JPH0244365B2 - - Google Patents

Info

Publication number
JPH0244365B2
JPH0244365B2 JP57168314A JP16831482A JPH0244365B2 JP H0244365 B2 JPH0244365 B2 JP H0244365B2 JP 57168314 A JP57168314 A JP 57168314A JP 16831482 A JP16831482 A JP 16831482A JP H0244365 B2 JPH0244365 B2 JP H0244365B2
Authority
JP
Japan
Prior art keywords
stage
photomask
measured
mounting table
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57168314A
Other languages
Japanese (ja)
Other versions
JPS5958825A (en
Inventor
Mineo Nomoto
Susumu Aiuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57168314A priority Critical patent/JPS5958825A/en
Publication of JPS5958825A publication Critical patent/JPS5958825A/en
Publication of JPH0244365B2 publication Critical patent/JPH0244365B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】 本発明は、LSI検査装置をはじめ、半導体製品
の加工、検査、その他高精度を必要とする精密機
械類等の移動装置として好適な測定誤差を少なく
する機能を備えた移動装置に関するものである。
[Detailed Description of the Invention] The present invention has a function to reduce measurement errors and is suitable for moving equipment such as LSI inspection equipment, processing and inspection of semiconductor products, and other precision machinery that requires high accuracy. It relates to mobile devices.

この種の従来形移動装置の一例として、第1図
及び第2図にLSIホトマスク外観検査装置を示
す。第1図は制御機構部分を付記した斜視図第2
図は上記の外観検査装置に用いられている移動装
置の垂直断面図である。
As an example of this type of conventional moving device, an LSI photomask visual inspection device is shown in FIGS. 1 and 2. Figure 1 is a perspective view with the control mechanism part added.
The figure is a vertical sectional view of a moving device used in the above-mentioned visual inspection device.

ステージベース2の上にYステージ3を介して
Xステージ4が設置されてX・Yステージが構成
され、Xステージ4の上に被検査物体であるホト
マスク1が載置される。上記のYステージ3及び
Xステージ4はそれぞれ外部駆動装置であるY軸
駆動部5及びX軸駆動部6に連結されていて、そ
れぞれY方向及びX方向に移動せしめ得る。
An X stage 4 is installed on a stage base 2 via a Y stage 3 to constitute an X/Y stage, and a photomask 1 as an object to be inspected is placed on the X stage 4. The Y stage 3 and the X stage 4 are connected to a Y-axis drive section 5 and an X-axis drive section 6, which are external drive devices, respectively, and can be moved in the Y direction and the X direction, respectively.

上記のXステージ4、Yステージ3の移動量は
X軸測長器8、Y軸測長器7によりそれぞれ測定
される。
The amounts of movement of the X stage 4 and Y stage 3 are measured by an X-axis length measuring device 8 and a Y-axis length measuring device 7, respectively.

一方、ホトマスク1のパターンを自動的に検出
する手段が次のように構成されている。ホトマス
ク1の上方に対物レンズ9が設けられ、その結像
面にパターンセンサ10が設置されている。この
パターンセンサ10の出力はパターン信号2値化
回路11を介して信号比較回路14に入力され
る。この信号比較回路14には、ホトマスク1の
回路パターン設計データを記憶せしめた磁気テー
プ12から読み出した信号も、パターン信号2値
化回路13を介して入力される。上記の磁気テー
プ12の読み出しはマイクロプロセツサ15の指
令によつて行なわれ、信号比較回路14における
比較結果は上記のマイクロプロセツサ15に入力
される。
On the other hand, means for automatically detecting the pattern of the photomask 1 is configured as follows. An objective lens 9 is provided above the photomask 1, and a pattern sensor 10 is provided on its imaging plane. The output of this pattern sensor 10 is input to a signal comparison circuit 14 via a pattern signal binarization circuit 11. A signal read from the magnetic tape 12 on which circuit pattern design data of the photomask 1 is stored is also input to the signal comparison circuit 14 via the pattern signal binarization circuit 13. Reading of the magnetic tape 12 is carried out according to instructions from the microprocessor 15, and the comparison results in the signal comparison circuit 14 are input to the microprocessor 15.

