JPH0153141B2 - - Google Patents

Info

Publication number
JPH0153141B2
JPH0153141B2 JP56194850A JP19485081A JPH0153141B2 JP H0153141 B2 JPH0153141 B2 JP H0153141B2 JP 56194850 A JP56194850 A JP 56194850A JP 19485081 A JP19485081 A JP 19485081A JP H0153141 B2 JPH0153141 B2 JP H0153141B2
Authority
JP
Japan
Prior art keywords
resin
parts
sand
coated sand
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56194850A
Other languages
Japanese (ja)
Other versions
JPS5897461A (en
Inventor
Mikio Yamaguchi
Masato Kanefusa
Etsuji Iwami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP19485081A priority Critical patent/JPS5897461A/en
Publication of JPS5897461A publication Critical patent/JPS5897461A/en
Publication of JPH0153141B2 publication Critical patent/JPH0153141B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2233Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B22C1/2266Polyesters; Polycarbonates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は鋳物砂粒結合甚暹脂組成物に関する。 珟圚鋳造甚の鋳型及び䞭子の補造法ずしおは、
シ゚ルモヌルド法が䞻流であり、砂粒結合剀ずし
おはプノヌル暹脂が䞀般に䜿甚されおいる。し
かしながら、プノヌル暹脂は、シ゚ルモヌルド
法のコヌテむング、成圢、泚湯の各工皋におい
お、加熱䞋にプノヌル、アンモニア、アルデヒ
ド、䞀酞化炭玠等の有毒か぀䞍快臭を有するガス
が発生し、アルミニりム鋳物のように鋳造枩床の
䜎い堎合650〜750℃の鋳型厩壊性に劣る等の
欠点があり、これらのプノヌル暹脂の欠点を改
良すべく、最近鋳物砂粒結合剀ずしお䞍飜和ポリ
゚ステル暹脂が泚目され始め、特開昭49−48520
号公報、特公昭50−30114号公報、特開昭50−
104721号公報、特開昭51−29318号公報、特開昭
54−80234号公報、特開昭56−59560号公報等に瀺
されおいるが、未だごく䞀郚に䜿甚されおいるに
ずどた぀おいる。 䞍飜和ポリ゚ステル暹脂を鋳物砂粒結合剀ずし
お甚いたポリ゚ステルレゞンコヌテツドサンド
は、プノヌル暹脂を結合剀ずするプノヌルレ
ゞンコヌテツドサンドの持぀前蚘欠点は改良する
が、反面鋳型成圢性が悪いずいう欠陥を持ち合せ
おいる。すなわち、吹蟌み匏シ゚ル鋳型造圢機を
甚いお280〜300℃に加熱した金型にレゞンコヌテ
ツドサンドを充おんしシ゚ル䞭子を成圢する際、
鋳型造圢機マガゞンの目づたり及びそれに䌎う充
おん性の䜎䞋が珟状のポリ゚ステルレゞンコヌテ
ツドサンドにおける欠点ずされ、埓来の鋳型造圢
機をそのたた掻甚するこずができないのが匊害ず
なり、ポリ゚ステルレゞンコヌテツドサンドの実
甚化が遅れおいる。 この鋳型造圢機マガゞンの目づたりは、レゞン
コヌテツドサンドに芁求される特性の䞀項目であ
る融着点ず関係がある。䞭子及び鋳型を成圢する
に際しお䜿甚する金型の枩床が280〜300℃ず高い
ために鋳型造圢機マガゞンの枩床も70〜90℃皋床
たで䞊昇する。埓぀お、融着点が䜎い堎合には鋳
型造圢機マガゞン内で結合剀が溶融し、マガゞン
ぞの付着あるいはレゞンコヌテツドサンドのブロ
ツキングにより目づたりずなる。 䞀般に䜿甚されおいるプノヌルレゞンコヌテ
ツドサンドの融着点が90〜115℃であるのに察し
お公知の技術によるポリ゚ステルレゞンコヌテツ
ドサンドの融着点は85℃以䞋ず䜎いこずに問題が
ある。 レゞンコヌテツドサンドの融着点は䜿甚する結
合剀の軟化点に圱響される。埓぀おポリ゚ステル
レゞンコヌテツドサンドの融着点を高くするため
には結合剀の䞍飜和ポリ゚ステルの軟化点を高く
するこずが容易に考えられる。 本発明者らの怜蚎によるず、ポリ゚ステルレゞ
ンコヌテツドサンドの融着点をプノヌルレゞン
コヌテツドサンドの融着点90℃以䞊たで高め
るためには䞍飜和ポリ゚ステルの軟化点を120℃
以䞊にする必芁があるが、軟化点120℃以䞊の䞍
飜和ポリ゚ステルを結合剀ずするレゞンコヌテツ
ドサンドを甚いた鋳型は匷床が䜎く、たた䞍飜和
ポリ゚ステルの軟化点を120℃以䞊にするために
は瞮合床を高くする必芁があり、合成の際ゲル化
の確率が高く、安定した状態で䟛絊するこずが難
しくなるずいう問題を生じる。 本発明者らは、かかる鋳物砂粒結合甚䞍飜和ポ
リ゚ステル暹脂組成物の欠点にかんがみ、融着点
90℃以䞊のポリ゚ステルレゞンコヌテツドサンド
を埗べく、鋳物砂結合甚暹脂組成物に぀いお鋭意
研究を重ねた結果、融着点、匷床共にプノヌル
暹脂に察抗しうる鋳物砂粒結合甚暹脂組成物を芋
出した。 すなわち、本発明は垞枩で固䜓の䞍飜和ポリ゚
ステル、分子䞭に䞀個以䞊の䞍飜和結合を有する
䞍飜和単量䜓又は予備重合䜓、重合甚觊媒ならび
に酞化マグネシりム、酞化亜鉛および酞化カルシ
りムから遞ばれる金属酞化物の皮たたは皮以
䞊を含有しおなる鋳物砂粒結合甚暹脂組成物に関
する。本発明においおは、䞊蚘の金属酞化物を配
合するこずにより匷床を䜎䞋させるこずなく、埓
来のポリ゚ステルレゞンコヌテツドサンドの欠点
であ぀た融着点を改良するこずが可胜ずなる。 以䞋本発明を曎に詳现に説明する。 本発明においお䜿甚される垞枩で固䜓の䞍飜和
ポリ゚ステルは、αβ−䞍飜和二塩基酞、その
酞無氎物又はその混合物、必芁に応じお飜和二塩
基酞又はその無氎物を倚䟡アルコヌルず公知の方
法により反応させるこずにより埗られる。 αβ−䞍飜和二塩基酞又はその無氎物ずしお
は、マレむン酞、むタコン酞、フマル酞、無氎マ
レむン酞、シトラコン酞、クロロマレむン酞等が
䜿甚される。飜和二塩基酞又はその無氎物ずしお
は、フタル酞、無氎フタル酞、む゜フタル酞、テ
レフタル酞、テトラヒドロ無氎フタル酞、こはく
酞、アゞピン酞、セバシン酞、メチルこはく酞等
が䜿甚される。 倚䟡アルコヌルずしおはプロピレングリコヌ
ル、ゞプロピレングリコヌル、−プロパン
ゞオヌル、゚チレングリコヌル、ゞ゚チレングヌ
ル、−ブタンゞオヌル、ネオペンチルグリ
コヌル、−ヘキサンゞオヌル、氎玠化ビス
プノヌル等のグリコヌル類、グリセリン、ト
リメチロヌルプロパン、ペンタ゚リスリトヌル等
が甚いられ、必芁に応じお䟡のアルコヌルを䞀
郚䜵甚しおもよい。 䞍飜和ポリ゚ステルが垞枩で固䜓であるために
は、リングアンドボヌル法で枬定した軟化点が50
℃以䞊であれば良いが80℃から110℃の範囲にあ
るこずが奜たしい。軟化点80℃未満では金属酞化
物の添加量が倚くなり、又110℃を越えるず鋳型
や䞭子の匷床が䜎䞋する傟向にある。 分子䞭に個以䞊の䞍飜和結合を有する䞍飜和
単量䜓又は予備重合䜓ずしおは、スチレンモノ
マ、クロルスチレン、ゞビニルベンれン、ゞアリ
ルフタレヌト、メタクリル酞メチル、アクリル
酞、酢酞ビニル、アクリルアミド、プニルマレ
むミド、マレむミド、臭化スチレン、タヌシダリ
ブチルスチレン、トリアリルむ゜シアヌレヌト、
−メチルアクリルアミド、N′−ゞメチル
アクリルアミド、−メチルメタクリルアミド、
N′−ゞメチルメタクリルアミド、−メチ
ロヌルアクリルアミド、−メチロヌルメタクリ
ルアミド、N′−メチレンビスアクリルアミ
ド、N′−メチレンビスメタクリルアミド、
アクリル酞亜鉛、アクリル酞カルシりム、アクリ
ル酞アルミニりム、メタクリル酞亜鉛、メタクリ
