JPS59118353A - Multi-spindle cooling device - Google Patents
Multi-spindle cooling deviceInfo
- Publication number
- JPS59118353A JPS59118353A JP23173382A JP23173382A JPS59118353A JP S59118353 A JPS59118353 A JP S59118353A JP 23173382 A JP23173382 A JP 23173382A JP 23173382 A JP23173382 A JP 23173382A JP S59118353 A JPS59118353 A JP S59118353A
- Authority
- JP
- Japan
- Prior art keywords
- bearing
- heat
- hollow chamber
- liquid
- main shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q11/00—Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
- B23Q11/12—Arrangements for cooling or lubricating parts of the machine
- B23Q11/126—Arrangements for cooling or lubricating parts of the machine for cooling only
- B23Q11/127—Arrangements for cooling or lubricating parts of the machine for cooling only for cooling motors or spindles
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Auxiliary Devices For Machine Tools (AREA)
- Mounting Of Bearings Or Others (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は例えば工作機械の複数の主軸等の軸受部を冷
却する多軸冷却装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multi-shaft cooling device that cools bearing parts such as a plurality of main shafts of a machine tool, for example.
従来Cの種の装置としては第1図及び第2図に示すもの
があった。これら各図において、Il+。Conventional C-type devices include those shown in FIGS. 1 and 2. In each of these figures, Il+.
(11)は工作機械のオl、第2の主軸装置であシ、ス
パンPの間隔で配置されている。+2+ 、 I2υは
主軸、+31 、 ((υは軸受、+41 、 (4F
)は軸受台、(5)、のりはプーリ、(6)はベッドで
ある。(11) is the machine tool's shaft and second spindle device, which are arranged at an interval of span P. +2+, I2υ is the main shaft, +31, ((υ is the bearing, +41, (4F
) is the bearing stand, (5), the glue is the pulley, and (6) is the bed.
次に動作について説明する。図示しない駆動用電動機に
よりVベルトラ介してブー1月51 、 f51)に伝
えられた回転力によって主軸+21 、 (211を回
転させる。この時、主軸+21 、 t21)と軸受台
i41 、 (t])との間に位置する軸受(11、l
3tlは主軸(2)、飢が円滑に回転することを助ける
目的をもっているが、回転とともに軸受t31 、31
)は摩擦によシ発熱し温度上昇する。軸受+a+ 、
eのに生じた熱量は軸受台(4)、(6)に伝わシ、ベ
ッド(6)および周囲空気へ伝熱して放熱する。この際
に軸受台(4)、(6)は温度上昇し、各部は熱膨張に
よる種々の熱変形・歪を生じる。このため主軸t21
、 Hの位置が変動し、被加工物を機械加工するときK
m工精度が低下するという欠点があった。さらに、相互
間の主軸・2j 、 121)の位置の変動に差を生じ
ると同時に複数の加工を行なう際に相互の加工精度に差
を生じるという欠点があった。Next, the operation will be explained. The main shaft +21, (211) is rotated by the rotational force transmitted by the driving electric motor (not shown) to the boot 51, f51) via the V-belt roller. At this time, the main shaft +21, t21) and the bearing stand i41, (t]) bearing (11, l
3tl is the main shaft (2), which has the purpose of helping the shaft rotate smoothly, but as it rotates, the bearings t31, 31
) generates heat due to friction and its temperature rises. Bearing +a+,
The amount of heat generated in e is transmitted to the bearing stands (4) and (6), and then to the bed (6) and the surrounding air, where the heat is radiated. At this time, the temperature of the bearing stands (4) and (6) increases, and various thermal deformations and strains occur in each part due to thermal expansion. Therefore, the main axis t21
, when the position of H changes and the workpiece is machined, K
There was a drawback that machining accuracy decreased. Furthermore, there is a drawback that there is a difference in the positional fluctuations of the main spindles 2j, 121) and a difference in the machining accuracy when a plurality of machining operations are performed.
この発明は上記のような従来のものの欠点を除去するた
めになされたものであり、オl、第2の主軸装置を有効
に且つ平均的に冷却することができる多軸冷却装置を提
供すること全目的としている。This invention was made in order to eliminate the above-mentioned drawbacks of the conventional ones, and the following object is to provide a multi-shaft cooling device that can effectively and evenly cool a second main shaft device. It is for all purposes.
