JPS59116580A - Reactor container - Google Patents

Reactor container

Info

Publication number
JPS59116580A
JPS59116580A JP57225852A JP22585282A JPS59116580A JP S59116580 A JPS59116580 A JP S59116580A JP 57225852 A JP57225852 A JP 57225852A JP 22585282 A JP22585282 A JP 22585282A JP S59116580 A JPS59116580 A JP S59116580A
Authority
JP
Japan
Prior art keywords
reactor vessel
heat
temperature
plenum
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57225852A
Other languages
Japanese (ja)
Inventor
寿 山本
和世 啓三
山中 庸靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57225852A priority Critical patent/JPS59116580A/en
Publication of JPS59116580A publication Critical patent/JPS59116580A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、気体の断熱層を有する原子炉容器に係シ、特
尾長期にわたシ好適な断熱性能を与える原子炉容器に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a nuclear reactor vessel having a gas insulating layer, and particularly to a nuclear reactor vessel that provides suitable thermal insulation performance over a long period of time.

〔従来技術〕[Prior art]

大型の原子力発電炉において、例えば液体ナトリウムを
冷却材とする高速炉収おいては、原子炉容器の直径はI
Qm以上にもなシ、特にタンク型高速炉では20m以上
にもなる。上記高速炉では、冷却材であるナトリウムが
500C以上で運転されるため、かかる高温ナトリウム
と原子炉容器が直接接触することは、原子炉容器の強度
上問題があシ、原子炉容器の壁温を400C程度に下げ
るため、原子炉容器の内面に断熱層を設ける。この断熱
構造の1つに気体の断熱層が用いられている。
In large nuclear power reactors, for example fast reactors that use liquid sodium as a coolant, the diameter of the reactor vessel is I.
Qm or more, especially for tank type fast reactors, it can be more than 20m. In the above-mentioned fast reactor, sodium, which is a coolant, is operated at a temperature of 500C or higher, so direct contact between such high-temperature sodium and the reactor vessel poses problems in terms of the strength of the reactor vessel, and the wall temperature of the reactor vessel increases. In order to lower the temperature to around 400C, a heat insulating layer will be provided on the inner surface of the reactor vessel. A gas insulation layer is used as one of these insulation structures.

第1図に気体の断熱層を用いた従来の例を示す。FIG. 1 shows a conventional example using a gas heat insulating layer.

原子炉は、原子炉容器2の上部に遮蔽蓋1がされて密閉
されている。炉心5′は、炉心支持構造4′で支持され
ており、下部プレナム7の低温の冷却材は、炉心5′罠
よって加熱されて上部プレナム6′に流れ、その後中間
熱交換器によシ冷却され下部プレナム7にもどる。原子
炉容器2は隔壁3との間に設けられた気体層8′によっ
て熱的に遮蔽される構造となっている。しかし、上記断
熱層8′と、上部プレナム6′の上部のカバーガスプレ
ナム9′と通じているため、従来技術では、上部プレナ
ム6′の液面よシ蒸発した冷却材が、より低温である原
子炉容器2の内面で凝縮液化し、断熱層8′に蓄積され
るので、上記液化した冷却材の紙伝達により、断熱性能
が劣化していくため、原子炉容器の温度4を上昇させ、
その強度を低下させる欠点がある。
The nuclear reactor is hermetically sealed with a shielding lid 1 placed on top of a reactor vessel 2. The core 5' is supported by a core support structure 4', and the low temperature coolant in the lower plenum 7 is heated by the core 5' trap and flows to the upper plenum 6', where it is then cooled by an intermediate heat exchanger. and returns to the lower plenum 7. The reactor vessel 2 is thermally shielded by a gas layer 8' provided between the reactor vessel 2 and the partition wall 3. However, since the heat insulating layer 8' communicates with the cover gas plenum 9' above the upper plenum 6', in the prior art, the coolant evaporated from the liquid level of the upper plenum 6' has a lower temperature. Since it condenses and liquefies on the inner surface of the reactor vessel 2 and accumulates in the heat insulating layer 8', the heat insulating performance deteriorates due to the paper transfer of the liquefied coolant, so the temperature 4 of the reactor vessel is increased.
There are drawbacks that reduce its strength.

