 to 120 degrees Celsius. There are problems. For this reason, when a ferrite core is connected to a semiconductor switching element or used as an iron core material for an axle, a transformer, etc., it is necessary to make the iron core large because the magnetic flux density is low. However, since the ferrite core is a sintered body, it is difficult to manufacture a large iron core, and it is not suitable as an iron core. In addition, ferrite cores have large copper loss due to their low magnetic flux density, and their magnetic permeability and magnetic flux density are greatly affected by temperature, so their characteristics change significantly when used in reactors and transformers. Furthermore, since the magnetostriction is large when compared with electromagnetic steel sheets, etc., there are problems such as increased noise emitted from the iron core.

〔発明の目的〕 本発明の目的は、上記した問題点を解消し、半導体素子
に接続されたりアクドル或いは変圧器等に使用される鉄
心として、優れた透磁率の周波数特性及び高い磁束密度
を有する鉄心を提供することにある。
[Object of the Invention] The object of the present invention is to solve the above-mentioned problems, and to provide an iron core that has excellent magnetic permeability, frequency characteristics, and high magnetic flux density, and can be used as an iron core connected to semiconductor devices or used in accelerators, transformers, etc. The goal is to provide the core.

〔発明の概要〕[Summary of the invention]

本発明の鉄心は、磁性粉と結着樹脂と無機化合物の粉末
とから成る成形体である。すなわち、本発明の鉄心は、
平均粒径10〜100μmの鉄粉、鉄合金磁性粉のいず
れか又は両方と、含量が体積比にして1.5〜40チで
ある電気絶縁性結着樹脂及び電気絶縁性無機化合物の粉
末との成形体であることを特徴とする。
The iron core of the present invention is a molded body made of magnetic powder, binder resin, and inorganic compound powder. That is, the iron core of the present invention is
Either or both of iron powder and iron alloy magnetic powder having an average particle size of 10 to 100 μm, and powder of an electrically insulating binder resin and an electrically insulating inorganic compound having a content of 1.5 to 40 cm by volume. It is characterized by being a molded article.

本発明で用いる鉄粉又は鉄合金磁性粉は、その固有電気
抵抗率が10μΩ−画から高々数十μΩ−副程度である
ため、表皮効果が生ずる高い周波数を含む交流電流にお
いても充分な鉄心材料特性を得るためには、これら粉末
を微細な粒子として数子表面から゛粒子内部まで充分磁
化に寄与せしめなければ々もないことからして、その平
均粒径が100μm以下であることが必要である。しか
しながら、その平均粒径が10μm未満と極めて小さく
なると、後述する鉄心の成形段階で、通常適用される1
0000MPa以下の成形圧では、得られた鉄心の密度
が大きくならず、その結果、磁束密度の低下という不都
合を生ずる。結局、本発明にあっては、鉄粉又は鉄合金
磁性粉の平均粒径は10〜100μmの範囲に設定され
る。
The iron powder or iron alloy magnetic powder used in the present invention has a specific electrical resistivity of 10 μΩ to at most several tens of μΩ, so it can be used as a sufficient iron core material even under alternating current including high frequencies that cause the skin effect. In order to obtain these characteristics, these powders must be made into fine particles that sufficiently contribute to magnetization from the particle surface to the inside of the particle, so it is necessary that the average particle size is 100 μm or less. . However, when the average particle size becomes extremely small, less than 10 μm, the 1
If the molding pressure is less than 0,000 MPa, the density of the obtained iron core will not increase, resulting in the disadvantage of a decrease in magnetic flux density. After all, in the present invention, the average particle size of the iron powder or iron alloy magnetic powder is set in the range of 10 to 100 μm.

また、これら粉末の平均粒径(Dμm)とその固有電気
抵抗率(ρμΩ−α)との関係についていえば、Dとρ
を数値のみで示して、ρ/D2≧4 X 10”−3の
関係を満足することが好ましい。
Also, regarding the relationship between the average particle diameter (Dμm) of these powders and their specific electrical resistivity (ρμΩ−α), D and ρ
It is preferable to express only numerical values and satisfy the relationship ρ/D2≧4×10″−3.