以下、この発明の一実施例?第3図及び第4図に基づい
て説明する。第8図は機能系統ケ示すブロック図、珂・
4図は断面側面図であシ、これら各図において、i7+
、σl)は軸受台(4)、(財)の内部に形成された環
状の中空室、B+ 、 Ba+)は放熱装置であり、冷
却ファンt9) 、 [911Kより冷却されている。Is the following an example of this invention? This will be explained based on FIGS. 3 and 4. Figure 8 is a block diagram showing the functional system.
Figure 4 is a cross-sectional side view. In each of these figures, i7+
, σl) is an annular hollow chamber formed inside the bearing stand (4), B+, Ba+) is a heat dissipation device, and is cooled by a cooling fan t9), [911K.
LIOIは中空室(7)と放熱装置(8υとを連通ずる
と共に例えばベローズ等の沖、ll可能なフレキシブル
部(10a)’に有するオlの蒸気管、 (101)
は中空室、7I!と放熱装置(8)とを連通ずると共に
例えばベローズ等の伸縮可能なフレキシブル部(101
a)を有する第2の蒸気管、(12)は放熱装置(8)
とオlの蒸気管(lO)とを連通ずるオlの液管、(1
21)は放熱装置!81)と第2の蒸気管(101)と
を連通する第2の液管、Q31はオlの液管021と第
2の液管(121)を連通ずると共に例えばベローズ等
の伸縮可能なフレキシブル部(lla ) −f有−j
る連通管である。The LIOI is a steam pipe (101) that communicates the hollow chamber (7) with the heat dissipation device (8υ) and has a flexible part (10a), such as a bellows, etc.
is a hollow chamber, 7I! and the heat dissipation device (8), and a flexible part (101) that can be expanded and contracted, such as a bellows.
a) a second steam pipe having (12) a heat dissipation device (8);
The liquid pipe (1
21) is a heat dissipation device! 81) and the second steam pipe (101), the second liquid pipe Q31 communicates the liquid pipe 021 and the second liquid pipe (121), and is made of an expandable and contractible flexible pipe such as a bellows. Part (lla) -f with-j
It is a communicating pipe.
何、中空室t71 、 (71+および放熱装置t8)
、 !al 、オl、第2の蒸気管t!01 、 (
101) 、オl、第2の液”t 1121 、 (1
−21) 連通管(13]ノ内sk真空減圧後、アンモ
ニア、フロン等の作動液体がその内部に所定量封入され
る。What, hollow chamber t71, (71+ and heat dissipation device t8)
, ! al, ol, second steam pipe t! 01, (
101), ol, second liquid"t 1121, (1
-21) After the pressure inside the communication pipe (13) is reduced, a predetermined amount of working liquid such as ammonia or chlorofluorocarbon is sealed therein.
次に動作について説明する。軸受台(4)、(9)で受
熱した軸受+3) 、 (Qの熱量は中空室f7) 、
rt+)内のフロン等の作動液体を加熱して気化させ
る際に蒸発潜熱として尊われ、気化したフ台ン等の蒸気
は自身の蒸気圧全利用してオlの蒸気管(10)を経て
放熱装置(81)へ、第2の蒸気管(lOl)ヲ経て放
熱装置(8)へそれぞれ移動し、冷却ファン(9)。Next, the operation will be explained. Bearings that received heat in bearing stands (4) and (9) +3), (The amount of heat in Q is hollow chamber f7),
When heating and vaporizing the working liquid such as fluorocarbons in the rt+), it is treated as latent heat of vaporization, and the vaporized fluorocarbons and other vapors are passed through the ol steam pipe (10) by making full use of their own vapor pressure. The cooling fan (9) moves to the heat dissipation device (81), passes through the second steam pipe (lOl), and moves to the heat dissipation device (8).