〔発明の目的〕[Purpose of the invention]

本発明は、気体断熱層8′の内部に蓄積される冷却材(
液体)を再蒸発させることにより、上記欠点をなくシ、
良好な断熱性能をもつ原子炉容器を提供するものである
The present invention provides a cooling material (
By reevaporating the liquid), the above disadvantages can be eliminated.
The present invention provides a nuclear reactor vessel with good heat insulation performance.

〔発明の実施例〕[Embodiments of the invention]

本発明を実施例により説明する。第2図は本発明の一実
施例を示すもので、隔壁3の外面に細かいメツシュ10
′を設けである。上部プレナム6′よりカバーガスプレ
ナム9′へ蒸発した冷却材は、一部が、より低温の原子
炉容器2の内面で凝縮液化し気体断熱層8′の底部に落
下するが、この液体はメツシュ10′により、毛細管現
象によって、より高温の隔壁3の壁面に運ばれ、そこで
再び蒸発する。このように本発明によれば、気体断熱層
8′に1夜化された冷却材が蓄積されて、断熱性能が劣
化するのを防止することができる。
The present invention will be explained by examples. FIG. 2 shows an embodiment of the present invention, in which a fine mesh 10 is provided on the outer surface of the partition wall 3.
' is provided. A portion of the coolant evaporated from the upper plenum 6' to the cover gas plenum 9' condenses and liquefies on the lower temperature inner surface of the reactor vessel 2 and falls to the bottom of the gas insulation layer 8', but this liquid is 10', it is transported by capillary action to the higher temperature wall surface of the partition wall 3, where it evaporates again. As described above, according to the present invention, it is possible to prevent the overnight coolant from accumulating in the gas heat insulating layer 8' and deteriorating the heat insulating performance.

隔壁3の壁面へ、液体を運ぶ機構として、メツシュを設
ける他、直接隔壁面上に細かい線条を加工しても同様の
効果が得られることは明らかである。
It is clear that, in addition to providing a mesh as a mechanism for transporting liquid to the wall surface of the partition wall 3, the same effect can be obtained by directly processing fine lines on the partition wall surface.

第3図は、本発明の他の実施例で原子炉容器2と隔壁3
の中間に隔壁11′を設け、隔壁3と対する面にメツシ
ュ10′を設けである。本笑施例〜は、蒸発面積を増加
させることの他に、隔壁3から蒸発した蒸気が直接、原
子炉容器2の壁面で凝縮することによる熱輸送を防止で
きるので、断熱性能をよシ向上させることができる。
FIG. 3 shows a reactor vessel 2 and a partition wall 3 in another embodiment of the present invention.
A partition wall 11' is provided in the middle of the partition wall 3, and a mesh 10' is provided on the surface facing the partition wall 3. In addition to increasing the evaporation area, this embodiment also prevents heat transfer caused by direct condensation of the steam evaporated from the partition wall 3 on the wall surface of the reactor vessel 2, which further improves the insulation performance. can be done.

本発明によれば、気体断熱層内に凝縮液体が蓄積される
ことがなく、原子炉容器の断熱性能の劣化を防止する上
で著しい効果がある。
According to the present invention, condensed liquid is not accumulated in the gas insulation layer, and there is a significant effect in preventing deterioration of the insulation performance of the reactor vessel.