Y軸測長器7とX軸測長器8は座標測長回路1
6に接続されていて、座標測長回路16はマイク
ロプロセツサ15に接続されている。マイクロプ
ロセツサ15はXY駆動制御部17にも接続され
ており、XY駆動制御部17を通して、X軸駆動
部6、Y軸駆動部5を制御できる。
The Y-axis length measuring device 7 and the X-axis length measuring device 8 are the coordinate length measuring circuit 1.
6, and the coordinate measuring circuit 16 is connected to the microprocessor 15. The microprocessor 15 is also connected to an XY drive control section 17, and can control the X-axis drive section 6 and Y-axis drive section 5 through the XY drive control section 17.

上記のホトマスク検査装置では、磁気テープ1
2には、ホトマスク作成時の設計データが画像信
号として記憶されており、パターン信号2値化回
路13で論理レベル“0”、“1”のデイジタル画
像信号となる。又、ホトマスク1上のパターン
は、対物レンズ9上のパターンセンサ10によつ
て画像信号に変換され、パターン信号2値化回路
11で論理レベル“0”、“1”のデイジタル画像
信号となる。
In the above photomask inspection device, the magnetic tape 1
2 stores design data at the time of photomask creation as an image signal, which is converted into a digital image signal of logic levels "0" and "1" by the pattern signal binarization circuit 13. Further, the pattern on the photomask 1 is converted into an image signal by a pattern sensor 10 on an objective lens 9, and converted into a digital image signal of logic levels "0" and "1" by a pattern signal binarization circuit 11.

磁気テープ12から読み出された設計データの
デジタル画像信号と、ホトマスク1から検出され
たデジタル画像信号とが信号比較回路14で比較
された結果、相異があればマイクロプロセツサ1
5に信号が送られる。
The digital image signal of the design data read from the magnetic tape 12 and the digital image signal detected from the photomask 1 are compared by the signal comparison circuit 14, and if there is a difference, the microprocessor 1
A signal is sent to 5.

上記の信号を受けたマイクロプロセツサ15は
その相異はホトマスク1の回路パターン欠陥によ
るものであるか否かを判定し、回路パターン欠陥
であればその旨をプリンタ18に伝える。この検
査はホトマスク1を対物レンズ9に対して往復矢
印Aのように動かし、順次に全面を走査して行
う。
Upon receiving the above signal, the microprocessor 15 determines whether the difference is due to a defect in the circuit pattern of the photomask 1, and if it is a defect in the circuit pattern, it notifies the printer 18 to that effect. This inspection is performed by moving the photomask 1 with respect to the objective lens 9 in the direction of a reciprocating arrow A and sequentially scanning the entire surface.

マイクロプロセツサ15は上記矢印Aのように
ホトマスク1を移動させるべく、XY駆動制御部
17を介して、Y軸駆動部5、X軸駆動部6を制
御する。座標測長回路16はホトマスク1の検査
位置を測定しており、欠陥が発見されたホトマス
クの座標はマイクロプロセツサ15を通してプリ
ンタ18に出力される。又座標測長回路16はホ
トマスク1の検査開始および終了座標を正確に測
定してマイクロプロセツサ15に出力し、マイク
ロプロセツサ15はこれに基づいて磁気テープ1
2の駆動を制御する。
The microprocessor 15 controls the Y-axis drive section 5 and the X-axis drive section 6 via the XY drive control section 17 in order to move the photomask 1 in the direction of arrow A above. The coordinate measuring circuit 16 measures the inspection position of the photomask 1, and the coordinates of the photomask where a defect is found are outputted to the printer 18 through the microprocessor 15. Further, the coordinate measurement circuit 16 accurately measures the inspection start and end coordinates of the photomask 1 and outputs them to the microprocessor 15. Based on this, the microprocessor 15
Controls the drive of 2.

