JPS59117118A - Stage - Google Patents

Stage

Info

Publication number
JPS59117118A
JPS59117118A JP57226010A JP22601082A JPS59117118A JP S59117118 A JPS59117118 A JP S59117118A JP 57226010 A JP57226010 A JP 57226010A JP 22601082 A JP22601082 A JP 22601082A JP S59117118 A JPS59117118 A JP S59117118A
Authority
JP
Japan
Prior art keywords
stage
photomask
objective lens
inspection
stages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57226010A
Other languages
Japanese (ja)
Inventor
Mineo Nomoto
峰生 野本
Susumu Aiuchi
進 相内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57226010A priority Critical patent/JPS59117118A/en
Publication of JPS59117118A publication Critical patent/JPS59117118A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To realize precision focusing by a method wherein a holding table which holds a photomask is provided on X-Y-Z-theta stages and this holding table is supported by fine displacement devices at a plurality of supporting points. CONSTITUTION:The Y stage 3, the X stage 4, the Z stage 22, the theta stage 23 and a mask holder (holding table) 24 are provided on a stage base 2. The photomask 1 is focused on the object lenses 9, 10 by the Z stage and its inclination is adjusted by the theta stage. Then the photomask 1 is scanned along the X-Y directions by the X-Y stages and tested by pattern sensors 11, 12 and a comparison circuit 15. At this time, each one of fine displacement devices 30, which are provided to a plurality of supporting points, is driven to be adjusted and the movement error of the X-Y stages and the discrepancy of focucing due to the processing error of the photomask are absorbed. Thus, by providing the fine displacement devices which have resolution of approximately 0.1mum, focusing of less than + or -0.2mum precision can be realized.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はX−Y−Z−〇に移動するステージに関するも
ので、特に半導体の検査装置や加工装置のステージとし
て用いられるものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a stage that moves in X-Y-Z-〇, and is particularly used as a stage for semiconductor inspection equipment and processing equipment.

〔従来技術〕[Prior art]

本発明を、脅雑高度で且つ高精度な半導体装置である、
LSIホトマスク外観自動検査装置を例にとり、第1図
〜第3図に従って説明する・被検査物体であるホトマス
ク1は、ステージベース2、Yステージ3、Xステージ
4から構成されるX、Yステージ上に裁置されている。
The present invention is a semiconductor device with a high degree of threat and high precision.
Taking an automatic LSI photomask appearance inspection device as an example, the explanation will be given according to FIGS. 1 to 3. A photomask 1, which is an object to be inspected, is placed on an has been adjudicated.

Yステージ3、Xステージ4には外部1駆動装置のY軸
部動部5とX@駆動部6に連結してあ・シそれぞれY方
向およびX方向に移動できる。XYステージの移動量は
Y軸測長器7とX軸測長器8によって測定する構造とし
ている。ホトマスク1の上方には、ホトマスク上のパタ
ーンを披大投影する左対物レンズ9と石対物レンズ10
02個のレンズが配置されておシ、各々の対物レンズの
結像面に右パターンセンサ11と右パターンセンサ12
が設置されている。左パターンセンサ11と左パターン
信号2値化回路16右パターンセンサ12と右パターン
信号21:=1と回路14は連結しておシ、左パターン
化号2Ilji化回路10と右パターン信号2値化回路
14の出力信号は、信号比較回路15に入力する二:9
になっており信号比較回路15の出力はマイクロプロセ
ッサ18に導かれる。
The Y stage 3 and the X stage 4 are connected to a Y-axis moving section 5 and an X @ drive section 6 of an external drive device so that they can move in the Y direction and the X direction, respectively. The amount of movement of the XY stage is measured by a Y-axis length measuring device 7 and an X-axis length measuring device 8. Above the photomask 1, there is a left objective lens 9 that projects the pattern on the photomask and a stone objective lens 10.
02 lenses are arranged, and a right pattern sensor 11 and a right pattern sensor 12 are placed on the imaging plane of each objective lens.
is installed. The left pattern sensor 11, the left pattern signal binarization circuit 16, the right pattern sensor 12, the right pattern signal 21:=1 and the circuit 14 are connected, and the left pattern code 2Ilji conversion circuit 10 and the right pattern signal binarization The output signal of the circuit 14 is input to the signal comparison circuit 15 at a ratio of 2:9.
The output of the signal comparison circuit 15 is led to the microprocessor 18.