さらに第4図に本発明の他の実施例を示す。第4図にお
いて、高温プレナム8の外周に液体の熱遮蔽層42を設
け、その外周に液体の熱遮蔽層41を設け、この熱遮蔽
層41の内に、密封された液体(例えばNaK)の気化
−凝縮を利用した熱輸送管(以下ヒートパイプと呼ぶ)
11の一端を挿入し、他端を低温の冷却材を環流させる
冷却管10の内に挿入し、熱遮蔽層41を冷却する。
Further, FIG. 4 shows another embodiment of the present invention. In FIG. 4, a liquid heat shielding layer 42 is provided on the outer periphery of the high temperature plenum 8, a liquid heat shielding layer 41 is provided on the outer periphery of the high temperature plenum 8, and a sealed liquid (for example, NaK) is placed in the heat shielding layer 41. Heat transport pipe using vaporization and condensation (hereinafter referred to as heat pipe)
11 is inserted, and the other end is inserted into the cooling pipe 10 that circulates a low-temperature coolant, thereby cooling the heat shielding layer 41.

ヒートパイプ11は原子炉容器壁にそって周方向に適当
な間隔で配置され、その本数は必要除熱量できめられる
。ヒートパイプを利用した冷却方式の特徴を第5図を用
いて説明する。ヒートパイプ11の管内は高真空に保た
れ、少量の液体が封入されている。高温部12で気化し
た蒸気はほとんど音速で低温部に移動し、そこで凝縮し
て気化熱を放出し、液化した液体はメツシュ14にょシ
毛細管現象で高温部12にもどる。ヒートパイプの特徴
は、通常の熱伝導体のように熱流束が高温部と低温部の
温度差に比例するのでなく、高温部の温度できまる蒸気
圧に比例することである。第6図にNaKを使用した場
合の、蒸気圧曲線を示す。
The heat pipes 11 are arranged along the wall of the reactor vessel at appropriate intervals in the circumferential direction, and the number of heat pipes is determined by the required amount of heat removal. The features of the cooling method using heat pipes will be explained using FIG. 5. The inside of the heat pipe 11 is maintained at a high vacuum and is filled with a small amount of liquid. The vapor vaporized in the high temperature section 12 moves almost at the speed of sound to the low temperature section, where it condenses and releases the heat of vaporization, and the liquefied liquid returns to the high temperature section 12 by capillary action in the mesh 14. A feature of heat pipes is that the heat flux is not proportional to the temperature difference between the high-temperature part and the low-temperature part, as is the case with ordinary heat conductors, but is proportional to the vapor pressure determined by the temperature of the high-temperature part. FIG. 6 shows a vapor pressure curve when NaK is used.

第6図かられかるように、NaKを使用したヒートパイ
プの特性に、約40CI’以下では除熱量がきわめて小
さく約400C以上で急増する1種の熱的スイッチ素子
の特性を示す。これは原子炉容器壁の冷却方式として次
の好適な特性が得られる。
As can be seen from FIG. 6, the characteristics of the heat pipe using NaK exhibit the characteristics of a type of thermal switching element, in which the amount of heat removed is extremely small below about 40 CI' and rapidly increases above about 400 C. This provides the following favorable characteristics as a cooling method for the reactor vessel wall.

(1)高温プレナム8の温度が上昇した場合でも容器壁
2の温度は約4000に保たれる。
(1) Even if the temperature of the high-temperature plenum 8 rises, the temperature of the container wall 2 is maintained at about 4000°C.

(2)原子炉スクラムのように高温プレナム8の温度が
急激に低下しても、ヒートパイプの除熱量も急激に低下
し、容器壁2の温度は約400Cから急変しない。
(2) Even if the temperature of the high-temperature plenum 8 suddenly decreases as in a reactor scram, the amount of heat removed by the heat pipe also decreases rapidly, and the temperature of the vessel wall 2 does not suddenly change from about 400C.

以上の特性は原子炉容器2に大きな熱衝撃を与えないこ
とを示す。
The above characteristics indicate that the reactor vessel 2 is not subjected to a large thermal shock.

さらにヒートパイプの熱輸送量が高温部の温度で増減(
第6図参照)することから (3)原子炉容器壁2の軸方向に温度差がつかない。
Furthermore, the amount of heat transport in the heat pipe increases or decreases depending on the temperature of the high temperature section (
(Refer to FIG. 6) (3) There is no temperature difference in the axial direction of the reactor vessel wall 2.