本発明に用いる鉄粉又は鉄合金磁性粉は上記した諸元を
充足するものであれば伺であってもよいが、例えば、純
鉄の粉、Fe−3Siで代表されるFe−8t合金粉、
Fe −At合金粉、Fe−8t−At合金粉、Fe 
−Ni合金粉、Fe −Co合金粉をあげることができ
、これら各々又はこれらの適宜な組合せによる粉末があ
けられる。
The iron powder or iron alloy magnetic powder used in the present invention may be any powder as long as it satisfies the above specifications, but examples include pure iron powder and Fe-8t alloy powder represented by Fe-3Si. ,
Fe-At alloy powder, Fe-8t-At alloy powder, Fe
-Ni alloy powder and Fe-Co alloy powder can be used, and powders of each of these or an appropriate combination thereof can be used.

本発明に使用される電気絶縁性の結着樹脂は、上記した
鉄粉又は鉄合金磁性粉の表面を被覆して粉末相互間を電
気絶縁状態にし鉄心全体の交流磁化に対する充分な実効
電気抵抗値を付与せしめると同時に、これら粉末を結着
するバインダーとしても機能する。このような結着樹脂
としては、エポキシ樹脂、ポリアミド樹脂、ポリイミド
樹脂、ポリエステル樹脂など各種の樹脂のそれぞれ又は
これらを適宜に組合せて成る樹脂をあげることができる
The electrically insulating binder resin used in the present invention coats the surface of the above-described iron powder or iron alloy magnetic powder to electrically insulate the powders from each other and has a sufficient effective electrical resistance value against alternating current magnetization of the entire iron core. At the same time, it also functions as a binder to bind these powders together. Examples of such a binder resin include various resins such as epoxy resins, polyamide resins, polyimide resins, and polyester resins, or resins formed by appropriately combining these resins.

また、本発明に使用される電気絶縁性無機化合物の粉末
は、鉄心の成形時に鉄粉又は鉄合金磁性粉相互間におけ
る摩擦抵抗を減少させて鉄心の成形密度を高めると同時
に、導電体である鉄粉又は鉄合金磁性粉相互間に介在し
て鉄心全体の交流磁化に対する実効電気抵抗値を高める
という機能も果す。このような無機化合物としては、炭
酸カルシウム、シリカ、マグネシア、アルミナ、各種の
ガラスなど又はこれらを適宜に組合せたものをあげるこ
とができる。ただし、これら無機化合物は、前記した鉄
粉又は鉄合金磁性粉、結着樹脂と相互に反応しないもの
でなければならないことはいうまでもない。
In addition, the electrically insulating inorganic compound powder used in the present invention reduces the frictional resistance between iron powder or iron alloy magnetic powder during forming of the iron core, increases the compacted density of the iron core, and at the same time is a conductor. It also serves the function of increasing the effective electrical resistance value of the entire core against alternating current magnetization by being interposed between the iron powder or iron alloy magnetic powder. Examples of such inorganic compounds include calcium carbonate, silica, magnesia, alumina, various glasses, and appropriate combinations thereof. However, it goes without saying that these inorganic compounds must not react with the above-mentioned iron powder or iron alloy magnetic powder and the binder resin.

なお、無機化合物の粉末の平均粒径は、その分散性、鉄
心材料特性との関係がらして、鉄粉又は鉄合金磁性粉の
平均粒径のV5以下(20μm以下)であることが好ま
しい。
Note that the average particle size of the inorganic compound powder is preferably V5 or less (20 μm or less) of the average particle size of the iron powder or iron alloy magnetic powder, considering its dispersibility and the relationship with the iron core material properties.