191)により周囲空気により冷やされる。このとき、
フロン等の蒸気tI′i凝縮して液体に戻るが、凝縮潜
熱を周囲空気に放出し、軸受(31、!31Jの熱量を
周囲空気へ放熱する。凝縮した作動液体はオl。191) and is cooled by the surrounding air. At this time,
Vapors such as fluorocarbons tI'i condense and return to liquid, but they release the latent heat of condensation to the surrounding air, and the heat of the bearing (31, !31J) is radiated to the surrounding air.The condensed working liquid is
第2の液管IJ21. (121)からオl、第2の蒸
気管(ムOi、(1013を経て重力を利用して軸受台
(4)、(財)の中空室(71、t71]へ戻る。この
ような動作をくり返し行なうことにより、軸受台(4)
、(6)の熱量を放熱装置181) 、 (8)に熱輸
送して効率よく冷却するようにしている。Second liquid pipe IJ21. From (121), through the second steam pipe (Oi, (1013), return to the bearing stand (4) and the hollow chamber (71, t71) of the Foundation using gravity. By repeating this process, the bearing stand (4)
, (6) is transported to the heat dissipation devices 181) and (8) for efficient cooling.
ところで、軸受台(4)が他方の軸受台(41)に比べ
温度上昇(熱量)が大きくなると、軸受台(4)の中空
室(7)内の作動液体の蒸気化の際の蒸気量・蒸気圧・
蒸気温度が他方に比べ大きくなる。従って、よυ大きな
蒸発潜熱を奪い軸受台14)をより大きく冷却し、軸受
台(4)の温度上昇が他方の軸伎右(6)よシ大きくな
るのを抑制するように働く。By the way, if the temperature rise (calorific value) of the bearing pedestal (4) is larger than that of the other bearing pedestal (41), the amount of vapor during vaporization of the working liquid in the hollow chamber (7) of the bearing pedestal (4) will decrease. Steam pressure/
The steam temperature becomes higher than the other. Therefore, it absorbs a large amount of latent heat of vaporization, cools the bearing pedestal 14) to a greater extent, and works to suppress the temperature rise of the bearing pedestal (4) from becoming larger than that of the other shaft (6).
そして、軸98141の中空室(7)内にて気化した温
度の高い蒸気はオlの蒸気管(lO)を経て放熱装置別
へ移動し、放熱装置(8I)にて凝縮した作動液体は放
熱装置(8)にて凝縮する作動液体に比べ温度が高く、
第2の液管から第2の蒸気管(101)2経て軸受台(
6)の中空室(1υに流入する。従って、軸受台(6)
においては作動液体の温度が高い分だけ暖められ温度上
昇が増大し、両軸受台(4)、(財)の温度上昇差が小
さく抑えられる。また、軸受台0−は軸受台(4)に比
べ温度上昇が小さく、軸受゛台(財)の中空室(71)
内の作動液体は軸受台(4)の中空室(7)内の作動液
体に比べ気化する際の蒸気量・蒸気圧・蒸気温度が低い
。従って、第2の蒸気管;(101)、放熱装置(8)
、オlの液管0りからオlの蒸気管(lO)を経てより
低い温度の作動液体が流入する。その結果、軸受台(4
)においては作動液体の温度の低い分だけ冷やされ温度
上昇が減少し、両軸受f3(4)、(6)の温度上昇差
が小さく抑えられる。このような動作がくシ返されると
、だんだん軸受台14)の中空室(7)内の作動液体の
量が少なくなり軸受台(6)の中空室171)内の作#
J液体の量が多くなるが、連通管(I31により放熱装
置(81)から第2の蒸気管(101)を経て軸受台(
6)の中空室ヴυ内に戻る作動液体の一部を軸受台(4
)の中空室(7)に戻すことができ、両作動液体の量を
所定量にするように働いている。このような動作をくり
返し行なうことにより、両軸受台(4)、(ロ)の何れ
か一方の発熱量・温度上昇が増大しはじめると、両軸受
台(4)、(ロ)の温度上昇差を小さく抑えるように働
き、両軸受台(41,(財)が平均的に有効に冷却され
る。従って、工作機械においては軸受部の熱変形・歪を
量少眼に抑えることができ、加工精度を向上させること
ができる。Then, the high temperature steam vaporized in the hollow chamber (7) of the shaft 98141 moves to another heat radiator through the O1 steam pipe (lO), and the working liquid condensed in the heat radiator (8I) radiates heat. The temperature is higher than that of the working liquid condensed in the device (8),
From the second liquid pipe to the second steam pipe (101) 2, the bearing stand (
6) into the hollow chamber (1υ). Therefore, the bearing stand (6)
In this case, the working liquid is warmed by the higher temperature, increasing the temperature rise, and the difference in temperature rise between the two bearing stands (4) and the bearing stand (4) is suppressed to a small value. In addition, the temperature rise in bearing pedestal 0- is smaller than that in bearing pedestal (4), and the hollow chamber (71) of bearing pedestal (foundation)
The working liquid in the bearing stand (4) has a lower vapor amount, vapor pressure, and vapor temperature when vaporized than the working liquid in the hollow chamber (7) of the bearing stand (4). Therefore, the second steam pipe; (101), the heat dissipation device (8)
, a working liquid at a lower temperature flows from the liquid pipe 0 through the vapor pipe (lO). As a result, the bearing stand (4
), the working fluid is cooled by the lower temperature and the temperature rise is reduced, and the difference in temperature rise between both bearings f3 (4) and (6) is kept small. As this operation is repeated, the amount of working fluid in the hollow chamber (7) of the bearing pedestal 14 gradually decreases, and the amount of working fluid in the hollow chamber 171) of the bearing pedestal (6) decreases.