ル酞カルシりム、ゞアリルフタレヌトプレポリマ
ヌ、トリアリルむ゜シアヌレヌトプレポリマヌ、
゚ポキシ暹脂のアルキルアクリレヌト等がある。 分子䞭に個以䞊の䞍飜和結合を有する䞍飜和
単量䜓又は予備重合䜓ずしおは、融点60℃以䞊の
物を䜿甚するのが奜たしく、その添加量は䞍飜和
ポリ゚ステル100重量郚に察しお重量郚から100
重量郚が䞀般的である。 融点60℃未満の䞍飜和単量䜓又は予備重合䜓を
䜿甚する堎合は、レゞンコヌテツドサンドの融着
点が䜎䞋する傟向にあるので、その添加量は䞍飜
和ポリ゚ステル100重量郚に察しお重量郚以䞋
が奜たしい。 䞍飜和単量䜓又は予備重合䜓は䞀皮を単独で䜿
甚しおもよいし二皮以䞊を䜵甚しおもよい。 本発明においお䜿甚する重合甚觊媒ずしおは有
機過酞化物が通垞は奜たしく、䟋えばゞクミルパ
ヌオキサむド、過酞化ベンゟむル、タヌシダリブ
チルパヌベンゟ゚ヌト、ゞ・タヌシダリブチルパ
ヌベンゟ゚ヌト、クメンヒドロパヌオキサむド、
−ビス−タヌシダリブチルパヌオキシむ
゜プロピルベンれン、−ビス−タヌシ
ダリブチルパヌオキシ−−トリメチ
ルシクロヘキサン、−ゞメチル−
−ゞベンゟむルパヌオキシヘキサン、−
ビス−−ゞ・タヌシダリブチルパヌオキ
シシクロヘキシルプロパン、−ゞメチル
−−ゞタヌシダリブチルパヌオキシ−
ヘキシン−−ブチル−−ビス−タ
ヌシダリブチルパヌオキシバレレヌト、ラりロ
むルパヌオキサむド、シクロヘキサノンパヌオキ
サむド等がある。 これらの有機過酞化物の配合量は䞍飜和ポリ゚
ステル100重量郚に察しお0.5重量郚未満では十分
な硬化特性が埗られず、20重量郚を越えるず配合
量に芋合う硬化特性が埗られないために0.5重量
郚から20重量郚の範囲が奜たしく、通垞は重量
郚から10重量郚の範囲で䜿甚される。これらの重
合甚觊媒は単独で䜿甚しおも、皮以䞊を䜵甚し
おもよい。 レゞンコヌテツドサンドの融着点ぞの効果、䟡
栌の点で、酞化マグネシりム、酞化亜鉛及び酞化
カルシりムは奜たしい。 金属酞化物の添加量は、金属酞化物の皮類及び
䞍飜和ポリ゚ステルの軟化点、䞍飜和単量䜓又は
予備重合䜓の融点により異なるが、通垞䞍飜和ポ
リ゚ステル100重量郚に察しお重量郚から30重
量郚の範囲内ずされる。䟋えば、酞化マグネシり
ムでは0.5重量郚から重量郚、酞化亜鉛では
重量郚から15重量郚の範囲でほが目的を達する。
これら金属酞化物は単独で䜿甚しおも、皮以䞊
を䜵甚しおもよい。 本発明になる鋳物砂粒結合甚暹脂組成物には、
必芁に応じお滑剀、硬化促進剀、重合犁止剀、充
おん剀、シランカツプリング剀等が含たれおもよ
い。 滑剀ずしおは、ステアリン酞カルシりム、ステ
アリン酞亜鉛、メチロヌルアミド、ビスアマむド
等が甚いられる。 硬化促進剀ずしおは、ナフテン酞コバルト、オ
クテン酞コバルト等のナフテン酞金属塩、オクテ
ン酞金属塩、アミン類などがあり、重合犁止剀ず
しおは、ハむドロキノン、パラベンゟキノン、
−ゞプニルパラベンゟキノン、トルベン
ゟキノン、モノタヌシダリブチルハむドロキノン
等が甚いられる。 充おん剀ずしおは、炭酞カルシりム、硫酞バリ
りム、氎酞化アルミニりム、クレむ、シリカ、タ
ルク等が甚いられる。 シランカツプリング剀ずしおは、ビニルトリ゚
トキシシラン、ビニル−トリス−β−メトキシ
゚トキシシラン、γ−アミノプロピルトリ゚ト
キシシラン、−β−アミノ゚チル−γ−アミ
ノプロピルトリメトキシシラン、ビニルトリクロ
ロシラン等が挙げられる。 本発明になる鋳物砂粒結合甚暹脂組成物を実際
に甚いる堎合は、該暹脂組成物を適圓な方法によ
りあらかじめ混合しおおいおもよく、レゞンコヌ
テツドサンド調合時にそれぞれの成分を添加混合
しおもよい。 レゞンコヌテツドサンドの調合は、該暹脂組成
物を適圓な溶剀、䟋えばアセトン、メチル゚チル
ケトン、トル゚ン、ベンれン、キシレンに溶解し
た溶液を甚いお砂粒に暹脂を被芆した埌溶剀を揮
発也燥するセミホツト法、無溶剀型のホツトメル
ト法等で行なわれる。 以䞋に実斜䟋をあげお本発明を説明する。郚ず
あるのは重量郚である。 実斜䟋  無氎マレむン酞モル、む゜フタル酞モル、
プロピレングリコヌルモル、グリセリンモル
を䞍掻性ガス気流䞭で210℃に加熱反応させ軟化
点リングアンドポヌル法で枬定、以䞋同じ86
℃、酞䟡60の䞍飜和ポリ゚ステルを埗た。この
䞍飜和ポリ゚ステル100郚にゞアリルフタレヌト
プレポリマヌ30郚、ゞクミルパヌオキサむド
郚、タヌシダリブチルパヌベンゟ゚ヌト郚、酞
化マグネシりム郚、酞化亜鉛10郚を添加混合し
た暹脂組成物0.24Kgを160℃に予熱したけい砂
Kgずずもに遠州鉄工(æ ª)補NSC−型スピヌドミ
キサヌで分間撹拌するこずにより、砂衚面に均
䞀に暹脂組成物が被芆されたコヌテツドサンドが
埗られた。このコヌテツドサンドに぀いおJACT
鋳造技術普及協䌚のレゞンコヌテツドサンド
暙準詊隓法に基づいお融着点及び垞枩曲げ匷さを
枬定した。結果を衚に瀺した。 比范䟋  実斜䟋の暹脂組成物から金属酞化物の酞化マ
グネシりムず酞化亜鉛を陀いたほかは、実斜䟋
ず同じ方法でレゞンコヌテツドサンドを埗た。 融着点及び垞枩曲げ匷さの枬定結果を衚に瀺
した。
The present invention relates to a resin composition for bonding foundry sand grains. Currently, the manufacturing methods for casting molds and cores are as follows:
The shell mold method is the mainstream, and phenolic resin is generally used as the sand grain binder. However, during the coating, molding, and pouring steps of the shell molding process, phenolic resin generates gases with toxic and unpleasant odors such as phenol, ammonia, aldehyde, and carbon monoxide during heating, and is used in aluminum castings. However, in order to improve these drawbacks, unsaturated polyester resins have recently begun to attract attention as casting sand grain binders. Japanese Patent Publication No. 49-48520
Publication No. 50-30114, Japanese Patent Publication No. 1973-30114
Publication No. 104721, Japanese Patent Publication No. 51-29318, Japanese Patent Publication No. Sho 51-29318
Although it is disclosed in Japanese Patent Laid-Open No. 54-80234 and Japanese Patent Application Laid-Open No. 56-59560, it is still used in only a few cases. Polyester resin coated sand using unsaturated polyester resin as the foundry sand grain binder improves the above-mentioned drawbacks of phenol resin coated sand using phenol resin as the binder, but on the other hand, it has the drawback of poor moldability. It's matching. In other words, when molding a shell core by filling resin-coated sand into a mold heated to 280-300℃ using a blow-in shell mold-making machine,