以上に説明したように設計データとマスクパタ
ーンとを比較して自動的に検査を行なう装置にお
いては、一定の速度でステージを走査すること、
並びに、パターン設計データとマスクパターンと
の位置合わせを精密に行なうことが特に重要であ
る。このため、この種の装置では、パターン走査
に使用するステージの機械的精度を可能な限り高
め、レーザゲージで測長しながら検査を行なつて
いる。第2図は検査ステージの断面を示したもの
で、ベース27上にはステージベース2、Yステ
ージ3、Xステージ4から構成されるXYステー
ジが載置され、XYステージ上にはθステージ1
9が載置されている。θステージ19はホトマス
ク1をXYステージの走り方向に正しく傾き合せ
するためのものである。さらにθステージ19上
にはスペーサ20に固定された板バネ21と、ネ
ジ22とによつて支承されたマスク載せ台23が
載置されている。ホトマスク1はネジ22を調整
して対物レンズ9にピント合せを行なう。
As explained above, in a device that automatically performs inspection by comparing design data and mask patterns, scanning the stage at a constant speed,
Furthermore, it is particularly important to precisely align the pattern design data and the mask pattern. For this reason, in this type of apparatus, the mechanical precision of the stage used for pattern scanning is increased as much as possible, and inspection is performed while measuring the length with a laser gauge. FIG. 2 shows a cross section of the inspection stage. An XY stage consisting of a stage base 2, a Y stage 3, and an X stage 4 is placed on a base 27, and a θ stage 1 is placed on the XY stage.
9 is placed. The θ stage 19 is used to properly tilt the photomask 1 in the running direction of the XY stage. Further, on the θ stage 19, a plate spring 21 fixed to a spacer 20 and a mask mounting table 23 supported by screws 22 are placed. The photomask 1 is focused on the objective lens 9 by adjusting the screw 22.

X−YステージのXステージ4には、レーザ測
長を行なうための標的である反射鏡24を保持す
る保持台25が固定してあり、レーザ干渉計26
から反射鏡24までの距離を測長する。ホトマス
ク1上方の対物レンズ9はコラム29に支持され
対物レンズ9の上方にはパターンセンサ10が設
置されている。
A holding table 25 that holds a reflecting mirror 24, which is a target for laser length measurement, is fixed to the X stage 4 of the X-Y stage, and a laser interferometer 26
The distance from the mirror 24 to the mirror 24 is measured. An objective lens 9 above the photomask 1 is supported by a column 29, and a pattern sensor 10 is installed above the objective lens 9.

上記の様に構成された従来の実施例において
は、レーザ測長器は0.1μm以下の分解能で測長す
る必要がある。そして、この種の移動装置のステ
ージは高精度の走行性、正確な傾き合わせ及び正
確なピント合わせを行ない得るように構成されね
ばならない。このため、通常、前記のX・Yステ
ージの上に更にZステージ、θステージ、微小駆
動手段などが積み重ねて設置される。
In the conventional embodiment configured as described above, the laser length measuring device is required to measure the length with a resolution of 0.1 μm or less. The stage of this type of moving device must be constructed to enable highly accurate running, accurate tilting, and accurate focusing. For this reason, a Z stage, a θ stage, a minute drive means, etc. are usually stacked and installed on top of the X/Y stage.

上記のように複雑で大形の構造を用いるため測
長手段の標的(上例においては反射鏡24)をホ
トマスク1上に設置すると、該ホトマスク1の傾
き合わせやピント合わせ等を行つた際その都度測
長手段の調整(上例においてはレーザ干渉計26
の光軸調整)を行なわねばならないという厄介が
ある。こうした煩雑さを解消するため、従来一般
に高精度の測長手段の標的はX・Yステージに取
りつけ、該X.Yステージの移動量を測定してホト
マスクの変位を検出している。即ち、第2図の例
について言えばXステージ4に反射鏡保持台25
を介して反射鏡24を固定し、レーザ干渉計26
と反射鏡24との間の距離l0の変化を測定するの
が常である。
Since the complex and large structure described above is used, if the target of the length measuring means (reflector 24 in the above example) is installed on the photomask 1, it will be difficult to adjust the tilt or focus of the photomask 1. Adjustment of the length measuring means each time (in the above example, the laser interferometer 26
There is the inconvenience of having to adjust the optical axis of the In order to eliminate these complications, conventionally, the target of the high-precision length measuring means is generally attached to an XY stage, and the displacement of the photomask is detected by measuring the amount of movement of the XY stage. That is, in the example shown in FIG.
The reflecting mirror 24 is fixed through the laser interferometer 26.
It is customary to measure the change in the distance l 0 between the mirror 24 and the reflector 24.

