JPS59118243A - Composition for binding molding sand - Google Patents

Composition for binding molding sand

Info

Publication number
JPS59118243A
JPS59118243A JP22547582A JP22547582A JPS59118243A JP S59118243 A JPS59118243 A JP S59118243A JP 22547582 A JP22547582 A JP 22547582A JP 22547582 A JP22547582 A JP 22547582A JP S59118243 A JPS59118243 A JP S59118243A
Authority
JP
Japan
Prior art keywords
compd
group
sand
hydrogen atom
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22547582A
Other languages
Japanese (ja)
Inventor
Koichi Handa
浩一 半田
Tadashi Ashida
正 芦田
Akira Oyamada
小山田 彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP22547582A priority Critical patent/JPS59118243A/en
Publication of JPS59118243A publication Critical patent/JPS59118243A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2233Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B22C1/226Polyepoxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)
  • Epoxy Resins (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To provide a titled compsn. with which a casting mold having high strength and excellent collapsing property can be formed by composing the same of a copolymer of a compd. contg. a benzene ring in the side chain of a linear molecule, a compd. contg. an epoxy functional group, and a silane compd., etc., and a hardener which is inactive at an ordinary temp. CONSTITUTION:A compsn. for binding molding sand consists of a copolymer of the compd. expressed by the general formula I (wherein R1 is a hydrogen atom or methyl group, R2 is a hydrogen atom or org. functional group), the compd. expressed by the general formula II (wherein R3 is a hydrogen atom or methyl group, R4 is an org. functional group having >=1 epoxy group), and a silane compd. having >=1 unsatd. group and/or a titanate compd. having >=1 unsatd. group and a hardener which is inactive at an ordinary temp. A casting mold and core for a shell mold having high heat resistance and collapsing property is obtainable from said compd. Isopropenyl benzene, etc. are used as the compd. of the above-mentioned formula I , and glycidyl methacrylate, etc. as the compd. of the formula II. Dicyandiamide, etc. are suitable as the hardener.

Description

【発明の詳細な説明】 本発明は鋳型または中子の製造に用いる鋳砂粘結用組成
物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a foundry sand caking composition used for manufacturing molds or cores.

従来鋳造用鋳型および中子に関しては、合金の種類を問
わずフェノール樹脂な粘結剤とした樹脂被覆砂を使用す
るシェルモールド法がその造型法として広く使用されて
いる。特に中子においては、生産性、寸法精度が優れて
いるために、はとんどがシェルモールド法で製造され重
用されている。
Regarding conventional casting molds and cores, the shell molding method using resin-coated sand with a phenol resin binder has been widely used as a molding method regardless of the type of alloy. In particular, cores are mostly manufactured by the shell molding method and are widely used because of its excellent productivity and dimensional accuracy.

しかしアルミニウム合金のような低融点の軽金属鋳物の
鋳見、特に中子に使用した場合、溶湯熱でフェノール樹
脂の一部が熱変化を起こし、極めて強固な黒鉛構造に変
化するため、中子の残留強度は著しく旨く、鋳込み後、
鋳物ごと約500°Cのように高い温度で、5〜10時
間に亘る長時間の加熱を行なって、黒鉛構造となってい
る粘結剤残漬な燃焼せしめて排出しており、多大なエネ
ルギーの消費を必要とする欠点を有する。このため溶湯
熱で容易、に熱分解を起こす高崩壊性のシェルモールド
法用の鋳型材料が望まれていた。
However, when used for cast irons, especially cores, of low-melting light metal castings such as aluminum alloys, a portion of the phenolic resin undergoes a thermal change due to the heat of the molten metal, changing into an extremely strong graphite structure, resulting in The residual strength is extremely good, and after casting,
Each casting is heated at a high temperature of approximately 500°C for a long period of 5 to 10 hours to burn and discharge the residual graphite-structured binder, which consumes a large amount of energy. It has the disadvantage of requiring the consumption of For this reason, there has been a desire for a highly collapsible mold material for shell molding that easily undergoes thermal decomposition in the heat of the molten metal.

一方フエノール樹脂の耐熱性が優れていることがベンゼ
ン環に帰因するという研究の結果に基いて、ベンゼン環
をできるだけ減じた変性フェノール樹脂あるいは新規な
樹脂の探索が行われているが、アルミニウム合金の溶湯
熱で簡単に熱分解を起こすような樹脂を粘結剤とした場
合は、@型または中子の焼成成形時における強電(耐熱
性)が不足して充分な成形ができず、強電を確保するた
めに樹脂量を増すと、成形はできるものの、注湯時の熱
分解ガス1゛が多大となって、鋳物のガス欠陥の発生を
増大せしめるため、未だ満足すべき鋳物砂用粘結剤は開
発されていないのが現状である。
On the other hand, based on the results of research showing that the superior heat resistance of phenolic resins is attributable to benzene rings, searches are underway for modified phenolic resins or new resins with as few benzene rings as possible, but aluminum alloys If the binder is a resin that easily undergoes thermal decomposition due to the heat of the molten metal, the strong electric current (heat resistance) during baking molding of the @ mold or core will be insufficient and sufficient molding will not be possible. Although molding is possible when the amount of resin is increased in order to ensure sufficient stability, the amount of pyrolysis gas generated during pouring becomes large, increasing the occurrence of gas defects in the casting. Currently, no agent has been developed.