The clogging of the mold making machine magazine and the resulting decrease in filling performance are considered to be drawbacks of the current polyester resin coated sand, and the disadvantage is that the conventional mold making machine cannot be used as is. Practical implementation is delayed. This clogging of the mold making machine magazine is related to the fusion point, which is one of the properties required of resin coated sand. Since the temperature of the mold used to form the core and mold is as high as 280-300°C, the temperature of the mold-making machine magazine also rises to about 70-90°C. Therefore, if the welding point is low, the binder will melt in the magazine of the mold making machine and cause clogging due to adhesion to the magazine or blocking of the resin coated sand. The problem is that the commonly used phenol resin coated sand has a melting point of 90 to 115°C, whereas the melting point of polyester resin coated sand made by known techniques is as low as 85°C or less. The melting point of resin coated sand is influenced by the softening point of the binder used. Therefore, in order to raise the melting point of polyester resin coated sand, it is easy to think of raising the softening point of the unsaturated polyester as a binder. According to studies by the present inventors, in order to raise the melting point of polyester resin coated sand to the melting point of phenol resin coated sand (90°C or higher), the softening point of unsaturated polyester must be 120°C.
However, molds using resin-coated sand that uses unsaturated polyester as a binder with a softening point of 120°C or higher have low strength, and it is necessary to raise the softening point of unsaturated polyester to 120°C or higher. It is necessary to increase the degree of condensation, and there is a high probability of gelation during synthesis, causing problems such as difficulty in supplying in a stable state. In view of the drawbacks of such unsaturated polyester resin compositions for bonding foundry sand grains, the present inventors have determined that
In order to obtain polyester resin coated sand with a temperature of 90°C or higher, as a result of extensive research into resin compositions for bonding foundry sand grains, we have discovered a resin composition for bonding foundry sand grains that can compete with phenolic resins in terms of melting point and strength. . That is, the present invention relates to an unsaturated polyester that is solid at room temperature, an unsaturated monomer or prepolymer having one or more unsaturated bonds in the molecule, a polymerization catalyst, and a metal selected from magnesium oxide, zinc oxide, and calcium oxide. The present invention relates to a resin composition for bonding foundry sand grains containing one or more oxides. In the present invention, by blending the above-mentioned metal oxides, it is possible to improve the fusion point, which was a drawback of conventional polyester resin coated sand, without reducing the strength. The present invention will be explained in more detail below. The unsaturated polyester that is solid at room temperature used in the present invention is an α,β-unsaturated dibasic acid, its acid anhydride, or a mixture thereof, and if necessary, a saturated dibasic acid or its anhydride with a polyhydric alcohol. It can be obtained by reacting with a known method. As the α,β-unsaturated dibasic acid or its anhydride, maleic acid, itaconic acid, fumaric acid, maleic anhydride, citraconic acid, chloromaleic acid, etc. are used. As the saturated dibasic