(4)原子炉容器周方向に温度差がつかない。(4) There is no temperature difference in the circumferential direction of the reactor vessel.

ことが示される。これは、とくに大きな容器の場合問題
罠なる局所的な温度分布による熱変形がさけられる大き
な長所がある。
It is shown that This has the great advantage of avoiding thermal deformation due to local temperature distribution, which is a problem especially in the case of large containers.

本発明は以上で述べたようにきわめて好適な原子炉容器
壁の冷却方式を供するものである。なお第4図の実施例
では冷却管10を上部に設けであるが、ヒートパイプ1
1の下部に設けても同様の効果が得られることは明らか
である。また、冷却管10の冷却能力が十分であれば、
熱遮蔽層42は省略することも可能である。第8図ルエ
本実施例に係る具体的構造の一例を示したものであるわ
、冷却管10は炉容器2の周方向に沿ってヘッダー状に
配置され、冷却用のアルゴンガスが供給される。
As described above, the present invention provides an extremely suitable method for cooling the reactor vessel wall. In the embodiment shown in FIG. 4, the cooling pipe 10 is provided at the top, but the heat pipe 1
It is clear that the same effect can be obtained even if it is provided at the lower part of 1. Moreover, if the cooling capacity of the cooling pipe 10 is sufficient,
The heat shield layer 42 can also be omitted. Fig. 8 shows an example of a specific structure according to this embodiment. Cooling pipes 10 are arranged in a header shape along the circumferential direction of the furnace vessel 2, and argon gas for cooling is supplied. .

アルゴンガスはヒートパイプ11の上端を冷却炉容器内
に排出され、別途浄化系へ戻され再び冷やされて循JP
する。
The argon gas is discharged from the upper end of the heat pipe 11 into the cooling furnace container, and is separately returned to the purification system where it is cooled again and circulated.
do.

本発明の他の実施例を第7図に示す。第7図においては
、ヒートペイプ11の一端を低温プレナム7の中((挿
入しtものである。この場合は低温プレナム7の中で、
ヒートパイプ11のまわりの冷却材がスタグナントにな
らないよう流動状態をよくするよう配慮することによシ
、冷却管1oが省略できる長所がある。この具体的構造
の一例を第9図に示す。これは炉心支持構造取付ボルト
14を利用したものである。
Another embodiment of the invention is shown in FIG. In FIG. 7, one end of the heat pipe 11 is inserted into the low temperature plenum 7 (in this case, inside the low temperature plenum 7,
By taking care to improve the fluidity of the coolant around the heat pipe 11 so that it does not become a stagnant, there is an advantage that the cooling pipe 1o can be omitted. An example of this specific structure is shown in FIG. This utilizes core support structure attachment bolts 14.

以上説明したよって、本発明はヒートパイプの熱輸送特
性を利用したことによる、熱衝撃、局所的な熱応力の発
生を防止する安全かつ良好な原子炉容器壁冷却方式を供
するものである。
As described above, the present invention provides a safe and good reactor vessel wall cooling method that prevents the occurrence of thermal shock and local thermal stress by utilizing the heat transport characteristics of heat pipes.