以上のような構成を用いた場合、1μm程度の
微小変位を検知しようとすると構成部材の熱膨
脹、収縮による誤差を無視できない。たとえば第
2図の装置でマスク載せ台23、θステージ19
Xステージ4、保持台25等が200mm角のスチー
製の板で製作されているとすると、周囲の温度変
化1℃によつて、中心部でも2μmの変位を生じ
る。
When using the above configuration, when attempting to detect minute displacements of about 1 μm, errors due to thermal expansion and contraction of the constituent members cannot be ignored. For example, in the apparatus shown in FIG.
Assuming that the X stage 4, holding table 25, etc. are made of a 200 mm square steel plate, a 1° C. change in ambient temperature causes a 2 μm displacement at the center.

上記のように熱膨脹収縮によつて2μmの誤差
を生じると、ホトマスク1の回路パターンに欠陥
が無くても信号比較回路14は2μmの欠陥があ
ると判定してしまう。一方、LSIの高集積化に伴
つて欠陥検出精度の向上が要請されており、従来
において許容されていた1μm程度のパターン欠
陥が許容されなくなつて、0.5μm以下の欠陥検出
が必要になつてきている。こうした技術的要請の
下においては前述の温度変化による熱膨脹収縮誤
差が無視できない。
If a 2 μm error occurs due to thermal expansion and contraction as described above, the signal comparison circuit 14 will determine that there is a 2 μm defect even if there is no defect in the circuit pattern of the photomask 1. On the other hand, as LSIs become more highly integrated, there is a need to improve defect detection accuracy, and pattern defects of about 1 μm, which were previously acceptable, are no longer tolerated, and defect detection of 0.5 μm or less is now necessary. ing. Under these technical requirements, the thermal expansion/contraction error due to the temperature change cannot be ignored.

本発明の目的は、上記課題を解決すべく、光学
系に対する被測定物の高精度な焦点合わせを可能
とすると共に熱膨張・収縮等による測定誤差を軽
減して被測定物の水平方向の変位の超高精度の測
長を行ない得るようにした測定誤差を少なくする
機能を備えた移動装置を提供することにある。
In order to solve the above-mentioned problems, an object of the present invention is to enable highly accurate focusing of an object to be measured with respect to an optical system, reduce measurement errors caused by thermal expansion and contraction, and change the horizontal displacement of an object to be measured. It is an object of the present invention to provide a moving device having a function of reducing measurement errors so as to be able to perform ultra-high precision length measurement.

即ち、本発明は、上記目的を達成するために、
水平なるX・Yの2次元方向に移動可能に支持さ
れたX−Yステージと、該X−Yステージに対し
て水平方向に熱膨張・収縮等による誤差を吸収す
べく支持され、且つ被測定物を載置する載置台
と、該被測定物に対する光学像を得る光学系(被
測定物に形成された光学像を観察して検査等を行
なう光学系または被測定物に光学像を形成して加
工等を行なう光学系)と、該光学系に対して被測
定物を焦点合わせすべく上記載置台を上記X−Y
ステージに対して鉛直方向に微動制御(傾き合わ
せ制御、ピント合わせ制御)して任意の位置で固
定する微動制御手段と、上記X−Yステージ上に
設けられた標的についてその水平方向の変位を測
定して上記被測定物の水平方向の変位を測定する
測定手段と、該測定手段によつて上記被測定物の
水平方向の変位を測定する際、上記標的が上記載
置台と水平方向に固定されるように標的と載置台
とを連結する連結手段とを備えたことを特徴とす
る測定誤差を少なくする機能を備えた移動装置で
ある。特に本発明は、被測定物に形成された光学
像を観察して検査等を行なう光学系または被測定
物に光学像を形成して加工等を行なう光学系に対
して被測定物を焦点合わせ(結像関係にする)を
必要とする半導体製品の加工、検査等に適用でき
ることは明らかである。
That is, in order to achieve the above object, the present invention has the following features:
An X-Y stage supported movably in two-dimensional directions (horizontal X and Y); A mounting table on which an object is placed, and an optical system that obtains an optical image of the object to be measured (an optical system that observes the optical image formed on the object to perform inspection, etc., or an optical system that forms an optical image on the object to be measured). (optical system for performing processing, etc.) and the mounting table in the X-Y direction in order to focus the object to be measured on the optical system.
A fine movement control means that performs fine movement control (tilt adjustment control, focusing control) in the vertical direction of the stage and fixes it at an arbitrary position, and measures the horizontal displacement of the target provided on the X-Y stage. measuring means for measuring the horizontal displacement of the object to be measured; and when the measuring means measures the horizontal displacement of the object to be measured, the target is fixed horizontally to the mounting table; This moving device has a function of reducing measurement errors, and is characterized in that it is equipped with a connecting means for connecting the target and the mounting table so that the target and the mounting table are connected to each other. In particular, the present invention focuses an object to be measured with respect to an optical system that observes an optical image formed on an object to be measured and performs an inspection, or an optical system that forms an optical image on an object to be measured and processes it. It is clear that the present invention can be applied to processing, inspection, etc. of semiconductor products that require (imaging).