本発明者等はフェノール樹脂の黒鉛化構造への移行を詳
細に調べた結果、ベンゼン環が線状分子の側鎖に入って
いれば、耐熱性もそれほど低■せずかつ注湯後の黒鉛化
も起りにくいのではないかという結論に達し、鋭意研妃
を重ねた結果、本発明を達成するに至ったものである。
As a result of detailed investigation of the transition of phenolic resin to a graphitized structure, the present inventors found that if the benzene ring is included in the side chain of the linear molecule, the heat resistance will not be so low, and the graphitized structure after pouring will be reduced. We came to the conclusion that this is unlikely to occur, and as a result of extensive research, we were able to achieve the present invention.

すなわち本発明は、次の一般式〔IDおよび〔■〕1 機官能基、例えば永槍1Lアルキル基、ヒト。That is, the present invention provides the following general formula [ID and [■] 1 Mechanical functional groups, such as Nagayari 1L alkyl group, human.

キシル基、アシル基、アシロキシ基、アルコキシ基、ニ
トリル基、アリル基、置換アリル基、プロパギル基、ア
リルオキシ基、プロパギルオキシ基、Xは0または1〜
5までの整数を示す)で表わされる単量体および 4 C式中のR8は水素原子またはメチル基、R2は1個以
上のエポキシ基を有する有機官能基例えばで表わされる
単量体と、1個以上の不飽和基を有するシラン化合物お
よび/または1個以上の不飽和基を有するチタネート化
合物との共重合体と、常温で不活性な硬化剤からなる鋳
砂粘結用組成物に関するものである。尚前記R2は分子
量で500位までが好ましく、これより多いと反応が遅
くなって好ましくない。
xyl group, acyl group, acyloxy group, alkoxy group, nitrile group, allyl group, substituted allyl group, propargyl group, allyloxy group, propargyloxy group, X is 0 or 1-
(representing an integer up to 5); and a monomer represented by 4C, in which R8 is a hydrogen atom or a methyl group, and R2 is an organic functional group having one or more epoxy groups; This invention relates to a foundry sand caking composition comprising a copolymer with a silane compound having one or more unsaturated groups and/or a titanate compound having one or more unsaturated groups, and a curing agent that is inactive at room temperature. be. Incidentally, the molecular weight of R2 is preferably up to the 500th position, and if it is more than this, the reaction becomes slow, which is not preferable.

本発明に用いられる一般式〔IDの化合物としては、例
えばイソプロペニルベンゼン、0−イソプロペニルトル
エン、m−イア7’ロベニルトルエン、p−イソプロペ
ニルトルエン、イソプロペニルキシレン、o−インプロ
ペニルフェノール、p−(ソブロペニルフェノール、2
−(ソブロベニルー5−’fルフェノール、5−(ソ7
’ロベニルー2−メチルフェノール、0−イソプロペニ
ル安漕香酸、p−イソプロペニル安、り香酸、2−イン
プロペニル−5−メチル安息香酸、5−イソプロペニル
−2−メチル安息香酸、スチレンなどがある。
Compounds of the general formula [ID used in the present invention include, for example, isopropenylbenzene, 0-isopropenyltoluene, m-ia7'robenyltoluene, p-isopropenyltoluene, isopropenylxylene, o-impropenylphenol, p-(sobropenylphenol, 2
-(Sobrobenyl-5-'f-ruphenol, 5-(So7
'Robenyl-2-methylphenol, 0-isopropenylbenzoic acid, p-isopropenylbenzoic acid, 2-impropenyl-5-methylbenzoic acid, 5-isopropenyl-2-methylbenzoic acid, styrene, etc. There is.

本発明に用いられる一般式〔■〕の化合物としては、例
えばグリシジルメタクリレート、グリシジルアクリレー
ト、アリルグリシジルエーテルなど(4) がある。
Examples of the compound of general formula [■] used in the present invention include glycidyl methacrylate, glycidyl acrylate, and allyl glycidyl ether (4).

本発明に用いられる1個以上の不飽和基を有するシラン
化合物としては、例えばビニルトリエトキシシラン、ビ
ニルトリス(β−メトキシエトキシ)シラン、r−メタ
クリロキシプロピルトリメトキシシランなどが挙げられ
る。
Examples of the silane compound having one or more unsaturated groups used in the present invention include vinyltriethoxysilane, vinyltris(β-methoxyethoxy)silane, and r-methacryloxypropyltrimethoxysilane.