Y軸測長器7とX軸測長器8は座標測長回路16に連結
していて、座標測長回路16はマイクロプロセッサ18
に連結している。マイクロプロセッサ1BはXY駆動制
御部17にも連結しており・XY駆舶制側1部17を通
して、X軸部動部6、Y軸、駆動部5を制御できる。
The Y-axis length measuring device 7 and the X-axis length measuring device 8 are connected to a coordinate length measuring circuit 16, and the coordinate length measuring circuit 16 is connected to a microprocessor 18.
is connected to. The microprocessor 1B is also connected to the XY drive control section 17 and can control the X-axis section 6, Y-axis, and drive section 5 through the XY drive control section 17.

上記した従来のホトマスク検査装置では、第2図に示す
ホトマスク1のパターンを2つのパターンの比較で検査
する。すなわち、ホトマスク1には、LSIの回路パタ
ーンが鞭り返し且つ規則正しく配列しているので、隣り
きうチップ20とチップ21の同一場所のパターンを比
較し違いがあれば欠陥と判定する。チップ20のパター
ンは左対物レンズ9左パターンセンサ11によって画像
信号に変換され、左パターン信号2値化回路16で論理
レベルSS □ //、1λ1〃の左ディジタル画像信
号となる。チップ21のパターンは右対物レンズ101
右パターンセンサ12によって画像信号に変換され、右
パターン信号2値化回路14で論理レベルSS O#1
1S 11Fの右ディジタル画像信号となる。上記した
左および右のディジタル画像信号は信号比較回路15で
比較され違いがあればマイクロプロセッサ18に信号を
送り出す。
In the conventional photomask inspection apparatus described above, the pattern of the photomask 1 shown in FIG. 2 is inspected by comparing two patterns. That is, since the LSI circuit patterns are arranged upside down and regularly on the photomask 1, the patterns at the same location on the adjacent chips 20 and 21 are compared and if there is a difference, it is determined to be a defect. The pattern of the chip 20 is converted into an image signal by the left objective lens 9 and the left pattern sensor 11, and the left pattern signal binarization circuit 16 converts it into a left digital image signal of logic level SS□//, 1λ1〃. The pattern of the chip 21 is the right objective lens 101
It is converted into an image signal by the right pattern sensor 12, and converted to a logic level SS O#1 by the right pattern signal binarization circuit 14.
This is the right digital image signal of 1S 11F. The left and right digital image signals described above are compared by a signal comparison circuit 15, and if there is a difference, a signal is sent to a microprocessor 18.

マイクロプロセッサ18は違いが欠陥によるものか否か
を判定して、欠陥であればプリンタ19に欠陥であるこ
とを出力する。上記検査はホトマスク1を第2図の矢印
のように動かして順次全面を検査する。マイクロプロセ
ッサ18は第2図の矢印のようにホトマスク1を移動さ
せるべくXY駆動制御部17を通して、Y軸部動部5、
X軸部動部6を制御する。座標測長回路16はホトマス
ク1の検査位置を測定しており、欠陥が他見されだホト
マスクの座標はマイクロプロセッサ18を通してプリン
タ19に出力されるっプリンタ19のかわりに磁気テー
プあるいは磁気カードに欠陥の位置が記録される場舒も
ある。
The microprocessor 18 determines whether the difference is due to a defect, and if so, outputs a message to the printer 19 indicating the defect. In the above inspection, the entire surface is sequentially inspected by moving the photomask 1 in the direction of the arrow in FIG. The microprocessor 18 controls the Y-axis moving unit 5,
Controls the X-axis moving section 6. The coordinate measurement circuit 16 measures the inspection position of the photomask 1, and if a defect is detected, the coordinates of the photomask are outputted to the printer 19 through the microprocessor 18. In some cases, the location of the location is recorded.