次に、本発明の一実施例を第3図について説明
する。本実施例は第1図及び第2図に示した従来
形のLSIホトマスク外観検査装置の検査ステージ
に本発明を適用して改良したもので、第3図はそ
の移動装置の垂直断面図であり、従来装置におけ
る第2図に対応する図である。
Next, one embodiment of the present invention will be described with reference to FIG. This embodiment is an improvement by applying the present invention to the inspection stage of the conventional LSI photomask visual inspection device shown in FIGS. 1 and 2, and FIG. 3 is a vertical sectional view of the moving device. , is a diagram corresponding to FIG. 2 in the conventional device.

第3図(本実施例)が第2図(従来装置)に比
して異なるところは、反射鏡24の保持台25に
プレート28の一端を固着してその先端に構成し
た真空吸着部28aを真空ポンプVACに接続し
てあることである。31は接続用の管路、32は
上記の管路中に設けた電磁弁、33は該電磁弁に
接続したブリーザである。
The difference between FIG. 3 (this embodiment) and FIG. 2 (conventional device) is that one end of the plate 28 is fixed to the holder 25 of the reflecting mirror 24, and a vacuum suction part 28a is constructed at the tip of the plate 28. It is connected to the vacuum pump VAC. Reference numeral 31 designates a connecting pipe, 32 a solenoid valve provided in the pipe, and 33 a breather connected to the solenoid valve.

前記のプレート28の図示左端を反射鏡保持台
25に固着し、同右端をマスク載せ台(載置台)
23の上面に接せしめる。そしてその接触部に真
空チヤツク28aを形成し、電磁弁32の操作に
よつて上記の真空チヤツク28aを真空ポンプ
VAC又はブリーザ33に切替連通せしめ得るよ
うに構成する。このとき、マスク載せ台23に
は、板バネ21によつてX−Yステージ4に押し
付け力が作用しており、上記真空チヤツク28a
でマスク載せ台23を吸着してもマスク載せ台2
3が浮かび上がることはない。即ち、プレート2
8は板バネ21に比して上下方向に撓みやすく形
成されていて、真空チヤツク28aは、該プレー
ト28の弾性変形の範囲内でマスク載せ台23に
接するように形成されている。
The left end of the plate 28 as shown in the figure is fixed to the reflector holding stand 25, and the right end thereof is fixed to the mask mounting stand (mounting stand).
23. A vacuum chuck 28a is formed at the contact portion, and the vacuum chuck 28a is connected to the vacuum pump by operating the solenoid valve 32.
It is configured so that it can be switched to communicate with VAC or breather 33. At this time, a pressing force is applied to the mask mounting table 23 by the plate spring 21 against the XY stage 4, and the vacuum chuck 28a is
Even if the mask mounting base 23 is sucked with the mask mounting base 2
3 never pops up. That is, plate 2
8 is formed to be more flexible in the vertical direction than the plate spring 21, and the vacuum chuck 28a is formed so as to be in contact with the mask holder 23 within the range of elastic deformation of the plate 28.

この装置を使用する際は真空チヤツク28aを
ブリーザ33に連通させて真空吸着を解除した状
態でネジ22を調整することにより板バネ21を
中心にマスク載せ台23を鉛直方向に微動制御
(傾き合わせ制御やピント合わせ制御)を行つて
任意の位置で固定してホトマスク1の傾き合わせ
やピント合わせを行ない、これが終れば真空チヤ
ツク28aを真空ポンプVACに連通させてマス
ク載せ台23を吸着せしめる。これにより、測長
手段の標的である反射鏡24とマスク載せ台23
とはプレート28を介して相互に連結される。本
実施例は以上のようにして測長手段の標的と移動
台とを連結する手段を設けてある。
When using this device, the vacuum chuck 28a is communicated with the breather 33 to cancel the vacuum suction, and by adjusting the screw 22, the mask mounting table 23 is finely moved vertically around the leaf spring 21 (tilt adjustment). The photomask 1 is tilted and focused while being fixed at an arbitrary position by controlling the photomask 1 (control and focusing control), and when this is completed, the vacuum chuck 28a is communicated with the vacuum pump VAC to attract the mask mounting base 23. As a result, the reflector 24 and the mask mounting table 23, which are the targets of the length measuring means,
and are interconnected via a plate 28. This embodiment is provided with means for connecting the target of the length measuring means and the movable table as described above.