また1個以上の不飽和基を有するチタネート化合物とし
ては、例えばイソプロピルジメタクリルイソステアロイ
ルチタネート、イソプロピルイソステアロイルジアクリ
ルチタネートなどが挙げられる。
Further, examples of the titanate compound having one or more unsaturated groups include isopropyl dimethacrylylisostearoyl titanate, isopropyl isostearoyl diacryl titanate, and the like.

これらの化合物の共重合体の組成比は、一般式〔IDの
化合物が10〜88モル%、一般式CI[)の化合物が
10〜88モル%、シラン化合物およ故′またはチタネ
ート化合物が0.5〜20モル%であることが好ましい
The composition ratio of the copolymer of these compounds is 10 to 88 mol% of the compound of the general formula [ID, 10 to 88 mol% of the compound of the general formula CI[), and 0% of the silane compound and titanate compound. It is preferably .5 to 20 mol%.

一般式〔IDの化合物が10モル%未満の場合および一
般式[IDの化合物が88モル%を越える場合には、得
られた鋳砂粘結用組成物を用いた樹脂被覆砂の崩壊性が
悪くなり、−万一般式(I)の化合物が88モル%を越
える場合および一般式〔■〕の化合物が10モル%未満
の場合は樹脂被覆砂の現時強度が低下するので好ましく
ない。またシラン化合物および/またはチタネート化合
物が、0.5モル%未満では砂と粘結用組成物との接着
力が得られず、中子をつくった場合、中子としての強度
がです、一方20モル%を越えると粘結用組成物自体の
強度がなくなり、中子の強劇が低Fし好ましく tcい
When the compound of general formula [ID is less than 10 mol% and when the compound of general formula If the amount of the compound of the general formula (I) exceeds 88 mol % or if the amount of the compound of the general formula [■] is less than 10 mol %, the current strength of the resin-coated sand decreases, which is not preferable. Furthermore, if the silane compound and/or titanate compound is less than 0.5 mol%, adhesive strength between the sand and the caking composition cannot be obtained, and when a core is made, the strength of the core is low. If it exceeds mol%, the strength of the caking composition itself will be lost, and the strength of the core will be low, which is preferable.

当該共重合体は分子量としては700以上数万1でが好
ましく、10万を越えるとゴム状になり好ましくない。
The molecular weight of the copolymer is preferably 700 or more and several tens of thousands of 1, and if it exceeds 100,000, it becomes rubbery and is not preferred.

700未満では中子としで成形した際の強度が低くなる
If it is less than 700, the strength when molded into a core will be low.

前n13一般式〔I′3および〔■〕の化合物、1個以
上の不飽和基を有するシラン化合物および/または1個
以上の不飽和基を有するチタネート化合物との共重合体
は、一般に知られている重合手法、即ち乳化重合、懸濁
重合、溶液41合、塊状のラジカル重合により容易に得
ることができる。生成した重合体は残留葦量体の測定、
エポキシ当量の測定により、収寮を求めることかで錠、
通常95%以上の高収宅で得られる。
A copolymer with a compound of the previous n13 general formula [I'3 and [■], a silane compound having one or more unsaturated groups, and/or a titanate compound having one or more unsaturated groups is generally known. It can be easily obtained by various polymerization techniques such as emulsion polymerization, suspension polymerization, solution polymerization, and bulk radical polymerization. The generated polymer was measured for residual reed mass,
By measuring the epoxy equivalent, it is possible to determine the storage capacity of the tablet,
Usually available for high income homes of 95% or more.

本発明において、上記共重合体と一緒に用いられる常温
で不活性な硬化剤としては、前記エポキシ基を有する共
重合体と常温では反応せず、加温時に短時間で反応する
硬化剤であり、好ましくは150°C以上の温度で数分
以内にエポキシ基との反応を完結し得る硬化剤である。
In the present invention, the curing agent that is inactive at room temperature and used together with the above copolymer is a curing agent that does not react with the epoxy group-containing copolymer at room temperature but reacts in a short time when heated. , preferably a curing agent that can complete the reaction with the epoxy group within several minutes at a temperature of 150° C. or higher.