Although the amount of J liquid increases, it is passed from the heat dissipation device (81) through the second steam pipe (101) through the communication pipe (I31) to the bearing stand (
6) A part of the working liquid that returns to the hollow chamber Vυ is transferred to the bearing stand (4
) into the hollow chamber (7), which serves to bring the quantity of both working liquids to a predetermined level. By repeating such operations, if the heat generation amount and temperature rise of either of the bearing stands (4) and (b) begins to increase, the difference in temperature rise between the two bearing stands (4) and (b) will increase. It works to keep the temperature to a minimum, and both bearing stands (41, (Incorporated) are effectively cooled on average. Therefore, in machine tools, thermal deformation and distortion of the bearing can be kept to a small extent, and machining Accuracy can be improved.
捷た、主軸(2)と主軸−とのスパンPをオl。Change the span P between the spun spindle (2) and the spindle -.
第2の蒸気管(1(1) 、 [1011、連通管(1
31のフレキシブル部(10a) I (101尋、(
18a)の伸縮範囲内で可変1こすることができる。Second steam pipe (1 (1), [1011, communication pipe (1
31 flexible part (10a) I (101 fathoms, (
18a) can be variable 1 rub within the telescopic range.
伺、上記実施例では冷却ファン(9)、θ1)を用いた
場合について述べたが、冷却ファン(91、(911を
用いず自然風冷してもよく、あるいは冷却源として冷却
風以外の冷却水・油などを用いても同様な効果か街られ
る0
また、上記実施し1」ではフレキシブル部(10a )
。Although the above embodiment describes the case where the cooling fan (9), θ1) is used, natural air cooling may be used without using the cooling fan (91, (911), or a cooling source other than cooling air may be used. Even if water, oil, etc. are used, the same effect can be obtained.In addition, in the above implementation 1, the flexible part (10a)
.
[101a) 、 (18a )をベローズで構成する
場合について述べたが、ベローズ以外で伸縮可能なフレ
キシブル部を構成するようにしてもよい。[101a) and (18a) have been described in terms of a case in which they are configured with bellows, but the flexible part that can be expanded and contracted may be configured with something other than the bellows.
また、上記実施例では中空室(7)、ヴυが軸受台(4
)、(財)にそれぞれ設けられた場合lこついて述べた
が、中空室(7)、ヴ11を軸受(31、eυ、あるい
は軸受(3)、(9)と軸受台I4)、(6)との間に
設けるようにしてもよい。In addition, in the above embodiment, the hollow chamber (7) and the bearing stand (4) are
), (foundation) respectively, as mentioned above, the hollow chamber (7) and V11 are provided with bearings (31, eυ, or bearings (3), (9) and bearing stands I4), (6 ) may be provided between the
ところで、上記説明では主軸装置が2個の場合VCつい
て述へたが、8個以上の主4a装酋の場合についてもこ
の発明を適用し得ることかでき、上記実施例と同様な効
果を奏する。By the way, in the above description, the case where there are two main spindle devices and the VC has been described, but the present invention can also be applied to the case where there are eight or more main shaft devices, and the same effects as in the above embodiment can be obtained. .