本実施例の装置を上述のように操作するとレー
ザー測長のための光軸を狂わせる虞れが無く又、
Xステージ4、θステージ19、マスク載せ台2
3、および保持台25が熱膨脹によつて矢印B方
向に伸長しても、この誤差はθステージ19とマ
スク載せ台23との間で吸収され、更に反射鏡2
4がマスク載せ台23と一緒に動かされるので測
長誤差を生じない。
When the apparatus of this embodiment is operated as described above, there is no risk of deviating the optical axis for laser length measurement, and
X stage 4, θ stage 19, mask mounting stand 2
3 and the holding base 25 expand in the direction of arrow B due to thermal expansion, this error is absorbed between the θ stage 19 and the mask mounting base 23, and the reflecting mirror 2
4 is moved together with the mask mounting table 23, so no length measurement error occurs.

本実施例のように測長手段の標的と移動台とを
連結する手段に流体圧力を用いると制御が容易で
自動化に好適である。
If fluid pressure is used as the means for connecting the target of the length measuring means and the moving table as in this embodiment, control is easy and suitable for automation.

第4図は上記と異なる実施例を示す。本実施例
はXステージ4の上に上下方向の微小変位装置3
0を介して熱膨張・収縮によつて生じる水平方向
の誤差を吸収すべくXステージ4に取付けられた
スペーサ20との間で上下方向に撓みうる板バネ
21により支持してマスク載せ台23を搭載し、
稼動中も絶えず上記の微小変位装置30を伸縮せ
しめてピントの補正を行なう構造の移動台に本発
明を適用したもので、プレート28の一端(図示
の右端)をマスク載せ台23に固着すると共にそ
の自由端側の半分余りを薄肉に形成して可撓部2
8bを構成してある。そして反射鏡保持台25
に、上記の可撓部28bを吸着し得る真空チヤツ
ク25aを突設してある。このようにして連結部
材にバネ弾性を与えておくと、この可撓部28b
の撓みによつてマスク載せ台23の上下方向の微
小変位を吸収し、微小変位装置30の作動を妨げ
ることなく熱膨脹の悪影響を防止することができ
る。
FIG. 4 shows an embodiment different from the above. In this embodiment, a minute displacement device 3 in the vertical direction is mounted on the X stage 4.
The mask mounting table 23 is supported by a plate spring 21 that can be bent in the vertical direction between it and a spacer 20 attached to the X stage 4 to absorb horizontal errors caused by thermal expansion and contraction. Equipped with
The present invention is applied to a movable table having a structure in which the above-mentioned minute displacement device 30 is constantly expanded and contracted during operation to correct the focus.One end of the plate 28 (the right end in the figure) is fixed to the mask mounting table 23, A little more than half of the free end side is formed thin so that the flexible portion 2
8b is configured. And the reflector holding stand 25
A vacuum chuck 25a is provided protrudingly from the top to attract the flexible portion 28b. By imparting spring elasticity to the connecting member in this way, the flexible portion 28b
By bending, it is possible to absorb minute vertical displacements of the mask mounting table 23 and prevent the adverse effects of thermal expansion without interfering with the operation of the minute displacement device 30.

以上の説明は一方向のみについての熱膨脹の悪
影響防止のための構成と作用効果であるが、上述
の構成を水平面内で直交せしめるように2組設置
すると水平面内における各方向の熱膨脹収縮を補
償して測長誤差を軽減せしめることができる。
The above explanation is about the structure and operation effect for preventing the adverse effects of thermal expansion in only one direction, but if two sets of the above-mentioned structures are installed perpendicularly in the horizontal plane, thermal expansion and contraction in each direction in the horizontal plane can be compensated. This can reduce length measurement errors.