acid or its anhydride, phthalic acid, phthalic anhydride, isophthalic acid, terephthalic acid, tetrahydrophthalic anhydride, succinic acid, adipic acid, sebacic acid, methylsuccinic acid, etc. are used. Examples of polyhydric alcohols include propylene glycol, dipropylene glycol, 1,2-propanediol, ethylene glycol, diethylene glu, 1,3-butanediol, neopentyl glycol, 1,6-hexanediol, hydrogenated bisphenol A, etc. Glycols, glycerin, trimethylolpropane, pentaerythritol, etc. are used, and a monohydric alcohol may be partially used in combination if necessary. In order for an unsaturated polyester to be solid at room temperature, its softening point measured by the ring and ball method must be 50
℃ or higher, but it is preferably in the range of 80℃ to 110℃. If the softening point is less than 80°C, the amount of metal oxide added will increase, and if it exceeds 110°C, the strength of the mold or core will tend to decrease. Examples of unsaturated monomers or prepolymers having one or more unsaturated bonds in the molecule include styrene monomer, chlorostyrene, divinylbenzene, diallyl phthalate, methyl methacrylate, acrylic acid, vinyl acetate, acrylamide, and phenyl. Maleimide, maleimide, styrene bromide, tertiary butyl styrene, triallyl isocyanurate,
N-methylacrylamide, N,N'-dimethylacrylamide, N-methylmethacrylamide,
N,N'-dimethylmethacrylamide, N-methylolacrylamide, N-methylolmethacrylamide, N,N'-methylenebisacrylamide, N,N'-methylenebismethacrylamide,
Zinc acrylate, calcium acrylate, aluminum acrylate, zinc methacrylate, calcium methacrylate, diallyl phthalate prepolymer, triallyl isocyanurate prepolymer,
Examples include alkyl acrylates of epoxy resins. As the unsaturated monomer or prepolymer having one or more unsaturated bonds in the molecule, it is preferable to use one with a melting point of 60°C or higher, and the amount added is 100 parts by weight of the unsaturated polyester. 5 parts by weight to 100
Parts by weight are common. When using an unsaturated monomer or prepolymer with a melting point of less than 60°C, the melting point of the resin coated sand tends to decrease, so the amount added is 5 parts by weight per 100 parts by weight of unsaturated polyester. Parts by weight or less are preferred. One type of unsaturated monomer or prepolymer may be used alone, or two or more types may be used in combination. As the polymerization catalyst used in the present invention, organic peroxides are usually preferred, such as dicumyl peroxide, benzoyl peroxide, tertiary butyl perbenzoate, di-tertiary butyl perbenzoate, cumene hydroperoxide,
1,3-bis-(tert-butylperoxyisopropyl)benzene, 1,1-bis-(tert-butylperoxy)-3,3,5-trimethylcyclohexane, 2,5-dimethyl-(2,5
-dibenzoylperoxy)hexane, 2,2-
Bis-(4,4-di-tert-butylperoxycyclohexyl)propane, 2,5-dimethyl-2,5-di(tert-butylperoxy)-
Examples include hexyne-3,n-butyl-4,4-bis-(tertiarybutylperoxy)valerate, lauroyl peroxide, and cyclohexanone peroxide. If the amount of these organic peroxides is less than 0.5 parts by weight per 100 parts by weight of unsaturated polyester, sufficient curing properties will not be obtained, and if it exceeds 20 parts by weight, curing properties commensurate with the amount blended will not be obtained. It is preferably used in a range of 0.5 parts by weight to 20 parts by weight, and usually in a range of 1 part by weight to 10 parts by weight. These polymerization catalysts may be used alone or in combination of two or more. Magnesium oxide, zinc oxide, and calcium oxide are preferable in terms of their effects on the melting point of resin-coated sand and their cost. The amount of metal oxide added varies depending on the type of metal oxide, the softening point of the unsaturated polyester, and the melting point of the unsaturated monomer or prepolymer, but is usually from 1 part by weight to 100 parts by weight of the unsaturated polyester. It is considered to be within the range of 30 parts by weight. For example, magnesium oxide is 0.5 to 5 parts by weight, zinc oxide is 2 parts by weight.