本発明の鉄心にあっては、結着樹脂と無機化合物の粉末
との含量が、全体の体積と比較して、1.5〜40%の
範囲に設定される。この体積比が1.5%未満の場合に
は、鉄心の成形密度は高まらずしかも実効電気抵抗値が
低下し、また、4・()%を超えると実効電気抵抗値の
増加傾向は飽和状態に達し更には成形密度が低下して飽
和磁束密度も低くなシ磁化力10000 A/mでの磁
束密度はフェライト程度になってしまう。
In the iron core of the present invention, the content of the binder resin and the inorganic compound powder is set in a range of 1.5 to 40% compared to the total volume. When this volume ratio is less than 1.5%, the compacted density of the core does not increase and the effective electrical resistance value decreases, and when it exceeds 4.()%, the increasing tendency of the effective electrical resistance value reaches a saturated state. Furthermore, the molding density is reduced and the saturation magnetic flux density is also low.At a magnetizing force of 10,000 A/m, the magnetic flux density becomes about that of ferrite.

結着樹脂と無機化合物粉末との相互における体・積比に
ついていえば、前者と後者の比が9,8〜20vot%
 : ・・2r: 〜8. Ovat%、好ましくは9
5〜3 Q voLチ: 5〜7 Q vatチである
Regarding the mutual volume/volume ratio of the binder resin and the inorganic compound powder, the ratio of the former to the latter is 9.8 to 20 vot%.
:...2r: ~8. Ovat%, preferably 9
5-3 Q voL Chi: 5-7 Q Vat Chi.

本発明の鉄心は例えばっぎのようにして製造される。す
なわち、所定量の鉄粉、鉄合金磁性粉又はこれら両者の
混合粉と結着樹脂と無機化合物粉末との3者をミキサー
で充分く混線し、得られた混線物を金型に充填してこれ
を圧縮成形する。このとき、適用する成形圧は、通常、
10000MPa以下でよい。得られた成形体は、その
まま鉄心として使用に供されるが、必要に応じては、3
0〜300℃程度の温度で熱処理して結着樹脂を硬化し
てもよい。
The iron core of the present invention is manufactured, for example, in the following manner. That is, a predetermined amount of iron powder, iron alloy magnetic powder, or a mixture of both powders, a binder resin, and an inorganic compound powder are thoroughly mixed in a mixer, and the resulting mixed material is filled into a mold. This is compression molded. At this time, the molding pressure applied is usually
It may be 10,000 MPa or less. The obtained molded body can be used as an iron core as it is, but if necessary, it can be
The binder resin may be cured by heat treatment at a temperature of about 0 to 300°C.

〔発明の実施例〕[Embodiments of the invention]

実施例1〜7 平均粒径の異なる各種の磁性粉、無機化合物の粉末及び
結着樹脂を第1表に示しだ割合(体積%)で配合し、こ
れを充分に混練した。得られた混線物を鉄心成形用金型
に充填し、各種の圧力で加圧成形して所定形状の成形体
とした。この成形体を加熱処理して結着樹脂を硬化し鉄
心とした。
Examples 1 to 7 Various magnetic powders having different average particle diameters, inorganic compound powders, and binder resins were blended in the proportions (volume %) shown in Table 1, and thoroughly kneaded. The obtained mixed wire material was filled into an iron core molding die, and was press-molded at various pressures to obtain a molded body of a predetermined shape. This molded body was heat-treated to harden the binder resin to form an iron core.

これら鉄心につき、密度、磁化力10000A/mにお
ける磁束密度を測定し、更に、交流磁化に対する鉄心の
渦電流損から実効電気抵抗率を算出した。
For these cores, the density and magnetic flux density at a magnetizing force of 10,000 A/m were measured, and the effective electrical resistivity was calculated from the eddy current loss of the cores with respect to AC magnetization.

以上の結果を一括して第1表に示した。The above results are collectively shown in Table 1.

また、実施例1〜4の鉄心につき一40〜120℃の温
度における透磁率及び磁束密度の変化をそれぞれ測定し
たところ、いずれもその変化率は10%未満であった。
Further, when the changes in magnetic permeability and magnetic flux density at temperatures of -40 to 120°C were measured for the iron cores of Examples 1 to 4, the rate of change was less than 10% in all cases.