かかる硬化剤としては、例えばジシアンジアミド、グア
ニジン、グアニジン塩などのようなジシアンジアミド系
の各種誘導体、コノ〜り酸ジヒドラジド、アジピン酸ジ
ヒドラジド、イソフタル酸ジヒドラジド、パラオキシ安
、り香酸ジヒドラジド、す11チル酸ジヒドラジド、フ
ェニルアミノプロピオン酸ヒドラジドのような有機酸ヒ
ドラジド類、シアノエチル置換イミダゾール有機酸塩、
アジン置換イミダゾール、イミダゾールの金属塩等のイ
ミダゾール誘導体類、無水フタル酸、無水トリメリット
酸、無水テトラヒドロフタル酸、無水へキサヒドロフタ
ル酸、無水メチルテトラヒドロフタル酸、無水メチルナ
ジック酸、無水ピロメリット酸のような酸無水物類およ
びメタフェニレンジアミン、ジアミノジフェニルスルフ
ォンのような芳香族ジアミノ類、シュウ酸、酒石酸、マ
レイン酸、トリメリット酸、ピロメリット酸、l、12
−ドデカンジカルボン酸などのような分子内に21固以
上のカルボキシル基を貧する有機酸などがあり、これら
の1種以上を用いることがでキる。これ等の硬化剤は、
その融点が60〜800 ”C1好ましくは100〜2
00 ”Cであることが必要で、融点が60°C未満で
は粘結用組成物を砂に混合する場合融解して粘着性を付
与し、型に十分詰まらず、800°Cより高くなると固
形であるので中子の型に入れても融解せず反応しないの
で硬化剤として役に立たない。
Examples of such curing agents include various dicyandiamide-based derivatives such as dicyandiamide, guanidine, and guanidine salts, cono-phosphoric acid dihydrazide, adipic acid dihydrazide, isophthalic acid dihydrazide, paraoxyamnesium, ric acid dihydrazide, and s-11 tylic acid dihydrazide. , organic acid hydrazides such as phenylaminopropionic acid hydrazide, cyanoethyl-substituted imidazole organic acid salts,
Imidazole derivatives such as azine-substituted imidazole, metal salts of imidazole, phthalic anhydride, trimellitic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, pyromellitic anhydride acid anhydrides such as metaphenylenediamine, aromatic diaminos such as diaminodiphenylsulfone, oxalic acid, tartaric acid, maleic acid, trimellitic acid, pyromellitic acid, l, 12
There are organic acids which contain 21 or more carboxyl groups in the molecule, such as -dodecanedicarboxylic acid, and one or more of these can be used. These hardening agents are
Its melting point is 60-800"C1 preferably 100-2
If the melting point is less than 60°C, the caking composition will melt and become sticky when mixed with sand, and will not fill the mold sufficiently, and if it is higher than 800°C, it will become solid. Therefore, even if it is put into a core mold, it will not melt or react, making it useless as a hardening agent.

上記常温で不活性な硬化剤の中でも、本発明においては
、ジシアンジアミド系の各種誘導体類、有機酸ジヒドラ
ジド類、イミダゾール誘導体類および有機酸類が、熱時
の鋳型強硬と熱崩壊性の観点から特に好ましい。
Among the curing agents that are inactive at room temperature, in the present invention, various dicyandiamide derivatives, organic acid dihydrazides, imidazole derivatives, and organic acids are particularly preferred from the viewpoint of mold hardness and heat disintegration properties when heated. .

(8) 更に本発明の粘結用組成物には、前記エポキシ基含有共
重合体と常温で不活性な硬化剤の鋳型造型における反応
連間を調整するために、硬化促進剤を併用しても良く、
例えばジメチルアミノフエ尿素誘導体等が硬化促進剤と
して用いられる。尚硬化剤としても作用するイミダゾー
ル誘導体類および有機酸ヒドラジド類はジシアンジアミ
ド誘導体類の硬化促進剤としても有効である。
(8) Furthermore, the caking composition of the present invention may contain a curing accelerator in order to adjust the reaction rate between the epoxy group-containing copolymer and a curing agent that is inactive at room temperature during mold making. Also good,
For example, dimethylaminopheurea derivatives and the like are used as the curing accelerator. Imidazole derivatives and organic acid hydrazides, which also act as curing agents, are also effective as curing accelerators for dicyandiamide derivatives.

本発明の粘結用組成物のけい砂への添加量は、けい砂の
量に対して通常0.5〜10重景%、好ましくは1.0
〜3.0重量%である。添加量が0.5重量%未満では
粘結用組成物を添加した効果がなく。
The amount of the caking composition of the present invention added to silica sand is usually 0.5 to 10% by weight, preferably 1.0% based on the amount of silica sand.
~3.0% by weight. If the amount added is less than 0.5% by weight, there is no effect of adding the caking composition.

またlO重計%より多くなると鋳型製造時の温時強ザは
増大するが、溶融金属鋳込時の熱崩壊性の低下、ガス発
生量の増大による鋳物欠陥の増大等の問題があり好まし
くない。
In addition, if the amount exceeds 10% by weight, the thermal strength during mold manufacturing will increase, but this is not preferable since it causes problems such as a decrease in thermal disintegration during molten metal casting and an increase in casting defects due to an increase in the amount of gas generated. .