A range of 15 parts by weight will almost achieve the objective.
These metal oxides may be used alone or in combination of two or more. The resin composition for binding foundry sand grains according to the present invention includes:
A lubricant, a curing accelerator, a polymerization inhibitor, a filler, a silane coupling agent, etc. may be included as necessary. As the lubricant, calcium stearate, zinc stearate, methylolamide, bisamide, etc. are used. Examples of curing accelerators include metal naphthenates such as cobalt naphthenate and cobalt octenoate, metal salts of octenoate, and amines. Examples of polymerization inhibitors include hydroquinone, parabenzoquinone,
2,5-diphenylparabenzoquinone, tolbenzoquinone, monotertiarybutylhydroquinone, etc. are used. As the filler, calcium carbonate, barium sulfate, aluminum hydroxide, clay, silica, talc, etc. are used. Examples of silane coupling agents include vinyltriethoxysilane, vinyl-tris-(β-methoxyethoxy)silane, γ-aminopropyltriethoxysilane, N-β-(aminoethyl)-γ-aminopropyltrimethoxysilane, vinyl Examples include trichlorosilane. When actually using the resin composition for binding foundry sand grains according to the present invention, the resin composition may be mixed in advance by an appropriate method, or each component may be added and mixed at the time of preparing the resin coated sand. Good too. Resin-coated sand is prepared by the semi-hot method, in which sand grains are coated with a resin using a solution of the resin composition dissolved in a suitable solvent, such as acetone, methyl ethyl ketone, toluene, benzene, or xylene, and then the solvent is evaporated and dried. This is done using a solvent-based hot melt method. The present invention will be explained below with reference to Examples. Parts are by weight. Example 1 7 moles of maleic anhydride, 3 moles of isophthalic acid,
6 moles of propylene glycol and 3 moles of glycerin are reacted by heating at 210℃ in an inert gas stream, and the softening point (measured by the ring and pole method, the same applies hereinafter) is 86.
An unsaturated polyester A having an acid value of 60 and a temperature of 60° C. was obtained. 100 parts of this unsaturated polyester, 30 parts of diallyl phthalate prepolymer, 2 parts of dicumyl peroxide.
1 part of silica sand, 1 part of tertiary butyl perbenzoate, 1 part of magnesium oxide, and 10 parts of zinc oxide were preheated to 160°C and 0.24 kg of the resin composition was mixed with 8 parts of silica sand.
By stirring for 5 minutes with Kg and a speed mixer manufactured by Enshu Tekko Co., Ltd., model NSC-1, coated sand in which the surface of the sand was uniformly coated with the resin composition was obtained. About this coated sand JACT
The fusion point and room temperature bending strength were measured based on the resin coated sand standard test method of (Casting Technology Promotion Association). The results are shown in Table 1. Comparative Example 1 Example 1 was prepared except that the metal oxides magnesium oxide and zinc oxide were removed from the resin composition of Example 1.
Resin-coated sand was obtained in the same manner as above. Table 1 shows the measurement results of the melting point and room temperature bending strength.