こめ発明は以上説明した通シ、軸受部内部に形成され且
つPL酌液体が封入される環状の中空室と、軸受部の然
短を放熱する放熱装置とをそれぞれ有するオl、第2の
主軸装置、オlの主軸装置の中空室と第2の主軸装置の
放熱装置と全連通すると共に伸縮可能なフレキシブル部
を何するオlの蒸気管、第2の主軸装置の中空室とオl
の主軸装置の放熱装置とを連通ずると共に伸縮or能な
フレキシブル部を何する第2の蒸気管、オlの主軸装置
の放熱装置とオlの蒸気管とを連通するオlの液管、之
・2の主軸装置の放熱装置と第2の蒸気管とを連通する
第2の液管、オlの液管と第2の液管とf!!:連通す
ると共に伸縮可能なフレキシブル部を何する連通管を設
は軸受部の焦iを中空室から放熱装置に熱輸送するよう
にしたことにより、軸受部の水ζ量を速やかに奪い効率
よく且つ平均的に冷却できるので、軸受部の熱変形・歪
を最少限に抑制し工作機械等の加工精度全向上できると
いう実用上極めて大きな効果がある。The present invention is directed to the above-described shaft, an annular hollow chamber formed inside the bearing and filled with a PL liquid, and a heat radiating device for radiating heat from a short distance of the bearing, respectively, and a second main shaft. A steam pipe that communicates completely with the hollow chamber of the main shaft device of the main shaft device and the heat dissipation device of the second main shaft device, and a flexible part that can be expanded and contracted.
a second steam pipe that communicates with the heat dissipation device of the main shaft device and has a flexible part that can be expanded and contracted; A second liquid pipe that communicates the heat dissipation device of the second main shaft device with the second steam pipe, the second liquid pipe and the second liquid pipe, and f! ! : By setting up a communication pipe that connects the flexible part that can be expanded and contracted, the heat in the bearing part is transported from the hollow chamber to the heat dissipation device, which quickly removes the amount of water in the bearing part and efficiently. In addition, since it can be cooled evenly, thermal deformation and distortion of the bearing portion can be suppressed to a minimum, and the machining accuracy of machine tools can be completely improved, which is extremely effective in practical terms.
第1図及び第2図は従来の多軸冷却装置を示す断面側面
図、第3図及び第4図はこの発明の一4施例てよる多軸
冷却装置を示すブロック図及び断面側面図である。
図において、+o 、 l+)はオl、第2の主軸装置
、i4)、(9)は軸受台、(7)、圓は中空室、(8
) 、、 (8ηは放熱装置、(10i 、 (101
)はオl、第2の蒸気管、(10a)。
(l 01a)はフレキシブル部、1j21. (In
はオl。
第2の液管、03)は連通管、(Iga )はフレキシ
ブル部である。
向、図中同一符号は同−又は相当部分を示す。
代理人 葛 野 侶 −
第1図
第3図1 and 2 are cross-sectional side views showing a conventional multi-shaft cooling device, and FIGS. 3 and 4 are block diagrams and cross-sectional side views showing a multi-shaft cooling device according to a fourteenth embodiment of the present invention. be. In the figure, +o, l+) is the second spindle device, i4), (9) is the bearing stand, (7), circle is the hollow chamber, (8
) ,, (8η is the heat dissipation device, (10i , (101
) is the second steam pipe, (10a). (l 01a) is the flexible part, 1j21. (In
It's okay. The second liquid pipe 03) is a communication pipe, and (Iga) is a flexible part. The same reference numerals in the figures indicate the same or corresponding parts. Agent Tsutomu Kuzuno - Figure 1 Figure 3
Claims (1)
る環状の中空室と、上記叫1受部の熱量を放熱する放熱
装置とをそれぞれ有するオl。 第2の主軸装置、上記オlの主軸装置の中空室と上記第
2の主軸装置の放熱装置とを連通ずると共に伸縮可能な
フレキシブル部全有するオlの蒸気管、上記第2の主軸
装置の中空室と上記オlの主軸装置の放熱装置とを連通
ずると共に伸縮可能なフレキシブル部を何する第2の蒸
気管、上記オlの主軸装置の放熱装置と上記第1の蒸気
管とを連通するオlの液管、上記第2の主軸装置の放熱
装置と上記第2の蒸気管とを連通ずる第2の液管、上記
オlの液管と第2の液管とを連通ずると共に伸縮可能な
フレキシブル部を有する連通管金儲えたことを特徴とす
る多軸冷却装置。 (2)中空室は軸受台に形成されたことを特徴とする特
許請求の範囲第1項記載の多軸冷却装置。 (3) 中空室は軸受に形成されたことを特徴とする
特許請求の範囲第1項記載の多軸冷却装置。 (4) 中空室は軸受台と軸受との間に形成されたこ
とを特徴とする特許請求の範囲片1項記載の多軸冷却装
置。 (5) フレキシブル部はベローズで構成されたこと
を特徴とする特許請求の範囲第1項ないし第4項の何れ