次に前記エポキシ基を含有する共重合体と前記硬化剤と
の配合比は、エポキシ基の当量数に対し、硬化剤の反応
可能な活性水素基が0.5〜5,0倍当量、好ましくは
1.0〜8.0倍当Iである。この配合比が0.5〜5
倍当量の範囲外では鋳型製造時の温時強度が低くなるた
め好ましくない。
Next, the blending ratio of the epoxy group-containing copolymer and the curing agent is such that the amount of reactive active hydrogen groups in the curing agent is preferably 0.5 to 5.0 times the equivalent number of epoxy groups. is 1.0 to 8.0 times I. This blending ratio is 0.5 to 5
If the weight is outside the double equivalent range, the hot strength during mold production will be low, which is not preferable.

尚本発明のエポキシ基含有共重合体として前記一般式〔
I〕および〔■〕の化合物、1個以上の不飽和基を有す
るシラン化合物、1個以上の不飽和基を有するチタネー
ト化合物の外にこれらと共重合可能な単量体を共重合さ
せることができるととはいうまでもない。
In addition, as the epoxy group-containing copolymer of the present invention, the above general formula [
In addition to the compounds of [I] and [■], a silane compound having one or more unsaturated groups, and a titanate compound having one or more unsaturated groups, monomers that can be copolymerized with these may be copolymerized. Needless to say, it can be done.

本発明の錦紗粘結用組成物を使用して樹脂被覆砂を製造
するに当っては以下に示す方法がある。
There are the following methods for producing resin-coated sand using the composition for caking tinsel of the present invention.

予熱されたけい砂に本発明の錦紗粘結用組成物を添加混
合して冷却し真砂表面に粘結剤を融着させて混合する方
法、本発明の真砂粘結用絹成物を有機溶媒や水などに溶
解又は分散して予熱された又は予熱されていない真砂と
混合、乾燥する方法があるが、いずれの方法を用いても
優れた特性を有する樹脂被覆砂が得られる。作業性、混
合の均一性から通常120 ”C以上に予熱されたけい
砂に、所要に応じて硬化促進剤を混合した粘結剤組成物
の微粉末あるいはこれらの溶液又は分散液を砂温か10
0”C以下になってから添加し混合するホットメルト法
が好ましい。
A method of adding and mixing the composition for caking brocade of the present invention to preheated silica sand, cooling the mixture, and melting the caking agent onto the surface of the silica sand. There is a method in which resin-coated sand is dissolved or dispersed in water or the like, mixed with preheated or unpreheated sand, and dried, but resin-coated sand with excellent properties can be obtained using either method. For workability and uniformity of mixing, fine powder of a binder composition, or a solution or dispersion thereof, is mixed with silica sand preheated to 120"C or higher, if necessary, and a hardening accelerator, and then heated to a temperature of 10"C.
A hot-melt method is preferred, in which the mixture is added and mixed after the temperature reaches 0''C or less.

このようにして得られた本発明の錦紗粘結用組成物を使
用して得られた樹脂被覆砂は通常150゛C以上、好ま
しくは180〜250 ”Cに加熱された金型に流し込
み80秒〜8分経過後脱型し、鋳型又は中子を得ること
が可能である。
The resin-coated sand obtained using the tinsel caking composition of the present invention thus obtained is poured into a mold heated to usually 150°C or higher, preferably 180 to 250"C, and heated for 80 seconds. It is possible to remove the mold after ~8 minutes and obtain a mold or core.

以下本発明を実施例、比較例および試験例により詳細に
説明する。
The present invention will be explained in detail below using Examples, Comparative Examples, and Test Examples.

実施例 1 エポキシ基含有共重合体の製造 窒素導入管、攪拌機、単量体等の添加導入口、8mコン
デンサーを備えた4つロフラスコに190mAの蒸留水
を加え、攪拌を行った。その後2.51のラウリルスル
フオン酸ナトリウムを添加し、反応容器内を窒素置換し
ながら充分攪拌して溶解させた。ラウリルスルフオン酸
ナトリウムが溶解した後、攪拌をやや強めにしイソプロ
ペニルベンゼン47.59とグリシジルメタクリレート
41.5 fとr−メタクリロキシプロピルトリメトキ
シシラン52とを徐々に加えながら乳化させた。
Example 1 Production of epoxy group-containing copolymer Distilled water at 190 mA was added to a four-loaf flask equipped with a nitrogen inlet tube, a stirrer, an inlet for adding monomers, etc., and an 8 m condenser, and stirring was performed. Thereafter, 2.51 grams of sodium lauryl sulfonate was added, and while the inside of the reaction vessel was replaced with nitrogen, the mixture was thoroughly stirred and dissolved. After the sodium lauryl sulfonate was dissolved, the stirring was increased slightly to emulsify while gradually adding 47.59 g of isopropenylbenzene, 41.5 f of glycidyl methacrylate, and 52 g of r-methacryloxypropyltrimethoxysilane.