【衚】 実斜䟋  無氎マレむン酞モル、テレフタル酞モル、
グリセリンモル、氎玠化ビスプノヌルA3モ
ル、プロピレングリコヌル2.5モルを䞍掻性ガス
気流䞭で220℃に加熱反応させ軟化点100℃、酞䟡
65の䞍飜和ポリ゚ステルを埗た。この䞍飜和ポ
リ゚ステル100郚に、N′−メチレンビスアク
リルアミド10郚、ゞクミルパヌオキサむド郚、
酞化マグネシりム郚、酞化亜鉛郚を添加混合
した暹脂組成物0.24Kgを160℃に予熱したけい砂
Kgずずもにスピヌドミキサヌで分間撹拌する
こずにより、砂衚面に均䞀に暹脂組成物が被芆さ
れたレゞンコヌテツドサンドが埗られた。融着点
及び垞枩曲げ匷さの枬定結果を衚に瀺した。 比范䟋  実斜䟋の暹脂組成物から金属酞化物の酞化マ
グネシりムず酞化亜鉛を陀いたほかは、実斜䟋
ず同じ方法でレゞンコヌテツドサンドを埗た。 融着点及び垞枩曲げ匷さの枬定結果を衚に瀺
した。 実斜䟋  実斜䟋ず同䞀の材料を甚いお埗られ、軟化点
115℃、酞䟡55の䞍飜和ポリ゚ステル100郚に、
N′−メチレンビスアクリルアミド10郚、ゞ
クミルパヌオキサむド郚、酞化マグネシりム
郚、酞化亜鉛郚を添加混合した暹脂組成物0.24
Kgを160℃に予熱したけい砂Kgずずもにスピヌ
ドミキサヌで分間撹拌するこずにより、砂衚面
に均䞀に暹脂組成物が被芆されたレゞンコヌテツ
ドが埗られた。 融着点及び垞枩曲げ匷さを衚に瀺す。 比范䟋  実斜䟋ず同䞀の材料を甚いお埗られ、軟化点
115℃、酞䟡55の䞍飜和ポリ゚ステル100郚に
N′−メチレンビスアクリルアミド10郚、ゞクミ
ルパヌオキサむド郚、超埮粒子無氎珪酞商品
名アロ゚ゞル200、日本アロ゚ゞル瀟補郚を
添加混合した暹脂組成物0.24Kgを160℃に予熱し
たけい砂Kgずずもにスピヌドミキサヌで分間
撹拌するこずにより、砂衚面に均䞀に暹脂組成物
が被芆されたレゞンコヌテツドサンドが埗られ
た。融着点及び曲げ匷さの枬定結果を衚に瀺し
た。 本比范䟋のように金属酞化物ずしお超埮粒子無
氎珪酞を䜿甚した堎合には、実斜䟋のように酞
化マグネシりム及び酞䟡亜鉛を䜿甚した堎合に比
べお暹脂被芆砂の融着点が䜎いこずが瀺される。 実斜䟋  実斜䟋ず同じ配合比で、その合蚈が0.24Kgに
なるよう䞍飜和ポリ゚ステル、N′−メチ
レンビスアクリルアミド、ゞクミルパヌオキサむ
ド、酞化マグネシりム、酞化亜鉛をそれぞれ別々
に秀量、160℃に予熱したけい砂Kgにスピヌド
ミキサヌで撹拌しながら添加混合し、合蚈分間
の撹拌により砂衚面に均䞀に暹脂組成物が被芆さ
れたレゞンコヌテツドサンドが埗られた。 融着点及び垞枩曲げ匷さの枬定結果を衚に瀺
したが実斜䟋の暹脂組成物を甚いお埗られたレ
ゞンコヌテツドサンドの特性ずほが同じである。
[Table] Example 2 7 moles of maleic anhydride, 3 moles of terephthalic acid,
3 moles of glycerin, 3 moles of hydrogenated bisphenol A, and 2.5 moles of propylene glycol were reacted by heating at 220℃ in an inert gas stream to obtain a softening point of 100℃ and an acid value.
65 unsaturated polyester B was obtained. To 100 parts of this unsaturated polyester, 10 parts of N,N'-methylenebisacrylamide, 3 parts of dicumyl peroxide,
By stirring 0.24 kg of a resin composition prepared by adding and mixing 1 part of magnesium oxide and 5 parts of zinc oxide with 8 kg of silica sand preheated to 160°C using a speed mixer, the resin composition was uniformly coated on the sand surface. Resin coated sand was obtained. Table 2 shows the measurement results of the melting point and room temperature bending strength. Comparative Example 2 Example 2 was prepared except that the metal oxides magnesium oxide and zinc oxide were removed from the resin composition of Example 2.
Resin-coated sand was obtained in the same manner as above. Table 2 shows the measurement results of the melting point and room temperature bending strength. Example 3 Obtained using the same material as Example 2, softening point
115℃, 100 parts of unsaturated polyester with acid value 55,
10 parts of N,N'-methylenebisacrylamide, 3 parts of dicumyl peroxide, 1 part of magnesium oxide
0.24 parts of resin composition mixed with 5 parts of zinc oxide
By stirring for 5 minutes with 8 kg of silica sand preheated to 160° C. using a speed mixer, a resin coated resin composition was obtained in which the surface of the sand was uniformly coated with the resin composition. Table 2 shows the melting point and room temperature bending strength. Comparative Example 3 Obtained using the same material as Example 2, softening point
115℃, 100 parts of unsaturated polyester with acid value 55, N,
Silica sand prepared by preheating 0.24 kg of a resin composition containing 10 parts of N'-methylenebisacrylamide, 3 parts of dicumyl peroxide, and 1 part of ultrafine anhydrous silicic acid (trade name Aloesil 200, manufactured by Nippon Aloesil Co., Ltd.) to 160°C. By stirring with a speed mixer for 5 minutes with 8 kg, resin coated sand in which the resin composition was uniformly coated on the sand surface was obtained. Table 2 shows the measurement results of the fusion point and bending strength. When ultrafine silicic anhydride is used as the metal oxide as in this comparative example, the fusion point of the resin-coated sand is lower than when magnesium oxide and zinc oxide are used as in Example 2. is shown. Example 4 Using the same blending ratio as Example 2, unsaturated polyester B, N,N'-methylenebisacrylamide, dicumyl peroxide, magnesium oxide, and zinc oxide were each weighed separately so that the total was 0.24 kg. The mixture was added to 8 kg of silica sand preheated to 160° C. while stirring using a speed mixer, and by stirring for a total of 5 minutes, resin coated sand in which the resin composition was uniformly coated on the sand surface was obtained. The measurement results of the melting point and room temperature bending strength are shown in Table 2, and the properties are almost the same as those of the resin coated sand obtained using the resin composition of Example 2.