上記検査装置はホトマスク1の微小な欠陥、すなわち1
〜2μmの欠陥を検出する装置である・このためこの種
の装置に用いられる検査ステージも高い走行a度と、剛
性の高い構造にする心太がある。上記検査装置の検査ス
テージとして用いられていた、従来技術のステージの断
面図を第6図に示す。ホトマスク1をXYに走査するス
テーシヘース2、Xステージ3、Xステージ4から構成
されるXYステージ、ホトマスク1のパターン面を対物
レンズ9.10にa fせするZステージ22、ホトマ
スク1をXYステージに鏑きばせするθステージ23、
ホトマスク1を保持するマスクホルダ24、さらに瑛査
中のマスクを対物レンズ9.10にピント舒せするため
、板バネ25とスペーサ26で保持したマスクホルダ2
4をネジ2フ1回転して上下するピントばせ部から、!
:+S rAこれる。又ステージ内部には、ホトマスク
1を透過照明する、左右照明レンズ28.29が配して
あり、ホトマスク1の照明部の上方には、左、右対物レ
ンズ9.10が設置されている。この左右対物レンズ9
.10の名々の先端には、ノズルが形成されておりエア
が供給できる構造となっている。これはホトマスク1と
対物レンズ9.10のギャップをエア・マイクロメーク
の原理を用いて検出するものである。
The above inspection device detects minute defects in the photomask 1, that is, 1
It is a device that detects defects of ~2 μm.For this reason, the inspection stage used in this type of device also has a high running degree and a core thickness that has a highly rigid structure. FIG. 6 shows a cross-sectional view of a conventional stage used as an inspection stage in the above-mentioned inspection apparatus. An XY stage consisting of a stationary stage 2, an X stage 3, and an X stage 4 that scans the photomask 1 in the XY direction, a Z stage 22 that aligns the pattern surface of the photomask 1 with the objective lens 9.10, and a Z stage 22 that places the photomask 1 on the XY stage. The θ stage 23,
A mask holder 24 that holds the photomask 1, and a mask holder 2 that is held by a leaf spring 25 and a spacer 26 in order to focus the mask being scanned on the objective lens 9.10.
4 from the focus holder that moves up and down by turning 2 screws once.
:+S rA colle. Further, inside the stage, left and right illumination lenses 28 and 29 are arranged to transmit and illuminate the photomask 1, and above the illumination section of the photomask 1, left and right objective lenses 9 and 10 are installed. This left and right objective lens 9
.. A nozzle is formed at the tip of each of the nozzles 10 and has a structure that allows air to be supplied. This detects the gap between the photomask 1 and the objective lens 9, 10 using the principle of air micromake.

上記の構成において、検査ステージの創作を説明する。The creation of the inspection stage in the above configuration will be explained.

作業者がホトマスク1をマスクホルダ24に設置すると
、Zステージ22によシホトマスク1のパターン面を対
物レンズ9.10にピント汗せする0次にホトマスク1
のパターンをXYステージの送りに正しく一致させるた
め、θステージ23ケ用いて傾き合せをする。これで第
2[ツ1に示す矢印の厘序で検査が開始されるが、ホト
マスク1はうねりがあり、XYステージの直進連動)誤
差ヤ、マスクホルダ24の加工誤差も加わるので、検差
中対物レンズ9.10にピントを仕せる必要がある。こ
のだめ検査中ホストマスクと対物レンズのギヤ、プをエ
アマイクロメータの原理を用いて検出し、ネジ27を、
駆動してピント舒せをしなから検査を行なう;第41.
pl gこピントばせ方法を示す、介在対物レンズ9の
? L O(=こピントが合っており、右対物レンズ1
0のピント面?noにもピント合せをするためネジ27
を回してマスクホルダ24を傾ける。しかし板バネ25
を支点としてマスクホルダ24を傾ける構造であるため
、左対物レンズ9は91,1− fIL(+だけピント
が狂うことになる。同様に左対物レンズ9のピント面i
?LQに針せようとすると、右対物レンズ10がrRl
 −?Roピントが狂う。この方式では、θステージも
上下しないと正′#カビントハせけ出きない、従来のこ
の方法では、1〜2μmの欠陥を検出するため、ピント
合ぜ精度も1 pm程度で劇<、上記の方法でも、ピン
)Liせしながらスデージケ走査(7、欠陥を検出する
ことができた。
When the operator places the photomask 1 on the mask holder 24, the Z stage 22 focuses the patterned surface of the photomask 1 onto the objective lens 9.10.
In order to correctly match the pattern with the feed of the XY stage, 23 θ stages are used to align the inclinations. Now, the inspection will start in the order of the arrows shown in the second arrow 1, but since the photomask 1 has undulations, errors caused by the linear movement of the XY stage, and machining errors of the mask holder 24 are also added, the It is necessary to focus the objective lens 9.10. During this inspection, the gears and pulls of the host mask and objective lens are detected using the principle of an air micrometer, and the screw 27 is
41. Perform inspection after driving and focusing; 41st.
pl g Is the intervening objective lens 9 showing the focusing method? L O (= This is in focus, right objective lens 1
0 focus plane? Screw 27 to focus on no.
Turn to tilt the mask holder 24. However, leaf spring 25
Since the mask holder 24 is tilted using the fulcrum, the left objective lens 9 will be out of focus by 91,1-fIL(+.
? When trying to point the needle to LQ, the right objective lens 10 is rRl.
−? Ro focus goes crazy. In this method, the θ stage must also be moved up and down to obtain a correct result.In this conventional method, defects of 1 to 2 μm are detected, so the focusing accuracy is only about 1 pm, which is less than the above. Even with the method, it was possible to detect defects using Sudejike scanning (7) while scanning the pin.