充分乳化した後、反応容器内を50“Cに設定し、5罰
の水に溶解した亜硫酸水素ナトリウム0.052と5 
mtの水に溶解した過価酸カリウム0.22とを添加し
重合を開始させた。反応は約8時間で完全に終了した。
After sufficient emulsification, the temperature inside the reaction vessel was set at 50"C, and sodium bisulfite 0.052 and 5% dissolved in 50% water were added.
0.22 mt of potassium peroxide dissolved in water was added to initiate polymerization. The reaction was completely completed in about 8 hours.

1日放置後の重合転化率は97.8%であった。The polymerization conversion rate after standing for one day was 97.8%.

樹脂被覆砂の製造 200°Cに予熱した6号けい砂(l K9をスピード
ミキサー(遠州鉄工(株)製)に投入攪拌しながら、砂
温か180”Cになった時点で、前記製造したエポキシ
基含有共重合体のエマルジョンを全量投入し、砂粒表面
に溶融付着させながら、さらにジシアンアミドの微粉末
(平均粒径4θμ)202並びに硬化促進剤として8−
(p−クロロフェニル)−1,1−ジメチル尿素8vを
砂温か約100°Cになった時点で添加した。
Production of resin-coated sand No. 6 silica sand (l K9) preheated to 200°C was put into a speed mixer (manufactured by Enshu Tekko Co., Ltd.) while stirring, and when the sand temperature reached 180"C, the epoxy sand prepared above was added. The entire amount of the emulsion of the group-containing copolymer is added, and while it is melted and adhered to the surface of the sand grains, fine powder of dicyanamide (average particle size 4θμ) 202 and 8-8 as a hardening accelerator are added.
8v of (p-chlorophenyl)-1,1-dimethylurea was added when the sand temperature reached approximately 100°C.

樹脂被覆砂はさらに攪拌混合を続け、ブロッキングが始
まった時点で、ワックスとしてステアリン酸カルシウム
82を添加して砂粒をときほぐしてから、スピードミキ
サーより取り出し、樹脂被覆砂lを得た。
The resin-coated sand was further stirred and mixed, and when blocking started, calcium stearate 82 was added as a wax to loosen the sand grains, and then taken out from the speed mixer to obtain resin-coated sand 1.

実施例 2〜14 実施例1と同様にして次の第1表に示す実施例2〜14
のエポキシ基含有共重合体をつくり、第1表に示す硬化
剤および硬化促進剤を用い、実施例1の樹脂被覆砂の製
造方法と同じ手法を用いて18種類の樹脂被覆砂を作製
した。
Examples 2 to 14 Examples 2 to 14 shown in Table 1 below in the same manner as Example 1
An epoxy group-containing copolymer was prepared, and using the curing agent and curing accelerator shown in Table 1, 18 types of resin-coated sand were produced using the same method as the method for producing resin-coated sand in Example 1.

実施例会の共重合体の重合転化至は83,7%であり、
その他の共重合体はいずれも94%以上の重合転化至で
あった。
The polymerization conversion of the copolymer in the example meeting was 83.7%,
All other copolymers had a polymerization conversion of 94% or more.

比較例 1 200″Cに予熱した6号けい砂4 K9をスピードミ
キサーに投入攪拌しながら、砂温か170℃になった時
に、市販のノボラック型フェノール樹脂100S!(け
い砂100重量部に対して2.5重量部、旭有機材工業
(株)製5P850Dを使用)を添側して、砂粒表面に
融着させた後に、ヘキサメチレンテトラミン152(樹
脂100重量部に対して15重量部)を俗解した水浴液
757を添加して、さらに攪拌混合を行ない、樹脂被覆
砂がブロッキングを起し始めた時にワックスとしてステ
アリン酸カルシウム87を添加して砂粒をほぐしてから
スピードミキサーより取出して比較例1の樹脂被覆砂を
得た。
Comparative Example 1 No. 6 silica sand 4 K9 preheated to 200″C was put into a speed mixer while stirring, and when the sand temperature reached 170°C, commercially available novolak type phenolic resin 100S! (for 100 parts by weight of silica sand) After applying 2.5 parts by weight of 5P850D manufactured by Asahi Yokuzai Kogyo Co., Ltd. and fusing it to the surface of the sand grains, hexamethylenetetramine 152 (15 parts by weight per 100 parts by weight of the resin) was applied. A common water bath liquid 757 was added and the mixture was further stirred, and when the resin-coated sand started to cause blocking, calcium stearate 87 was added as a wax to loosen the sand grains, and then taken out from the speed mixer to prepare the sand grains of Comparative Example 1. Resin coated sand was obtained.

比較例 2 比較例1と同様にして、170°Cで該フェノール樹脂
807(けい砂100重量部に対して2.0(15) 重量部)を添加し、更にヘキサメチレンテトラミン12
gを溶解した水溶液752を添加し、さらにステアリン
酸カルシウム2.57を添加して比較例2の樹脂被覆砂
を得た。
Comparative Example 2 In the same manner as Comparative Example 1, the phenolic resin 807 (2.0 (15) parts by weight per 100 parts by weight of silica sand) was added at 170°C, and hexamethylenetetramine 12
A resin-coated sand of Comparative Example 2 was obtained by adding 752 g of an aqueous solution in which 75 g of calcium stearate was dissolved and further adding 2.57 g of calcium stearate.