【衚】 本発明になる鋳物砂粒結合甚暹脂組成物を甚い
たレゞンコヌテツドサンドは、埓来のポリ゚ステ
ルレゞンコヌテツドサンドの融着点を高め、プ
ノヌルレゞンコヌテツドサンドず同等の鋳型造圢
性を有するものである。曎に、レゞンコヌテツド
サンド調合課皋もプノヌルレゞンコヌテツドサ
ンドの堎合ず同じでよく、䜕ら蚭備の改造を必芁
ずしない。
[Table] Resin-coated sand using the resin composition for bonding foundry sand grains according to the present invention has a higher melting point than conventional polyester resin-coated sand and has mold formability equivalent to that of phenol resin-coated sand. It is something. Furthermore, the resin-coated sand preparation process may be the same as that for phenol resin-coated sand, and no modification of equipment is required.

Claims (1)

【特蚱請求の範囲】[Claims]  垞枩で固䜓の䞍飜和ポリ゚ステル、分子䞭に
䞀個以䞊の䞍飜和結合を有する䞍飜和単量䜓又は
予備重合䜓、重合甚觊媒ならびに酞化マグネシり
ム、酞化亜鉛および酞化カルシりムから遞ばれる
金属酞化物の皮又は皮以䞊を含有しおなる鋳
物砂粒結合甚暹脂組成物。
1. An unsaturated polyester that is solid at room temperature, an unsaturated monomer or prepolymer having one or more unsaturated bonds in the molecule, a polymerization catalyst, and a metal oxide selected from magnesium oxide, zinc oxide, and calcium oxide. A resin composition for binding foundry sand grains containing one or more species.
JP19485081A 1981-12-02 1981-12-02 Resin composition for binding of molding sand grains Granted JPS5897461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19485081A JPS5897461A (en) 1981-12-02 1981-12-02 Resin composition for binding of molding sand grains