また、実施例3の鉄心と従来のダストコアから成る鉄心
とにつき、各磁力化における磁束密度の変化を表わす直
流磁化曲線を求めそれを第2図に示した。本発明の鉄心
(曲線A)は従来のもの(曲線B)に比べて磁束密度の
高い優れたものであることが確認された。
Further, for the iron core of Example 3 and the iron core made of a conventional dust core, DC magnetization curves representing changes in magnetic flux density at each magnetization were determined and are shown in FIG. It was confirmed that the iron core of the present invention (curve A) has a higher magnetic flux density than the conventional iron core (curve B).

実施例8〜11 固有電気抵抗率(ρ)及び平均粒径(D)がそれぞれ異
なる鉄粉又は鉄合金磁性粉84 vot%、平均粒径1
μm以下のアルミナ粉末1 vot%、エポキシ樹脂1
5 vot%を混練し、混練物を600 MPaの圧力
で成形した後、得られた成形体に200℃、1時間の加
熱処理を施して鉄心とした。
Examples 8 to 11 Iron powder or iron alloy magnetic powder with different specific electrical resistivities (ρ) and average particle diameters (D) 84 vot%, average particle diameter 1
Alumina powder below μm 1 vot%, epoxy resin 1
After kneading 5 vot% and molding the kneaded product at a pressure of 600 MPa, the obtained molded product was heat-treated at 200° C. for 1 hour to form an iron core.

これら鉄心につき、1kHz〜500 kHzの実効透
磁率を測定し、1kHzの実効透磁率を基準とした比を
求めた。その結果を、ρ/D2との関係とじて実施例1
2 平均粒径63 ttmのFe −3At粉末40voA
%、平均粒径53 μm以下のFe −Ni粉末10 
voA %、平均粒径44μm以下のFe粉、平均粒径
 8μmのガラス粉末0.8 vot%、ポリアミド樹
脂14.2vot%とを混練し、混線物を800MPa
の圧力で加圧成形した後、成形体に100℃、1時間の
加熱処理を施して鉄心とした。この鉄心の実効電気抵抗
率は350mΩ−α以上であった。
For these cores, the effective magnetic permeability from 1 kHz to 500 kHz was measured, and the ratio was determined based on the effective magnetic permeability at 1 kHz. The results are shown in Example 1 as a relationship with ρ/D2.
2 Fe-3At powder 40voA with average particle size 63ttm
%, Fe-Ni powder with an average particle size of 53 μm or less 10
voA%, Fe powder with an average particle size of 44 μm or less, 0.8 vot% of glass powder with an average particle size of 8 μm, and 14.2 vot% of polyamide resin were kneaded, and the mixture was heated to 800 MPa.
After pressure molding at a pressure of 100° C., the molded product was heat-treated at 100° C. for 1 hour to obtain an iron core. The effective electrical resistivity of this iron core was 350 mΩ-α or more.