しかしAを近ではLSIパターンの微細化に伴い、1μ
m以下の欠陥、さらには05μm以下の欠陥をも検出す
る必要が生じてい、75.このため隔い解像力のI/ン
ズ例えばN A・19、焦点法f〆02μmの高′MI
Gi レンズを用いることが必要である。
However, with the miniaturization of LSI patterns, A has become smaller than 1 μm.
It has become necessary to detect defects smaller than 0.05 μm, and even defects smaller than 0.05 μm. For this reason, the distance resolution I/lens, for example, NA・19, focusing method f〆02μm high'MI
It is necessary to use a Gi lens.

上記第4図のピント合せ装置では、左右の対物レンズに
、0.2μm以内のピント会せをするだめには、XYス
テージの直進誤差は1μm以下、マスクホルダの加工誤
差も1μm以下に仕上げ、2ステージやθステージも、
検査中完全に静示しネジ27の送りも01μm′8度に
しなければならない。さらに、ホトマスクにもうね9が
あってはならない。実際にはこのようなステージ精度を
保つことは、不可能に近く、上記のようなピン)&せ装
置を裁置したステージでは、1μm以下の欠陥検出装置
に適用出来ない欠点がある。
In the focusing device shown in Fig. 4 above, in order to focus the left and right objective lenses within 0.2 μm, the linear error of the XY stage should be 1 μm or less, and the machining error of the mask holder should be 1 μm or less. 2 stage and θ stage as well.
During the inspection, it must be completely static and the feed of the screw 27 must be 01 μm'8 degrees. Furthermore, the photomask must also be free of ridges 9. In reality, it is almost impossible to maintain such stage accuracy, and a stage equipped with a pin and twist device as described above has the disadvantage that it cannot be applied to a defect detection device of 1 μm or less.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上述した従来kWの欠点を除去し、高解
像レンズに精密なピント合せを可能にし、X−Y−Z−
θに移動出来るステージを提供しようとするものである
The purpose of the present invention is to eliminate the above-mentioned drawbacks of the conventional kW, enable precise focusing with a high-resolution lens, and
The purpose is to provide a stage that can move in θ.

〔発明の概要〕[Summary of the invention]

すなわち本発明は、上記目的達成のため、XYステージ
上にθステージ、θステージ上にθステージ、θステー
ジ上にホトマスクを保持する保持台を設け、該保持台を
複数箇所で微小に上下移動する複数の微小変位手段を設
けることを特徴とする。
That is, in order to achieve the above object, the present invention provides a θ stage on the XY stage, a θ stage on the θ stage, and a holding stand for holding a photomask on the θ stage, and moves the holding stand slightly up and down at multiple locations. It is characterized by providing a plurality of minute displacement means.

〔発明の実施例〕[Embodiments of the invention]

以下本発明のステージを第5図を用いて説明する。第5
図は第3図に示しだ従来例のネジ27を除き、微小変位
部30を追加したもので、その他の構成と動作は第1図
に示したものと同じである。
The stages of the present invention will be explained below with reference to FIG. Fifth
The figure shows the conventional example shown in FIG. 3, except for the screw 27, with the addition of a minute displacement part 30, and the other configurations and operations are the same as those shown in FIG. 1.

次に従来装置と異なる部分について述べる。Next, we will discuss the differences from the conventional device.