第5図は、第4図に示した実施例の平面図であ
つて、Xステージ4に搭載したマスク載せ台23
の図示の上辺と左辺とにそれぞれプレート28の
一端を固着し、その自由端側に形成した可撓部2
8aをそれぞれ真空チヤツク25aに対向せしめ
てある。このように構成すると、本図における上
下方向の熱膨脹収縮、同左右方向の熱膨脹収縮、
並びに上記2方向の熱膨脹収縮の合成である各方
向の熱膨脹収縮による測長誤差が軽減されて高精
度の測長が可能になる。
FIG. 5 is a plan view of the embodiment shown in FIG.
One end of the plate 28 is fixed to the upper side and the left side of the figure, respectively, and the flexible portion 2 is formed on the free end side of the plate 28.
8a are respectively opposed to the vacuum chucks 25a. With this configuration, thermal expansion and contraction in the vertical direction in this figure, thermal expansion and contraction in the horizontal direction,
In addition, length measurement errors due to thermal expansion and contraction in each direction, which is a combination of the thermal expansion and contraction in the two directions, are reduced, making highly accurate length measurement possible.

以上説明したように、本発明によれば、光学系
により被測定物に形成された光学像を観察して検
査等を行なう装置または光学系により被測定物に
光学像を形成して加工等を行なう装置において、
光学系に対する被測定物の高精度な焦点合わせを
可能とすると共に熱膨張・収縮等による水平方向
の変位誤差を著しく軽減して被測定物の水平方向
の変位の超高精度の測長を可能にできるという優
れた実用的な効果を奏する。
As explained above, according to the present invention, an apparatus for inspecting an optical image formed on a workpiece by observing an optical image formed on the workpiece by an optical system, or a device for performing processing, etc. by forming an optical image on a workpiece using an optical system. In the device that performs
It enables highly accurate focusing of the object to be measured with respect to the optical system, and significantly reduces horizontal displacement errors due to thermal expansion, contraction, etc., making it possible to measure the horizontal displacement of the object with ultra-high precision. It has excellent practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来形のLSIホトマスク検査機の一例
の斜視図、第2図は上記の検査機に用いられてい
る移動装置の垂直断面図である。第3図は本発明
の移動装置の一実施例の垂直断面図、第4図は上
記と異なる実施例の垂直断面図、第5図は同平面
図である。 1……ホトマスク、3……Yステージ、4……
Xステージ、19……θステージ、20……スペ
ーサ、21……板バネ、22……ネジ、23……
マスク載せ台、24……反射鏡、25……反射鏡
保持台、25a……真空チヤツク、26……レー
ザ干渉計、28……プレート、28a……真空吸
着部、28b……可撓部、29……コラム、30
……微小移動装置、31……接続管路、32……
電磁弁。
FIG. 1 is a perspective view of an example of a conventional LSI photomask inspection machine, and FIG. 2 is a vertical sectional view of a moving device used in the above inspection machine. FIG. 3 is a vertical sectional view of an embodiment of the moving device of the present invention, FIG. 4 is a vertical sectional view of an embodiment different from the above, and FIG. 5 is a plan view of the same. 1...Photomask, 3...Y stage, 4...
X stage, 19... θ stage, 20... Spacer, 21... Leaf spring, 22... Screw, 23...
Mask mounting stand, 24...Reflector, 25...Reflector holding stand, 25a...Vacuum chuck, 26...Laser interferometer, 28...Plate, 28a...Vacuum suction part, 28b...Flexible part, 29...Column, 30
...Minute movement device, 31...Connection pipe, 32...
solenoid valve.

Claims (1)