なお、以上の実施例において、エポキシ樹脂に代えてポ
リイミド樹脂、ポリカーブネート樹脂を用い、また、マ
、グネシア等他の無機化合物を用いても同様の結果が得
られた。
In the above examples, similar results were obtained when polyimide resins and polycarnate resins were used in place of the epoxy resins, and when other inorganic compounds such as ma and gnesia were used.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明の鉄心は、従来の
フェライトコアの鉄心、ダストコアの鉄心に比べてはる
かに高い磁束密度を有し、また高い実効電気抵抗率を有
する。更に、積層鉄心と比較しても、1〜500 kH
zの周波数帯域における実効透磁率の変化は小さくその
工業的価値は大である。
As is clear from the above description, the iron core of the present invention has a much higher magnetic flux density and a higher effective electrical resistivity than conventional ferrite core iron cores and dust core iron cores. Furthermore, compared to laminated iron cores, the
The change in effective magnetic permeability in the z frequency band is small, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は直流を交流に変換する装置の電気回路図の一例
を示す図、第2図は本発明の鉄心(実施例3)と従来の
ダストコアにおける直流磁化曲線を示す図である◇ l・・・半導体スイッチング素子、2・・・ターンオン
ストレス緩和用リアクトル、3・・・マツチング用変圧
器、4・・・交流に対する負荷、5・・・直流電源、A
・・・本発明の鉄心の直流磁化曲線、B・・・従来のゲ
スI・コアの直線磁化曲線。 第1図 第2図 ノ蒼矢 イbしθ  [A/m) 手続補正書 昭和58年2月16日 特許庁長官 若 杉 和 夫   殿 1、事件の表示 昭和57年 特 許 願第 226736  号2、発
明の名称 鉄心 3、補正をする者 事件との関係 特許出願人 5、補正命令の日付 自発
Fig. 1 is a diagram showing an example of an electric circuit diagram of a device that converts direct current to alternating current, and Fig. 2 is a diagram showing DC magnetization curves in the iron core of the present invention (Example 3) and a conventional dust core. ...Semiconductor switching element, 2...Reactor for reducing turn-on stress, 3...Matching transformer, 4...Load for alternating current, 5...DC power supply, A
. . . DC magnetization curve of the iron core of the present invention, B . . . Linear magnetization curve of the conventional Guess I core. Figure 1 Figure 2 Aoya Ibshi θ [A/m] Procedural amendment February 16, 1980 Kazuo Wakasugi, Commissioner of the Patent Office 1, Indication of the case 1982 Patent Application No. 226736 2. Name of the invention Iron core 3. Relationship with the case of the person making the amendment Patent applicant 5. Date of the amendment order Voluntary action

Claims (1)

【特許請求の範囲】 1、 平均粒径10〜100μmの鉄粉、鉄合金磁性粉
のいずれか又は両方と、 含量が、体積比にして1.5〜40%である電気絶縁性
結着樹脂及び電気絶縁性無機化合物の粉末との成形体で
あることを特徴とする鉄心。 2、鉄粉又は鉄合金磁性粉が、その平均粒径を0μm1
固有電気抵抗率をρμΩ−mとしたとき、D、ρを数値
のみで示してρ/D2≧4X10−5の関係を満足する
鉄粉又は鉄合金磁性粉である特許請求の範囲第1項記載
の鉄心。 3、無機化合物の粉末の平均粒径が20μm以下である
特許請求の範囲第1項記載の鉄心。
[Claims] 1. Either or both of iron powder and iron alloy magnetic powder having an average particle size of 10 to 100 μm, and an electrically insulating binder resin having a content of 1.5 to 40% by volume. and an electrically insulating inorganic compound powder. 2. Iron powder or iron alloy magnetic powder has an average particle size of 0 μm1
Claim 1 which is an iron powder or iron alloy magnetic powder that satisfies the relationship ρ/D2≧4X10-5, where D and ρ are expressed only in numerical values, where the specific electrical resistivity is ρμΩ-m. iron core. 3. The iron core according to claim 1, wherein the average particle size of the inorganic compound powder is 20 μm or less.
JP57226736A 1982-12-27 1982-12-27 Iron core Granted JPS59119710A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP57226736A JPS59119710A (en) 1982-12-27 1982-12-27 Iron core
US06/564,847 US4543208A (en) 1982-12-27 1983-12-23 Magnetic core and method of producing the same
EP83113121A EP0112577B2 (en) 1982-12-27 1983-12-27 Magnetic core and method of producing the same
DE8383113121T DE3365486D1 (en) 1982-12-27 1983-12-27 Magnetic core and method of producing the same
CA000444324A CA1218283A (en) 1982-12-27 1983-12-28 Magnetic core and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57226736A JPS59119710A (en) 1982-12-27 1982-12-27 Iron core

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP35779192A Division JPH0793220B2 (en) 1992-12-25 1992-12-25 Iron core manufacturing method

Publications (2)

Publication Number Publication Date
JPS59119710A true JPS59119710A (en) 1984-07-11
JPH0416004B2 JPH0416004B2 (en) 1992-03-19

Family

ID=16849795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57226736A Granted JPS59119710A (en) 1982-12-27 1982-12-27 Iron core

Country Status (1)