尚、ヒートパイプ11はN a Kを翔いた場合直径2
5關のものを150本〜2004C程度用いれば性能が
満足さnる。この様な多数の同一品を用いる事は製造コ
スト低減の他、多少破損するものがあっても機能的に支
障がなくなり信頼性の向上する利点もでてくる。また第
9図に示した様な差込式のものは、交換も容易となる。
In addition, the heat pipe 11 has a diameter of 2 when flying NaK.
Performance will be satisfactory if approximately 150 to 2004C are used. Using such a large number of identical products not only reduces manufacturing costs but also has the advantage of improving reliability because even if some parts are damaged, there is no functional problem. Moreover, the plug-in type shown in FIG. 9 is easy to replace.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の原子炉容器の構造を示す部分断面図、第
2図は本発明の一実施例の原子炉容器の部分断面図、第
3.第4図は同じく本発明の他の実施例の原子炉容器の
部分断面図、第5図は同じくヒートパイプを用いた冷却
部の断面図、第6図はN a Kの蒸発曲線、第7図は
本発明の他の実施例の原子炉容器の部分断面図、第8.
第9図は同じく他の実施例の具体的構造図である。 2・・・原子炉容器壁、41.42.9・・・遮蔽層、
7・・・低温プレナム、8・・・高温プレナム、10・
・・冷却Y 1 図 ! 新2図       茅3図 遁 3 目 冷Aヒカ゛X Yq 図
FIG. 1 is a partial cross-sectional view showing the structure of a conventional reactor vessel, FIG. 2 is a partial cross-sectional view of a reactor vessel according to an embodiment of the present invention, and FIG. FIG. 4 is a partial sectional view of a reactor vessel according to another embodiment of the present invention, FIG. 5 is a sectional view of a cooling section using a heat pipe, FIG. 6 is an evaporation curve of NaK, and FIG. Figure 8 is a partial sectional view of a reactor vessel according to another embodiment of the present invention.
FIG. 9 is a concrete structural diagram of another embodiment. 2... Reactor vessel wall, 41.42.9... Shielding layer,
7... Low temperature plenum, 8... High temperature plenum, 10.
...Cooling Y 1 Figure! New 2nd figure Kaya 3rd figure 3 Merei Ahika゛X Yq figure

Claims (1)

【特許請求の範囲】[Claims] 1、高温と液体と原子炉容器内壁との間に気体の断熱層
を設けた原子炉容器構造において、該気体断熱層を形成
する壁面に凝縮した液体を再蒸発させることを特徴とし
た原子炉容器。
1. A nuclear reactor characterized in that, in a reactor vessel structure in which a gas insulation layer is provided between a high temperature, a liquid, and an inner wall of the reactor vessel, liquid condensed on the wall surface forming the gas insulation layer is reevaporated. container.
JP57225852A 1982-12-24 1982-12-24 Reactor container Pending JPS59116580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57225852A JPS59116580A (en) 1982-12-24 1982-12-24 Reactor container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57225852A JPS59116580A (en) 1982-12-24 1982-12-24 Reactor container

Publications (1)

Publication Number Publication Date
JPS59116580A true JPS59116580A (en) 1984-07-05

Family

ID=16835846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57225852A Pending JPS59116580A (en) 1982-12-24 1982-12-24 Reactor container

Country Status (1)

Country Link
JP (1) JPS59116580A (en)

Similar Documents

Publication Publication Date Title
US4036291A (en) Cooling device for electric device
US4944344A (en) Hermetically sealed modular electronic cold plate utilizing reflux cooling
US5228922A (en) High voltage alkali metal thermal electric conversion device
JPS59116580A (en) Reactor container
JPS63217296A (en) Natural radiation type reactor container
JPH0724293B2 (en) Boiling cooler
JPH0444352A (en) Heat pipe type electronic parts cooler
JP3355726B2 (en) Boiling cooling device
EP0069404B1 (en) Heat transport device comprising a sealed and evacuated tube
JPS6383693A (en) Secondary cooling system of nuclear reactor
JPH08189995A (en) Spent fuel assembly container vessel
JPH01174897A (en) Heat pipe
JPS60253790A (en) Heat transfer device
JPS63154992A (en) Heat removing system of fast breeder reactor
JP2757893B2 (en) Flat semiconductor device
JPH09273877A (en) Heat pipe type air cooler
JPH0155720B2 (en)
JPS61215993A (en) Thermal shielding device for fast breeder reactor
JPH0122742B2 (en)
JP2856729B2 (en) Flat semiconductor element
JPH0665055B2 (en) Fuel cell
JPS6129789A (en) Tank type fast breeder reactor
JPS6247588A (en) Nuclear reactor
JPS6120778Y2 (en)
Razzaque et al. A novel concept of passive shutdown heat removal in advanced nuclear reactors—Applications to PRISM and MHTGR