【特許請求の範囲】 1 水平なるX・Yの2次元方向に移動可能に支
持されたX−Yステージと、該X−Yステージに
対して水平方向に誤差を吸収すべく支持され、且
つ被測定物を載置する載置台と、該被測定物に対
する光学像を得る光学系と、該光学系に対して被
測定物を焦点合わせすべく上記載置台を上記X−
Yステージに対して鉛直方向に微動制御して任意
の位置で固定する微動制御手段と、上記X−Yス
テージ上に設けられた標的についてその水平方向
の変位を測定して上記被測定物の水平方向の変位
を測定する測定手段と、該測定手段によつて上記
被測定物の水平方向の変位を測定する際、上記標
的が上記載置台と水平方向に固定されるように標
的と載置台とを連結する連結手段とを備えたこと
を特徴とする測定誤差を少なくする機能を備えた
移動装置。 2 上記連結手段を、流体圧力によつて連結する
ように構成したことを特徴とする特許請求の範囲
第1項記載の測定誤差を少なくする機能を備えた
移動装置。 3 上記連結手段として、更に鉛直方向に変位し
うるように可撓性部材を有することを特徴とする
特許請求の範囲第1項又は第2項記載の測定誤差
を少なくする機能を備えた移動装置。
[Claims] 1. An X-Y stage supported movably in two-dimensional horizontal X and Y directions, and an X-Y stage supported to absorb errors in the horizontal direction with respect to the X-Y stage, and A mounting table on which an object to be measured is placed, an optical system for obtaining an optical image of the object to be measured, and a mounting table for focusing the object to be measured with respect to the optical system.
A fine movement control means for finely controlling the vertical movement of the Y stage and fixing it at an arbitrary position; and a fine movement control means for controlling the vertical movement of the Y stage and fixing it at an arbitrary position; a measuring means for measuring a displacement in a direction; and a measuring means for measuring a displacement in a horizontal direction of the object to be measured; A moving device having a function of reducing measurement errors, characterized in that it is provided with a connecting means for connecting. 2. A moving device having a function of reducing measurement errors as set forth in claim 1, wherein the connecting means is configured to be connected by fluid pressure. 3. A moving device having a function of reducing measurement errors as set forth in claim 1 or 2, characterized in that the connecting means includes a flexible member so as to be further displaceable in the vertical direction. .
JP57168314A 1982-09-29 1982-09-29 Shifter having function reducing error on measurement Granted JPS5958825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57168314A JPS5958825A (en) 1982-09-29 1982-09-29 Shifter having function reducing error on measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57168314A JPS5958825A (en) 1982-09-29 1982-09-29 Shifter having function reducing error on measurement

Publications (2)

Publication Number Publication Date
JPS5958825A JPS5958825A (en) 1984-04-04
JPH0244365B2 true JPH0244365B2 (en) 1990-10-03

Family

ID=15865731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57168314A Granted JPS5958825A (en) 1982-09-29 1982-09-29 Shifter having function reducing error on measurement

Country Status (1)

Country Link
JP (1) JPS5958825A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62151783A (en) * 1985-12-26 1987-07-06 東芝機械株式会社 High-precision moving table device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107106A (en) * 1980-01-31 1981-08-25 Nec Corp Precision position-measuring device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107106A (en) * 1980-01-31 1981-08-25 Nec Corp Precision position-measuring device

Also Published As

Publication number Publication date
JPS5958825A (en) 1984-04-04

Similar Documents

Publication Publication Date Title
US5117255A (en) Projection exposure apparatus
US5179863A (en) Method and apparatus for setting the gap distance between a mask and a wafer at a predetermined distance
KR940003918B1 (en) Shape measuring instrument
US3786332A (en) Micro positioning apparatus
JP4500736B2 (en) Shape measuring device
JP2000049066A (en) Aligner and manufacture of devices
JP4050459B2 (en) Device for detecting the position of two objects
JPH0257333B2 (en)
JPH0814484B2 (en) Pattern position measuring device
TWI776355B (en) Charged particle beam device, sample alignment method of charged particle beam device
US6351313B1 (en) Device for detecting the position of two bodies
US4425537A (en) X-Y Addressable workpiece positioner and mask aligner using same
JPH09223650A (en) Aligner
JPH11125520A (en) Member for supporting semiconductor wafer, and flatness measuring instrument for semiconductor wafer
JPH0587544A (en) Inspecting apparatus for defect
US6172757B1 (en) Lever sensor for stepper field-by-field focus and leveling system
JPH0244365B2 (en)
JPH04317Y2 (en)
JPS62150106A (en) Apparatus for detecting position
JPH06260393A (en) Positioning device
JPH085767A (en) Drive table
JPH05134753A (en) Positioning device
JP2002228411A (en) Two-dimensional measuring apparatus
JPH09199573A (en) Positioning stage apparatus and aligner using the same
JP3940819B2 (en) Semiconductor wafer surface shape measuring apparatus and surface shape measuring method