Country Link
JP (1) JPS59119710A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243101A (en) * 1985-04-17 1986-10-29 Hitachi Metals Ltd Green compact magnetic core consisting of fe-ni
JPS63282667A (en) * 1987-02-19 1988-11-18 イートン コーポレイション Current-voltage transducer
JPH036802A (en) * 1989-06-05 1991-01-14 Fujitsu Ltd Magnetic path material
JP2006004957A (en) * 2003-06-12 2006-01-05 Nec Tokin Corp Coil part and manufacturing method thereof
JP2009158652A (en) * 2007-12-26 2009-07-16 Panasonic Corp Compound magnetic material and manufacturing method thereof
KR101165837B1 (en) * 2003-06-12 2012-07-13 가부시키가이샤 덴소 Coil component and fabrication method of the same
JP2017017326A (en) * 2011-03-24 2017-01-19 住友電気工業株式会社 Composite material, reactor-use core, and reactor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130103A (en) * 1979-03-30 1980-10-08 Tohoku Metal Ind Ltd Process for producing dust magnetic material
JPS55138205A (en) * 1979-04-14 1980-10-28 Nippon Kinzoku Kk Dust core

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130103A (en) * 1979-03-30 1980-10-08 Tohoku Metal Ind Ltd Process for producing dust magnetic material
JPS55138205A (en) * 1979-04-14 1980-10-28 Nippon Kinzoku Kk Dust core

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243101A (en) * 1985-04-17 1986-10-29 Hitachi Metals Ltd Green compact magnetic core consisting of fe-ni
JPS63282667A (en) * 1987-02-19 1988-11-18 イートン コーポレイション Current-voltage transducer
JPH036802A (en) * 1989-06-05 1991-01-14 Fujitsu Ltd Magnetic path material
JP2006004957A (en) * 2003-06-12 2006-01-05 Nec Tokin Corp Coil part and manufacturing method thereof
KR101165837B1 (en) * 2003-06-12 2012-07-13 가부시키가이샤 덴소 Coil component and fabrication method of the same
JP2009158652A (en) * 2007-12-26 2009-07-16 Panasonic Corp Compound magnetic material and manufacturing method thereof
JP2017017326A (en) * 2011-03-24 2017-01-19 住友電気工業株式会社 Composite material, reactor-use core, and reactor

Also Published As

Publication number Publication date
JPH0416004B2 (en) 1992-03-19

Similar Documents

Publication Publication Date Title
US4543208A (en) Magnetic core and method of producing the same
JPS64802B2 (en)
JP3964213B2 (en) Manufacturing method of dust core and high frequency reactor
KR20020041773A (en) Magnetic core comprising a bond magnet including magnetic powder whose particle&#39;s surface is coated with oxidation-resistant metal and inductance part comprising the magnetic core
JPS61152004A (en) Iron core
JP4171002B2 (en) Magnetite-iron composite powder for dust core and dust core using the same
JPS59119710A (en) Iron core
JP4166460B2 (en) Composite magnetic material, magnetic element using the same, and method of manufacturing the same
Hasegawa et al. Magnetic properties of consolidated glassy metal powder cores
JPH11260618A (en) Composite magnetic material, its manufacture, and fe-al-si soft magnetic alloy powder used therefor
US6621399B2 (en) Powder core and high-frequency reactor using the same
EP2830070A1 (en) Composite magnetic material and method for manufacturing same
JP4701531B2 (en) Dust core
JPS63115309A (en) Magnetic alloy powder
JP2654944B2 (en) Composite dust core material and manufacturing method thereof
JP2688769B2 (en) High frequency coil
JPH06342728A (en) Manufacture of core
KR20210072186A (en) Molding Materials Using Amorphous Powder and Toroidal Inductor Using the Same
JPH0536513A (en) Soft magnetic metal alloy powder and dust core using the same
US6788185B2 (en) Powder core and high-frequency reactor using the same
JP2001023811A (en) Pressed powder magnetic core
JP2002033211A (en) Dust core and manufacturing method thereof
JP2000003810A (en) Dust core
JPH0151046B2 (en)
JPS6229108A (en) Iron core