かに記載の多軸冷却装置。[Scope of Claims] An oil pump having an annular hollow chamber formed inside the m4 receiving portion and filled with a working liquid, and a heat radiating device for radiating heat from the receiving portion. a second main shaft device, an O steam pipe that communicates the hollow chamber of the above main shaft device with a heat dissipation device of the second main shaft device and has an entire expandable and contractible flexible portion; a second steam pipe that communicates the hollow chamber with the heat dissipation device of the main shaft device of the above-mentioned OI and has a flexible portion that can be expanded and contracted; a second steam pipe that communicates the heat dissipation device of the main shaft device of the OI with the first steam pipe; a second liquid pipe that communicates between the heat dissipation device of the second main shaft device and the second steam pipe; a second liquid pipe that communicates the first liquid pipe with the second liquid pipe; A multi-axis cooling device characterized by a communicating tube having a flexible part that can be expanded and contracted. (2) The multi-shaft cooling device according to claim 1, wherein the hollow chamber is formed in a bearing stand. (3) The multi-shaft cooling device according to claim 1, wherein the hollow chamber is formed in a bearing. (4) The multi-shaft cooling device according to claim 1, wherein the hollow chamber is formed between the bearing stand and the bearing. (5) The multi-axis cooling device according to any one of claims 1 to 4, wherein the flexible portion is constituted by a bellows.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23173382A JPS59118353A (en) | 1982-12-24 | 1982-12-24 | Multi-spindle cooling device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23173382A JPS59118353A (en) | 1982-12-24 | 1982-12-24 | Multi-spindle cooling device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59118353A true JPS59118353A (en) | 1984-07-09 |
JPS6216780B2 JPS6216780B2 (en) | 1987-04-14 |
Family
ID=16928176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23173382A Granted JPS59118353A (en) | 1982-12-24 | 1982-12-24 | Multi-spindle cooling device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59118353A (en) |
-
1982
- 1982-12-24 JP JP23173382A patent/JPS59118353A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6216780B2 (en) | 1987-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS59118353A (en) | Multi-spindle cooling device | |
JPS59118345A (en) | Multi-spindle cooling device | |
JPS6233453B2 (en) | ||
JPS6214387B2 (en) | ||
JPS58193928A (en) | Multispindle cooler | |
JPS6216788B2 (en) | ||
JPS59118339A (en) | Multi-spindle cooling device | |
JPS6214381B2 (en) | ||
JPS6216776B2 (en) | ||
JPS59118362A (en) | Multi-spindle cooling device | |
JPS59118349A (en) | Multi-spindle cooling device | |
JPS59118344A (en) | Multi-spindle cooling device | |
JPS6214388B2 (en) | ||
JPS6216779B2 (en) | ||
JPS58206351A (en) | Multiple spindle cooling device | |
JPS6218309B2 (en) | ||
JPS58193927A (en) | Multispindle cooler | |
JPH0565729B2 (en) | ||
JPS59118354A (en) | Multi-spindle cooling device | |
JPS6216785B2 (en) | ||
JPS59118360A (en) | Multi-spindle cooling device | |
JPS6216777B2 (en) | ||
JPS6216784B2 (en) | ||
JPS6216786B2 (en) | ||
JPS59118328A (en) | Multi-spindle cooler |