ホトマスクをマスクホルダ24に設置すると、θステー
ジ22によシ対物レンズのピント向にl[l gせする
。ホトマスクのパターンをX、Yステージの送りに正し
く一致させるため、θステージ26を用いて傾き陰せを
する。次にマスクホルダ24の下に配しである複数の微
小変位部30を独立に駆動してピント合せを行なう。第
6図を用いてピント合せ方法を説明する。右対物レンズ
10のピントはずれ量が△?Rs左対物レンズ9のピン
トはずれ≠が△2Lの時両者のピントが同時に一致する
だめの、右側微小変位装置の移動量Z R1左側微小変
位装置の移動iZLは ZR,=(i+−)△1R−−△rL   (4)S 
    S 、I            t ZL=−甘△y R+ (1+ s )△グL(5)と
なる。
When the photomask is placed on the mask holder 24, the θ stage 22 moves it toward the focus of the objective lens. In order to correctly match the pattern of the photomask with the feed of the X and Y stages, the θ stage 26 is used to shade the inclination. Next, a plurality of minute displacement parts 30 arranged under the mask holder 24 are independently driven to perform focusing. The focusing method will be explained using FIG. 6. Is the amount of focus of the right objective lens 10 △? Rs Movement amount Z of the right micro-displacement device so that both of them are in focus at the same time when the out-of-focus of the left objective lens 9≠ is △2L R1 Movement iZL of the left micro-displacement device is ZR, = (i + -) △ 1R --△rL (4)S
S , I t ZL=-sweet △y R+ (1+ s ) △gL (5).

右対物レンズ10がホトマスク1の最も右の端を検査し
ている時のX−YステージのY座棺f yOlとし、そ
のときのmの値がmoであれば・、X YステージのY
座標の任意の位置yとmは m=mo+(y−yo)  (6)で表わされる。
When the right objective lens 10 is inspecting the rightmost end of the photomask 1, the Y position of the X-Y stage is fyOl, and if the value of m at that time is mo, then
Arbitrary coordinate positions y and m are expressed as m=mo+(y-yo) (6).

moとyoは一定値であるので予め測定しておけばyと
mは(6)で表わされる一次の関係にあシ、従って(4
)、(5)式で表わサレルZR,、Z L ハ△f’R
1△fL、)・、Sを測定すれば求められる。
Since mo and yo are constant values, if they are measured in advance, y and m will have a linear relationship expressed by (6), and therefore (4
), (5) Salel ZR,, Z L Ha△f'R
It can be found by measuring 1ΔfL, )·, S.

上記した、微小変位手段としては、ピエゾ素子やγ桁体
の圧力変化を応用した微小変位手段や、くさび作用とテ
コを用いた組手機構など01μm程度の分解1巨を備え
たアクチュエータを用いる。
As the above-mentioned minute displacement means, an actuator with a resolution of about 01 μm is used, such as a minute displacement means applying pressure changes of a piezo element or a gamma digit body, or a kumite mechanism using a wedge action and a lever.

又マスクホルダを支持する手段には板バネヶ用い、マス
クホルダが、微小に移動する時に績ずれしないようにし
た。
In addition, a plate spring is used as a means for supporting the mask holder, so that the mask holder does not shift when slightly moved.

上記した様に、xly、z、θに移動するスデージ上に
、01μIn程度の分解能を備えた微小変位装置を配す
ることにより、高解像の対物レンズが使用出来、10μ
m程度のうねりを持つホトマスクに対し±0.2μm以
内のピン) Bせか可能となった。
As mentioned above, by placing a minute displacement device with a resolution of about 01 μIn on the stage that moves in xly, z, and θ, a high-resolution objective lens can be used, and
For photomasks with waviness of about m, it is now possible to create pins within ±0.2 μm.

〔発明の効果〕〔Effect of the invention〕

上記した本発明によればLSIホトマスク外観、検査装
置等において従来1μm程度のピント汗せイ青度しかイ
尋られず、このだめ1〜2μm4呈1政の欠陥をTr英
査するのが限界であったものを、焦点深度子02μnl
の高昇イ像レンズが使用量−*−11μn〕以下の微小
な欠陥も検出可能となった。
According to the present invention described above, conventionally, in LSI photomask appearance, inspection equipment, etc., only the focus blueness of about 1 μm has been examined, and the limit is that it is possible to inspect defects of 1 to 2 μm 4 x 1. What was there, depth of focus 02 μnl
It is now possible to detect minute defects of less than -*-11 .mu.n using the high-elevation image lens.