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19485081A JPS5897461A (en) 1981-12-02 1981-12-02 Resin composition for binding of molding sand grains

Publications (2)

Publication Number Publication Date
JPS5897461A JPS5897461A (en) 1983-06-09
JPH0153141B2 true JPH0153141B2 (en) 1989-11-13

Family

ID=16331313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19485081A Granted JPS5897461A (en) 1981-12-02 1981-12-02 Resin composition for binding of molding sand grains

Country Status (1)

Country Link
JP (1) JPS5897461A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009067918A (en) * 2007-09-14 2009-04-02 Showa Highpolymer Co Ltd Unsaturated polyester resin composition
CN104525838A (en) * 2014-12-01 2015-04-22 繁昌县恒鑫汜蜊零郚件有限公叞 Modeling molding sand for gray cast iron and preparation method thereof
CN104525843A (en) * 2014-12-01 2015-04-22 繁昌县恒鑫汜蜊零郚件有限公叞 Shock molding facing sand and preparation method thereof
CN104525839A (en) * 2014-12-01 2015-04-22 繁昌县恒鑫汜蜊零郚件有限公叞 Waste quartz glass heat-resisting casting molding sand and preparation method thereof
CN104525844A (en) * 2014-12-01 2015-04-22 繁昌县恒鑫汜蜊零郚件有限公叞 Molding sand for hand molding and preparation method thereof
CN104525835A (en) * 2014-12-01 2015-04-22 繁昌县恒鑫汜蜊零郚件有限公叞 Molding sand for conformal high pressure modeling and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662644A (en) * 1979-10-26 1981-05-28 Nissan Motor Co Ltd Resin composition for binding of molding sand grains
JPS56109136A (en) * 1980-02-01 1981-08-29 Nissan Motor Co Ltd Production of resin coated sand for molding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662644A (en) * 1979-10-26 1981-05-28 Nissan Motor Co Ltd Resin composition for binding of molding sand grains
JPS56109136A (en) * 1980-02-01 1981-08-29 Nissan Motor Co Ltd Production of resin coated sand for molding

Also Published As

Publication number Publication date
JPS5897461A (en) 1983-06-09

Similar Documents

Publication Publication Date Title
JPH0153141B2 (en)
JP2509725B2 (en) Method for producing benzyl ether type resin
US4246165A (en) Preparation of coated casting sand using unsaturated polyester resin as binder
JPH0118818B2 (en)
JPH0134697B2 (en)
US5177140A (en) Material for mold and process of forming mold by using this material
US4366269A (en) Resin coated foundry sand using crystalline unsaturated polyester as binder
US4417011A (en) Resin composition for bonding foundry sand
JPS6364259B2 (en)
GB2053932A (en) Resin composition for bonding foundry sand
JPS60221146A (en) Resin-coated sand for casting
JPH02235543A (en) Resin composition for binding molding sand grain
KR860002160B1 (en) A resin composite to unite cast sand
KR860000337B1 (en) Composition of refractory mould
JP4122545B2 (en) Binder composition for foundry sand
JPS5927671B2 (en) Manufacturing method for resin-coated sand
NO823044L (en) HARDWARE MATERIAL AND USE THEREOF
JP3094434B2 (en) Method for producing concrete composition and polymer concrete
JPS588937B2 (en) Resin composition for bonding foundry sand grains
JPS61126141A (en) Molding composition
KR830002156B1 (en) Resin composition for molding sand
JPH02135208A (en) Resin composition and concrete composition
JPH051823B2 (en)
JPS608312A (en) Thermosetting resin composition
JPS58189217A (en) Novolak phenolic resin for use in resin-coated sand