試験例 温時強度試験 実施例1〜14並びに比較例1および2で得た樹脂被覆
砂につきシェル鋳型高温引張試験機を用いて温時強度試
験を行った。焼成条件は250℃×60秒であり、焼成
後ただちに試験を行なって温時強度とした。得た結果を
第2表に示す。
Test Example Hot Strength Test The resin-coated sand obtained in Examples 1 to 14 and Comparative Examples 1 and 2 was subjected to a hot strength test using a shell mold high temperature tensile tester. The firing conditions were 250°C x 60 seconds, and a test was conducted immediately after firing to determine the strength at elevated temperatures. The results obtained are shown in Table 2.

熱崩壊性試験 本試験では先ず実施例および比較例で得た樹脂被覆砂を
250°Cに予熱した金型に流し込んで中子を焼成成形
し、第1図に示す幅木1(直径10龍×長さ80關)を
中子本体(直径50 m x高さ80龍)の中央部に深
さ10龍挿入した中子を作製した。この幅木は後で中子
砂の排出口形成を兼ねるものである。
Heat disintegration test In this test, first, the resin-coated sand obtained in the Examples and Comparative Examples was poured into a mold preheated to 250°C, and a core was fired and molded. A core was prepared by inserting a core (diameter: 50 m x height: 80 mm) into the center of the core body (diameter: 50 m x height: 80 mm) to a depth of 10 mm. This baseboard will later serve as an outlet for the core sand.

第2図に示す如く、内径100 am、深さ100II
IrRの凹部を有するC02@型4の中央に中子8を同
字した後、700°CのAC2Aアルミニウム合金溶湯
5を中子の上部より約IQmi+上まで注湯した。
As shown in Figure 2, the inner diameter is 100 am and the depth is 100 II.
After placing a core 8 in the center of a C02@ mold 4 having an IrR recess, 700°C AC2A aluminum alloy molten metal 5 was poured to about IQmi+ above the top of the core.

凝固冷却後、周囲のC02鋳昭をこわして得られた鋳造
は、幅木を下に向けて治具に同字し、穂刈製作所c株)
製のロータツブ試験によって衝撃振動を与え、排出口か
ら排出された砂量な測って、元の中子型部−との比で熱
崩壊性を求めた。衝撃振動の時間は1分、8分、5分、
10分で累積で測った。
After solidification and cooling, the casting obtained by breaking the surrounding C02 castings is placed on the jig with the baseboard facing down, and the Hokari Seisakusho c stock)
Shock vibration was applied using a rotary tube test made by the company, and the amount of sand discharged from the discharge port was measured, and the thermal disintegration property was determined by comparing it to the original core mold part. The impact vibration time is 1 minute, 8 minutes, 5 minutes,
Cumulative measurements were taken over 10 minutes.

得た結果を第2表に併記する。The obtained results are also listed in Table 2.

第2表 (18) 以上の如く、本発明の錦紗粘結用組成物を使用すると、
同一樹脂量でも温時強度が高く、また熱崩壊性はいずれ
の場合でも著しく良好な結果をもたらしている。
Table 2 (18) As mentioned above, when using the brocade caking composition of the present invention,
Even with the same amount of resin, the strength at high temperatures is high, and the thermal disintegration properties are extremely good in all cases.