又本発明は半4仲の検査、加工、測定装置にとどまるこ
となく、高精度なステージとして、一般の工作オ傅械や
、産票機械のステージとしても第11用することが出来
る。
Furthermore, the present invention is not limited to semi-four-way inspection, processing, and measurement equipment, but can also be used as a high-precision stage for general machining machines and production slip machines.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はLSIホトマスク検査装置の一例を示す十穿成
図、力2図はL S I 7i: )マスクとその検五
順序を示す平面図、第6図は第1図のLSIホトマスク
検査装置に使用される従来のステージの概略間、第4図
は従来の焦点片わせを説明する図、第5図は本発明の一
実施例のステージの構成概略図、第6図は本発明のステ
ージによる焦点片わぜの説明図である。 1・・・・・・ホトマスク 2・・・・・・ステージベース 6・・・・・・Yステージ 4・・・・・・Xステージ 22・・・・・・Xステージ 23・・・・・・θステージ 24・・・・・・マスクホルダ 25・・・・板バネ 26・・・・・・スペーサ 30・・・・・・微小変位装置 第1図 ノq ノ 8 オ?図
Figure 1 is a ten-hole diagram showing an example of an LSI photomask inspection device, Figure 2 is a plan view showing an LSI 7i mask and its inspection order, and Figure 6 is the LSI photomask inspection device shown in Figure 1. 4 is a diagram illustrating conventional focus separation, FIG. 5 is a schematic diagram of the configuration of a stage according to an embodiment of the present invention, and FIG. 6 is a diagram showing a stage according to the present invention. FIG. 1...Photomask 2...Stage base 6...Y stage 4...X stage 22...X stage 23...・θ stage 24...Mask holder 25...Plate spring 26...Spacer 30...Minute displacement device Fig. 1 No.q No.8 O? figure

Claims (1)

【特許請求の範囲】[Claims] 1 被stM U物体を1個又は複数の撮像装置で上記
観察物体を観察し、被観察物体を移動させることによっ
て、上記観察物体を加工、検査、測定する装置のステー
ジにおいて、水平に移動する手段の上に上下に移動する
手段、上下に移動する手段の上に水平に回転移研Iする
手段を具備し°、上記水平に回転移動する手段の上に被
観察物体を保持する保持台と、該保持台を複数箇所で微
小に上下移動する複数の微小変位手段を備えたことを特
徴とするステージ。
1 means to horizontally move the observed object on a stage of a device that processes, inspects, and measures the observed object by observing the observed object with one or more imaging devices and moving the observed object. a holding table for holding an object to be observed on top of the means for rotating and moving horizontally; A stage comprising a plurality of minute displacement means for minutely moving the holding table up and down at a plurality of locations.
JP57226010A 1982-12-24 1982-12-24 Stage Pending JPS59117118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57226010A JPS59117118A (en) 1982-12-24 1982-12-24 Stage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57226010A JPS59117118A (en) 1982-12-24 1982-12-24 Stage

Publications (1)

Publication Number Publication Date
JPS59117118A true JPS59117118A (en) 1984-07-06

Family

ID=16838370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57226010A Pending JPS59117118A (en) 1982-12-24 1982-12-24 Stage

Country Status (1)

Country Link
JP (1) JPS59117118A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142292A (en) * 2005-11-22 2007-06-07 Advanced Mask Inspection Technology Kk Substrate inspection apparatus
JP2009105439A (en) * 2009-02-03 2009-05-14 Advanced Mask Inspection Technology Kk Substrate inspection apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142292A (en) * 2005-11-22 2007-06-07 Advanced Mask Inspection Technology Kk Substrate inspection apparatus
JP2009105439A (en) * 2009-02-03 2009-05-14 Advanced Mask Inspection Technology Kk Substrate inspection apparatus

Similar Documents

Publication Publication Date Title
JP5112650B2 (en) Method and system for determining drift of the position of a light beam relative to a chuck
TWI444631B (en) A detection device, a detection method and a recording medium
JP2015232549A (en) Inspection method, template board, and focus offset method
US7218399B2 (en) Method and apparatus for measuring optical overlay deviation
CN107450288A (en) Patterning device, the method that substrate is set and the method for manufacturing article
JPS59119204A (en) Mark position detecting method
KR20010062041A (en) Inspection apparatus and method
JPS59117118A (en) Stage
JP2007305696A (en) Accuracy measuring method of positioning apparatus
JPH0194631A (en) Wafer prober
JPH01282829A (en) Wafer prober
JP2563589B2 (en) Foreign matter inspection device
JP3940819B2 (en) Semiconductor wafer surface shape measuring apparatus and surface shape measuring method
CN106841228B (en) Dust detection mechanism
JPH07243823A (en) Pattern tester
JP2009177166A (en) Inspection device
JPS59155919A (en) Plane locationing device
TWI503536B (en) The method of inspecting the surface state of the flat substrate and the surface condition checking device of the flat substrate
JPS62272107A (en) Inspecting method for packaging component
JPH01286324A (en) Wafer prober
JP2665979B2 (en) Prober needle point measuring device
JPS61138103A (en) Inspection device
JPS63189909A (en) Positioning device for substrate
JPS6244852B2 (en)
JPH0244365B2 (en)