特にフェノール樹脂を用いた比較例の場合、樹脂量の低
減による熱崩壊性の向上はあまり期待できないため、本
発明の錦紗粘結用組成物がアルミニウム合金の如き、低
融点鋳物の省エネルギー化に大きく寄与する効果がある
ことは一目瞭然である。
In particular, in the case of the comparative example using phenolic resin, it is not expected that the reduction in the amount of resin will significantly improve the heat disintegration property, so the brocade caking composition of the present invention will greatly contribute to the energy saving of low melting point castings such as aluminum alloys. It is obvious that there is a contributing effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は熱崩壊試験に用いた中子の斜借1図、第2図は
熱崩壊試験の説明図である。 1・・・幅木、       2・・・中子本体、8・
・・中子、       4・・・CO□鋳型、5・・
・アルミニウム合金。 第1図 手続補正書 昭和58年3 月 9 日 1、事件の表示 昭和57年 特 許 願第2254.75号2、発明の
名称 錦紗粘結用組成物 3、補正をする者 事件との関係 特許出願人 (399)日産自動車株式会社 ■、明細書第10頁第4〜5行「ジメチルアミノフェノ
ール類」を「ジメチルアミノメチルフェノール類」に訂
正する。 2、同第15貞第1表中、「エポキシ基含有共重合体」
の欄の実施例2.実施例8.実施例4.実施例5.実施
例]0.実施例11.実施例]2゜実施例13および実
施例14の「γ−メタクリロキシプロピルメトキシシラ
ン」を「γ−メタクリロキシプロピルトリメトキシシラ
ン」に夫々訂正する。
FIG. 1 is a diagonal diagram of the core used in the thermal decay test, and FIG. 2 is an explanatory diagram of the thermal decay test. 1... Skirting board, 2... Core body, 8.
・・core, 4・CO□ mold, 5・・
・Aluminum alloy. Figure 1 Procedural amendment document March 9, 1980 1. Indication of the case 1988 Patent Application No. 2254.75 2. Name of the invention: Brocade binding composition 3. Person making the amendment Relationship with the case Patent applicant (399) Nissan Motor Co., Ltd. ■, page 10, lines 4-5 of the specification, "dimethylaminophenols" is corrected to "dimethylaminomethylphenols". 2. "Epoxy group-containing copolymer" in Table 1 of the same No. 15
Example 2 in the column. Example 8. Example 4. Example 5. Example] 0. Example 11. Example] 2° "γ-methacryloxypropylmethoxysilane" in Examples 13 and 14 is corrected to "γ-methacryloxypropyltrimethoxysilane", respectively.

Claims (1)

【特許請求の範囲】 1 次の一般式 (2) (式中のR□は水素原子またはメチル基、R2は水素原
子捷たは有機官能基を示す)で表わされる化合物と、次
の一般式 %式%[: (式中のR8は水素原子捷たけメチル基、R2は1個以
上のエポキシ基を有する有機官能基を示す)で表わされ
る化合物と、1個以上の不飽和基を有するシラン化合物
および/1だは1個以上の不飽和基を有するチタネート
化合物の共重合体と常温で不活性な硬化剤からなること
を特徴とする鋳砂粘結用組成物。
[Claims] 1. A compound represented by the following general formula (2) (in the formula, R□ is a hydrogen atom or a methyl group, and R2 represents a hydrogen atom or an organic functional group) and the following general formula: A compound represented by the formula %[: (in the formula, R8 is a hydrogen atom and a methyl group, and R2 is an organic functional group having one or more epoxy groups) and a silane having one or more unsaturated groups. 1. A composition for caking foundry sand, comprising a copolymer of a titanate compound and/or a titanate compound having one or more unsaturated groups, and a curing agent that is inactive at room temperature.
JP22547582A 1982-12-22 1982-12-22 Composition for binding molding sand Pending JPS59118243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22547582A JPS59118243A (en) 1982-12-22 1982-12-22 Composition for binding molding sand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22547582A JPS59118243A (en) 1982-12-22 1982-12-22 Composition for binding molding sand

Publications (1)

Publication Number Publication Date
JPS59118243A true JPS59118243A (en) 1984-07-07

Family

ID=16829893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22547582A Pending JPS59118243A (en) 1982-12-22 1982-12-22 Composition for binding molding sand

Country Status (1)

Country Link
JP (1) JPS59118243A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221218A (en) * 1985-03-27 1986-10-01 Japan Synthetic Rubber Co Ltd Thermosetting resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61221218A (en) * 1985-03-27 1986-10-01 Japan Synthetic Rubber Co Ltd Thermosetting resin composition
JPH0554515B2 (en) * 1985-03-27 1993-08-12 Japan Synthetic Rubber Co Ltd

Similar Documents

Publication Publication Date Title
JPS59118243A (en) Composition for binding molding sand
US4246165A (en) Preparation of coated casting sand using unsaturated polyester resin as binder
JPS59115323A (en) Molding sand binder composition
JPS5618641A (en) Phenol resin composition
JPS6021144A (en) Binder for molding sand
JP2660186B2 (en) Binder for foundry sand
JPS6021145A (en) Binder for molding sand
JPH0153141B2 (en)
JPS5973143A (en) Resin-coated sand grain for shell mold
JPS55165252A (en) Resin composition for binding molding sand particle
JPS59107743A (en) Binder for molding sand
JPH09268222A (en) Epoxy resin composition
JPS59197339A (en) Binder for molding sand and application thereof
JPS59107742A (en) Binder for molding sand
JPS6072636A (en) Composition for binding casting mold
JPH01130834A (en) Component for coking casting sand
JP3003101B2 (en) Molding method of epoxy resin molded product using mini sprue mold
JPS63303645A (en) Composition for binding molding sand
JPS60145240A (en) Composition for binding casting mold
JPS5858956A (en) Composition for binding of mold
JPS63303646A (en) Composition for binding molding sand
JPS6030547A (en) Production of resin-coated sand grain for shell mold
JPS5756137A (en) Molding material for shell molding
JPS6096346A (en) Composition for binding casting mold
JPH0118818B2 (en)